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FRACTAL DIMENSION FOR THE CHARACTERIZATION OF THE POROSITY OF
ASPHALT CONCRETES

G. LEONARDI1

In the design of asphalt mixtures for paving, the choice of components has a remarkable importance,
as requirements of quality and durability must be assured in use, guaranteeing adequate standards
of safety and comfort.
In this paper, an approach of analysis on the aggregate materials using fractal geometry is proposed.
Following an analytical and an experimental approach, it was possible to find a correlation between
characteristics of the asphalt concrete (specific gravity and porosity) and the fractal dimension of
the aggregate mixtures.
The studies revealed that this approach allows to draw the optimal fractal dimension and, conse-
quently, it can be used to choose an appropriate aggregate gradation for the specific application;
once the appropriate initial physical parameters are finalized.
This fractal approach could be employed for predicting the porosity of mixed asphalt concretes,
given as input the fractal characteristics of the aggregate mixtures of the concrete materials.
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1. I

Some researchers maintain since some time that fractal geometry can contribute to the
description and interpretation of the microstructural complexity of hydrated cements.
The applications deal with both the solid phases and the complementary porosity .[1].

Winslow [2] recognises the fractal character of the surfaces of cement pastes. Li-
vingston [3] guesses the fractality in the process of nucleation and growth of tricalcium
silicate. Lange et al. [4] use the concept of fractal dimensions to describe the structure
of pores defined through image analysis, while Panagouli and Kokkalis .[5] applies it
to calculate the skid resistance of roads pavements.

A fractal character was recognised on materials similar to cement from a porosi-
metric point of view such as limes, soils, rocks, and ceramics [6, 7]. Huang et al. [8]
illustrated the correlation between fractal dimension and porosity of porous solid.
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The aim of this paper is to demonstrate the applicability of fractals geometry to
characterize the porosity of mixed asphalt concretes.

2. F 

Fractal geometry is a field of modern mathematics, born at the beginning of 20th
century, to describe irregular geometrical forms.

However, this new field of geometry became methodologically important for ap-
plied research only after Benoı̂t B. Mandelbrot’s works [9, 10], where he pointed out
some peculiar geometrical properties of certain objects, as the coasts of continents, the
branches of trees, or the surfaces of clouds.

Mandelbrot coined the word fractal (in Latin, fractus means irregular) for these
complex forms in order to express that their peculiarity is a non-integer dimension that
is fractal [11-13].

The simplest fractals are self-similar fractals constructed by repeating a pattern or
generator onto a starting object or initiator. The initiator determines the dimensionality,
whereas the generator defines the overall symmetry of the object and produces features
at different length scales [6].

The generator pattern is repeated n times and can result in either accretion or
reduction of the initiator. The final fractal object contains a range of lengths, r = 1/bi,
where b is a scaling factor and i= 1, 2, 3, . . . , n. Examples of fractal objects generated by
this process are shown in the following figures. In the Cantor bar (Fig. 1), the initiator
is a solid line and the generator is a broken line. The initial solid line is divided
into three equal segments and the middle third is removed (reductive algorithm). The
process is then repeated for each of the remaining solid segments. The initiator for the
Koch curve (Fig. 2) is also a solid line that is divided into three segments, but the
middle segment is now replaced by two segments of the same length as the outer ones
(accretive algorithm). The Sierpinski carpet and its three-dimensional counterpart the
Menger sponge (Fig. 3) are produced by removal of squares or cubes from the initiator
which is a plane or a cube, respectively. For example, in the Menger sponge, a cube
of unit length is partitioned into 27 smaller cubes and seven cubes are removed. This
process is then repeated for each of the remaining solid cubes.

The above mentioned fractals are deterministic since the same operation is repeated
at all scales. Randomness can be introduced in these constructions in different ways to
produce statistical fractals.

2.1. F 

The fundamental equation applying to all fractals is the number-size relationship .[9,
14]:
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Fig. 1. Cantor bar.

Fig. 2. Koch curve.

(2.1) N(r) = k ·
(
1
r

)D

= k · r−D,

where N(r)is the number of elements of length equal to r,K is the number of initiators
of unit length and Dis the fractal dimension. Or, equivalently:

(2.2) D =

[
log N(r) − log k

]
log (1/r)

.

The concept of fractal dimension admits multiples definitions. All of they are seemed
????, and constitute generalizations of classical concept of integer dimension, which
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Fig. 3. Menger sponge.

recovers. Perhaps the most intuitive and simple to understand is homothetic dimension
or self-similarity dimension.

A geometrical object is said self-similar if it can be arbitrarily decomposed into
small parts, which are all copies of the whole structure; those sub-components are
obtained by means of a homothetic transformation.

Consider a set G of points whose positions are given by the vectors:

(2.3) ~Pi =
(
x1i , . . . . . . . . . , xEi

)
,

in a E-dimensional Euclidean space, applying a reduction (or a dilatation) characterized
by a scale ratio r, the set G becomes the set rG, where the points are positioned by:

(2.4) r ~Pi =
(
rx1i , . . . . . . . . . , rxEi

)
.

A limited set G is said “self-similar” if it is made by the union of N distinct sub-sets
(with void intersection) which can be superimposed by means of rototranslactions to
r·G. The number of copies N in which a D-dimensional self-similar object can be
divided by means of a scale factor r is given by the relation:

(2.5) N ∝ r−D,

where D is the homothetic dimension or self-similarity dimension ...[10].
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2.2. A     

In the last years, soils and aggregate size distributions were characterized by fractal
dimension (D, i.e., slope of the log of cumulative aggregate number as a function
of the log of aggregate size) and several authors observed self-similarity in different
organization levels of soils and mineral aggregates [15-18]. So, fractal geometry was
used to model hydraulic proprieties by Giménez et al. [6] and Atzeni et al. [1], to
study the porosity by Atzeni et al., [7], Huang et al., [8], Lange et al., [4] and Perrier
et al., [19] and to model the surface characteristics of cement pastes and concretes by
Kokkalis and Panagouli [20] and Winslow [2].

To study the fractal proprieties of aggregates, it is necessary to analyse the mixtures
in volumetric terms, as also suggested in “Code de bonne pratique pour la formulation
des enrobés bitumineux” [21] and in Cominsky et al. [22]. To express the grain-size
distribution curve in terms of volume, we need to calculate the density of the various
size classes of the aggregates. After the estimation of the mean volume of the single
element, we can obtain a representation in terms of cumulated number.

In order to reach this result, it is necessary to make some simple considerations
about the form of the single grain of a mixture of aggregates.

The single grain, not too irregular, can be assumed to be an ellipsoid having width
b, length a = k·b and thickness s = b/k, as shown in Fig. 4:

Fig. 4. Grain dimensions.

The volume of this ellipsoid is:

(2.6)
π

6
· b · a · s =

π

6
· (k · b) · b ·

(
b/k

)
=
π

6
· b3.

Therefore, it is evident that the volume of each grain is equivalent to the volume of a
sphere with diameter b.
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There exists a correlation between the coefficient k and the ratio between the
actual volume of the grain and the volume of the smallest sphere which holds it. This
correlation is given by:

(2.7)
π
6 · a · b · s

π
6 · a3 =

π
6 · (k · b) · b ·

(
b/k

)

π
6 · (k · b)3

= k−3.

The typical k values for aggregate grains of common use are between 1.35 and 1.5.
As a consequence, assuming that the grains making up the mixture have all an

ellipsoidal form, all the elements with width b < D will pass through an aperture size
of diameter D, after a sufficient time interval.

To obtain the cumulated number of elements it is necessary to calculate the density
of the fractions which pass through the sieve with an aperture size D and stopped by
the lower one of aperture size d.

Known the mass M and the density γ and assuming, in first approximation, that
the mean volume of the single grain is equal to (π/6)·b3, where b is the diameter of
the equivalent sphere, the number of grains of the passing fraction is given by:

(2.8) N =
M

γ · b3 ·
(
π
6

) .

Moreover, the cumulated number of grains, with mean dimensions greater or equal to
b, is given by the sum:

(2. 9) Nc (bi > d) =
∑

i

Mi

γi · b3
i ·

(
π
6

) .

The cumulated number of the elements, as the dimensions change, can be evaluated
as illustrated in [18], they found the following relation:

(2.10) Nc (d) = B · d−D,

the eq. (2.10) clearly shows the fractal character of the grain-size distribution curves,
expressed in terms of cumulated number of elements.

In fact, remembering the definitions of fractal dimension, we can write:

(2.11) N ∝ r−D.

It follows from eq. (2.10) that the graph of log (Nc) vs. log (d) should be approximately
a straight line with slope equal to −D.
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Now we want to extend this fractal representation to investigate the existing corre-
lation between porosity characteristic of a composite materials constituted by mineral
aggregates glued together with a binder like the asphalt concrete (e. g. Hot Mix Asphalt
Concrete HMA) and the fractal dimension of the mixture.

It has long been established that gradation of the aggregate is one of the factors
that must be carefully considered in the design of asphalt paving mixtures. In fact, the
extent to which an HMA mixture can be compacted is strongly related to aggregate
gradation [23]. Aggregate gradation is the size distribution of the aggregate particles,
including the amount of material passing the 75-mm sieve (dust content).

Goode and Lufsey [23] demonstrated that an aggregate having a gradation that
produces a straight line on a 0.45 in a power gradation graph will have the maximum
achievable density, and subsequently the lowest air void content and the lowest voids
in the mineral aggregate (VMA) in an HMA mixture.

However, Huber and Shuler [24] note that significant confusion exists concerning
different methods used to draw aggregate gradation “maximum” density lines. Closely
related to maximum density lines, and also in debate, is the definition of nominal
aggregate maximum size.

The purpose of this paper is to demonstrate that an aggregate mixture having a
gradation that produces an optimal fractal dimension will have the maximum achievable
density, and subsequently the lowest air voids in an HMA.

3. M  

In the study and use of asphalt concretes for road pavements, the main problem is
the choice and dosage of the components (mineral aggregates and asphalt) in order to
obtain a mix with the appropriate performance and durability characteristics, in relation
to the use and environment the infrastructure is exposed to.

Given the many variables to be taken into account, it is obviously difficult to assess
the quality of an asphalt mixture, during the design phase. Therefore the necessity to
analyze new methodologies is evident which can strongly support the road planner in
order to optimize the comprehensive outcome of his design.

From this point of view, it can be particularly interesting to investigate new ana-
lytic approach to explain the influence of the characteristics of aggregate materials, in
particular the volumetric distribution, on the proprieties of the HMA.

The first step of this approach is represented by the characterization of the mixtures
by means of fractal dimension.

Therefore, if the computation of the approximate volume of the single grain is
possible and the volume mass of the single class is supposed to be known and being
careful to evaluate di distribution of the characteristic dimensions of the grains within
each class; it is possible to evaluate the fractal dimension of mixture starting from a
gradation analysis.
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We evaluate the mean dimension of the grains of a gradation class, passing through
the sieve dy and stop by the sieve dx, by means of the formula [21]:

(3.1) Gri f =
ln dy − ln dx

1
dx
− 1

dy

.

After the characteristic points (Nc and Gri f ) of the various classes of the mixture
are obtained, it is possible to single out the corresponding regression straight line
on a logarithm plane, whose slope represents the fractal dimension of the considered
mixture.

Now, the aim of the proposed research is to analyse a possible correlation between
the fractal dimension of the aggregates mixture and a physical characteristic of the
asphalt concrete (i. e. the porosity). To reach this aim firstly we studied 11 mineral
aggregate mixtures (Fig. 5).

Fig. 5. Gradation of the considered eleven aggregate mixtures.

According to eq. 2.9 and eq. 3.1 the cumulated number of the elements Ni and
the reference dimension for the different gradation class Gri f were calculated.

The obtained data for the 11 mixtures were plotted as illustrated in Fig. 6, where
slope of the linear regression was – 2.84 corresponding to a fractal dimension equal
to 2.84 for the mixture number 1 (Table 1).

The same approach allowed us to calculate the fractal dimension of all the 11
mixtures.

The 11 aggregate mixtures were used to form 11 different hot mixed asphalt
concretes (HMA) in order to investigate the researched correlation.
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Fig. 6. Example of interpolation for the determination of the fractal dimension.

Table 1
Aggregate density of different size classes (mixture n. 1).

Aggregate size [mm] Density, [kg·m−3] Gri f

[mm] Ni

< 1.5 2720 1.9156 1.0E+00

1.5 – 1.0 2730 1.2164 7.8E+00

1.0 – 0.5 2720 0.6931 4.2E+01

0.5 – 0.2 2700 0.3054 3.7E+02

0.2 – 0.04 2680 0.0805 2.1E+04

0.04 – 0.016 2700 0.0244 5.8E+05

0.016 – 0.0075 2700 0.0107 1.2E+06

< 0.0075 3300 0.00012 2.1E+12

The HMA was produced using the same type and quantity (4.30%) of binder
(bitumen).

4. R  

Table 2 summarizes the estimated fractal dimension, porosity and specific gravity of
the 11 HMA concretes.

We have found that the values of the porosity in function of the fractal number
point out the existence of an optimal value of the fractal dimension in connection with



330 G. L

the aim of maximum condensation, whose value can be estimated in 2.87. For greater
values we can image an opposite trend of the variable (Fig. 7).

As expected, a similar behavior was obtained for the definition of specific gravity –
fractal dimension. In fact, also in this case an optimal fractal dimension can be found.

Table 2
Summary of fractal dimension and porosity for the eleven HMA.

HMA
Fractal

dimension
porosity

[%]
specific gravity γc

[kg/m3]
1 2.839 5.59 2400

2 2.896 5.31 2410

3 2.772 11.90 2241

4 2.755 12.05 2217

5 2.772 9.00 2310

6 2.868 6.54 2342

7 2.870 5.23 2361

8 2.889 6.21 2336

9 2.850 6.82 2329

10 2.811 7.10 2370

11 2.877 5.90 2400

The optimal values of the fractal dimension in connection with these two physical
quantities are almost coincident (2.866 and 2.875) and they are very near to the the-
oretical limit pertinent to a condensation compared to that of solid, which is obtained
when the fractal dimension is equal to 3.

For simplicity, the obtained results are plotted in the following figures.

5. C

The premise to the study suggested the use of fractal geometry for the characterization
of the proprieties of road asphalt concrete finds, and the results confirm the good fit
and reliability of the approach.

The fractal dimension represents an appropriate parameter in order to determine
an adequate grain-size selection which can guarantee the achievement of certain values
of porosity and specific gravity.

In fact it is possible to determine, in equal conditions, a relationship between
fractal dimension and the concrete characteristics.

So that, for example, from a determined porosity value, chosen for a particular
type of road surface; it is possible to go back to the relative fractal dimension and
consequently to design easily the aggregates mixture.
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Fig. 7. Relations between porosity and fractal dimension.

Fig. 8. Relations between specific gravity and fractal dimension.
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The identification of fractal properties and an effective correlation with porosity
could prove useful for improving the understanding, characterization and control of the
properties of these materials.
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