
Introduction

Since the time immemorial, people have always settled their 
communities along the fertile river alluviums. In addition to 
being a life source for many plant and animal species, rivers 
have always provided opportunities for people to be engaged 
in activities that could ensure their survival and development. 
Also, rivers have important multi-usage components, such as 
sources of drinking water, the irrigation, fi shery and energy 
production (Iscen et al. 2008). Almost every sector of economy, 
including agriculture, industry, transportation and public water 
supplies, depends on this water body.

Despite providing the conditions for numerous 
developmental activities of the modern world, the quality of 
water in rivers is now at a very low level. This is caused by 
easy river accessibility for the wastewater disposal. Because 
of the fact that drinking water could become a scarce resource 
in the future in most countries, the water quality evaluation 
has become a signifi cant issue recently. Since rivers constitute 
the main inland water resources for domestic, industrial and 
irrigation purposes, it is our primary task to prevent and control 
river pollution as well as to ensure reliable information on 
water quality for effective management (Singh et al. 2004). 

The European Union signifi cantly contributes to 
the protection and preservation of water resources and 
environment, considering them as the base of sustainable 
development in the 21st century. Hence, the EU has decided 
not to leave such an important issue to independent decision 

making by individual countries within the Union, but to make 
a unique and coherent strategy for the environment protection 
and water management. In order to solve this problem, in 
2000 the EU established the Water Framework Directive, 
which requires mutual action of the Member States regarding 
the protection, restoration and improvement of water bodies 
(EU, 2000). However, signifi cant and positive issues in this 
regard have not been achieved yet. Huge amounts of industrial, 
domestic sewage and agricultural waste still end up in rivers 
and lakes preventing thus the balance of these ecosystems. 

The surface water quality is infl uenced by both natural 
(precipitation rate, weathering processes and soil erosion) and 
anthropogenic (urban, industrial, agricultural activities and 
increasing exploitation of water resources) factors (Carpenter 
et al. 1998; Jarvie et al. 1998, Singh et al. 2004). Seasonal 
variations in precipitation, surface run-off, ground water fl ow, 
interception and abstraction strongly affect the river discharge 
and the concentrations of river water pollutants (Vega et al. 
1998, Pejman et al. 2009). Water quality is determined by its 
physical, chemical and biological features. 

Water monitoring management, during a long-term 
period and at many sampling sites, offers large and complicated 
data sets consisting of all kinds of water parameters, which 
are not only diffi cult to analyze and interpret but also to 
extract comprehensive information from (Zhang et al. 2011). 
The problem of (multi)collinearity between the explanatory 
variables has not yet been fully resolved in various studies 
dealing with river water quality. Ignoring this potentially 
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confounding phenomenon may lead to models that assume 
misleading inferences about the effects of various parameters 
on the river water quality (Varanka et al. 2012). Collinearity 
among explanatory variables can cause the situation where the 
variable that explains the variation in the response variable 
better in statistical terms, remains in the model, whereas the 
variable that is more causal in reality is excluded from the 
regression model (Mac Nelly et al. 2004). To solve the problems 
caused by collinearity, researchers have conventionally used 
two statistical techniques: excluding some of the most inter-
-correlated variables or summarizing the variation of several 
explanatory variables into composite variables using, for 
example, principal components analysis (Quinn et al. 2002).

The application of different multivariate approaches 
(cluster analysis, principal component analysis, factor analysis 
and discriminant analysis) helps in the interpretation of 
complex data matrices, provides a better indication of water 
quality and ecological status of the studied systems, allows 
for the identifi cation of possible factors/sources that affect 
water bodies, provides a valuable tool for reliable management 
of water resources, and fi nally offers a rapid solution to the 
pollution problem (Simeonov et al. 2003, Simeonova et al. 
2003, Singh et al. 2004, Iscen et al. 2008, Han et al. 2009, Varol 
et al. 2012, Gudas et al. 2013, Boyacioglu 2014).

The aim of this study is to observe Danube River water 
quality in its course through Serbia. Danube, as European 
Unions’ fi rst and continents’ the second longest river, plays 
an important trans-boundary role. Danube River is 2,857 km 
long and has a basin of 817,000 km2 (with 10 riparians); it 
connects western and eastern Europe. Having in mind that 
Danube River is one of the most important natural ecosystems 
in Europe, special attention must be paid to its evaluation, 
pollution, and protection problems in each riparian-country. 
Given these assumptions, the careful monitoring of Danube 
water quality in long-term or short-term time periods, at 
different sampling sites, is not only an ecological but also 
a political issue. Not surprisingly, Danube River is constantly 
a subject of various studies. In recent years, the focus is on 
the water pollution of Danube River Basin (Guien et al. 1998, 
Pawellek et al. 2002, Woitke et al. 2003, Brankov et al. 2012), 
water quality temporal and spatial trends (Onderka et al. 
2008) as well as predicting values of water quality parameters 
(Takic et al. 2012). 

Although, in many countries, the regular monitoring 
systems produce a signifi cant amount of analytical data 
available to various users, there is still a lack of summarizing 
studies that consider all aspects of the river system and take 
into account all possible information from the row data sets. 
According to Simenonova et al. (2003), the application 
of multivariate statistical methods (chemometrics and 
environmentrics) seems to be the only approach to gain the 
proper knowledge regarding water quality. In the case of 
Danube River fl ow through Serbia, it is of special importance 
to detect trends in the concentrations of the main chemical 
parameters determined in measuring sites. Equally important 
it is to discover the seasonal behaviour of the components as 
well as to identify possible sources of river pollution. Namely, 
long-term changes of parameters, indicators of Danube water 
quality, differ in time and space.

Therefore, in this study, the extensive data sets were 
processed by multivariate techniques in order to identify 

similarities and differences between monitoring periods and 
locations then, to determine variables that have an effect on the 
temporal and spatial changes in water quality and to present the 
impact of natural and anthropogenic factors on water quality of 
Danube River in its course through Serbia. 

Materials and methods
Monitoring area
Danube River fl ows through Serbia in the length of 588 km, 
from Bezdan to Prahovo. It stretches south-easterly, from the 
border between Serbia, Hungary and Croatia to the Timok 
confl uence, on the border between Serbia, Bulgaria and 
Romania. The largest tributaries of Danube in Serbia are Tisa, 
Tamiš and Danube-Tisa-Danube Canal on the left, and Drava, 
Sava, Velika Morava and Timok on the right. Also, there are 
two hydroelectric power stations on its banks: Iron Gate I and 
Iron Gate II. 

The water quality of Danube River in Serbia could 
be mostly described as moderately polluted, while some 
tributaries and its lower course do not reach this pollution 
level. In the structure of Danube registered polluters, industry 
is dominant, followed by agriculture, settlements, energetic 
sector and others (Milanovic et al. 2010). Two large cities are 
located on the banks of Danube in Serbia: Belgrade (which 
with 1.7 million inhabitants is the third largest city on this 
river) and Novi Sad (300,000 inhabitants), and a host of 
smaller towns (Apatin, Bačka Palanka, Pančevo Smederevo, 
Donji Milanovac and Kladovo) and villages. In addition, none 
of these settlements have an adequate system for wastewater 
treatment.

Stations and sampling period
The starting point for monitoring the quality of River 
Danube water in Serbia, is the Data Fund of the RHSS for 
the year 2011. Monitoring was carried out monthly, from 
January to December 2011, at 17 measuring points. The 
locations of the sampling sites obtained with the data are 
shown in Fig. 1. The research of Danube river water quality 
status is covered by seventeen hydrological monitoring 
stations at a certain distance from the confl uence and then 
along the river: 

 1. Bezdan – the input profi le (1,425.59 km), 
 2. Apatin (1,401 km), 
 3. Bogojevo (1,367.4 km),
 4. Bačka Palanka (1,298.6 km), 
 5. Novi Sad (1,254.98), 
 6. Slankamen (1,215.5 km), 
 7. Čenta (1,189 km), 
 8. Zemun (1,174 km), 
 9. Pančevo (1,154.6 km), 
10. Belgrade-Vinča (1,145.5 km), 
11. Smederevo (1,116 km), 
12. Banatska Palanka (1,076.6 km), 
13. Veliko Gradište (1,059.2 km), 
14. Dobra (1,021 km),
15. Tekija (956.2 km), 
16. Brza Palanka (883.8 km) and 
17. Radujevac – the output profi le (852 km). 
Obviously, seventeen monitoring stations cover 

almost completely Danube River fl ow through Serbia.



98 D. Voza, M. Vukovic, Lj. Takic, Dj. Nikolic, I. Mladenovic-Ranisavljevic

Monitored parameters and analytical methods
The data for 17 water quality monitoring stations consisted 
of 11 water quality parameters. The selected parameters 
included: water temperature (T), pH value, suspended solids 
(SM), dissolved oxygen (RK), ammonium (NH4), nitrate 
(NO3), orthophosphate (PO4), silicate (SiO2), sulphur dioxide 
(SO4), chloride (Cl-) and biochemical oxygen demand (BPK5). 
As it can be noticed, the chemical indicators were selected for 
the assessment of water quality. All water quality parameters 
were expressed in milligram per liter (mg 1-1 ), except T (°C) 
and pH. 

Among the above indicators, three chemical 
parameters represent the so-called mobile water-soluble forms 
of nitrogen and phosphorous – nitrate (NO3), ammonium 
(NH4) and orthophosphate (PO4). These chemical compounds 
are of crucial environmental importance because of their role 
in formation of nutrition loads in rivers – when nutrient loads 
are too high, eutrophication occurs, causing problems such as 
water quality deterioration, changes in the biotic population 
structure, oxygen depletion etc. (Ani et al. 2011).

The methods chosen to conduct chemical analyses 
included standard analytical techniques as routinely applied 
in the control laboratories of the monitoring network. 
Potentiometry, gravimetry, titrimetry, and spectrophotometry 
are standard analytical techniques widely used in the surface 
water quality assessment.

At the sampling point, the water temperature was 
measured and pH value determined according to SRPS H.Z1.111 
method; the biochemical oxygen consumption (BPK5) was 
determined by EPA 360.2 method, suspended solids according 
to 13.060.30 SRPS H.Z1.160 method, phosphates according 
to the standard analytical method APHAS AWWA WEF 4500, 
while the total nitrogen oxides were determined according to 
SRPS ISO 5664. 

Statistical analysis
The possibility of multivariate statistical techniques application 
in water quality analysis has been proved repeatedly 
(Wunderlin et al. 2001, Reghunath et al. 2002, Singh et al. 
2004, Milanovic et al. 2010, Varol et al. 2012). In this study, 
the multivariate data analysis was performed using cluster 
analysis, principal component analysis and factor analysis. 
They were applied to experimental data, standardized through 
z – scale transformation in order to avoid misclassifi cations 
arising from different orders of magnitude of both numerical 
values and variance of the parameters analyzed (Liu et al. 2003, 
Simeonov et al. 2003, Shrestha et al. 2007). All the statistical 
computations were made using the software package SPSS V. 
17.0.

Cluster Analysis (CA), the unsupervised pattern 
recognition technique, reveals the intrinsic structure of a data 
set without making a-priori assumptions about the data to 
classify the objects of the system into categories or clusters 
based on their nearness or similarity (Vega et al. 1998). 
Hierarchical clustering is the most common approach, where 
clusters are formed sequentially starting by the most similar 
pair of objects and forming higher clusters in a step-by-step 
pattern.

Principal Component Analysis (PCA) is a powerful 
technique used for recognition of patterns which can explain 
the variance of large data sets of inter-correlated variables and 
transform them into smaller sets of independentindepended 
variables (principal components) (Simeonov et al. 2003). 
Principal components provide information on the most 
signifi cant parameters, which describe the whole data sets 
through the data reduction with a minimum loss of original 
information (Vega et al. 1998, Helena et al. 2000). In short, 
the PCs are weighted linear combinations of the original 
variables. 

Fig. 1. Sampling stations on the Danube in Serbia
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Factor Analysis (FA) follows PCA. FA further reduces 
the contribution of less signifi cant variables obtained from 
PCA, and a new group of variables, known as varifactors 
(VFs), is extracted by rotating the axis defi ned by PCA. VF 
can include unobservable, hypothetical, latent variables.

Results and discussion
The basic statistics of the one-year data set on the river 

water quality are summarized in Table 1.

Spatial similarities
In order to defi ne the similarity groups between sampling 
stations, the cluster analysis was applied. A dendrogram 
(Figure 2) was obtained as a result, according to which 
17 monitoring stations could be grouped into three statistically 
signifi cant clusters in a distant connection (Dlink / Dmax) ∗ 100.

Hierarchical clustering was performed according to 
Ward's method, with a squared Eucledian distance (Singh et 
al. 2004, Pejman et al. 2009, Varol et al. 2012). The Eucledian 
distance usually gives the similarity between two samples 

Table 1. Results of water quality parameters from 17 sampling stations 
(T – temperature; SM – suspended solids; RK – dissolved oxygen; BPK5 – biological oxygen demand)

Sampling 
station T SM RK pH NH4 NO3 PO4 SiO2 Cl- SO4 BPK5

Bezdan Mean 12.69 15.00 11.37 8.25 0.047 1.557 0.041 6.783 24.742 41.42 2.508
Std.dev 7.977 4.632 2.278 0.265 0.042 0.463 0.024 2.53 6.327 8.426 1.533
Max 22.6 22 14.60 8.80 0.130 2.37 0.070 11.00 34.80 55 5.80
Min 1.5 7 8.40 8.00 0.010 1.01 0.002 0.60 15.70 28 1.00

Apatin Mean 13.26 15.55 11.19 8.26 0.049 1.702 0.046 6.8273 24.663 41.818 2.491
Std.dev 8.824 5.973 2.466 0.157 0.039 0.562 0.025 2.261 6.485 11.188 1.617
Max 23.8 25 15.40 8.60 0.130 2.73 0.078 10.40 38.00 61 5.80
Min 1.4 5 8.30 8.10 0.010 0.83 0.003 1.30 16.20 24 1.20

Bogojevo Mean 12.96 21.4 10.81 8.18 0.052 1.606 0.049 7.54 23.57 38.5 2.10
Std.dev 9.30 13.41 2.42 0.181 0.034 0.589 0.027 1.523 5.119 11.058 1.365
Max 24.00 52 15.40 8.50 0.120 2.61 0.092 10.70 31.90 61 5.50
Min 2.4 7 7.70 7.80 0.010 0.80 0.003 5.80 18.30 25 1.0

Bačka P. Mean 13.33 25.22 10.11 8.133 0.054 1.584 0.050 8.033 21.933 38.000 1.722
Std.dev 9.300 19.273 1.952 0.122 0.041 0.501 0.015 1.580 5.487 7.566 0.734
Max 23.9 59 12.60 8.30 0.120 2.40 0.068 11.10 33.00 48 3.50
Min 2.3 5 7.2 8.00 0.020 1.02 0.020 6.30 16.30 26 1.10

Novi Sad Mean 13.69 16.75 9.83 8.03 0.097 1.528 0.046 5.883 22.300 39.917 2.527
Std.dev 8.596 7.629 1.958 0.206 0.041 0.519 0.022 3.11 5.30 8.273 0.674
Max 23.9 28 12.80 8.30 0.190 2.30 0.078 11.00 32.10 52 3.60
Min 1.5 5 7.30 7.50 0.050 0.66 0.012 1.00 14.9 24 1.50

Slankamen Mean 13.44 13.800 10.09 8.14 0.089 1.494 0.042 6.033 21.743 36.667 2.980
Std.dev 9.188 9.052 2.078 0.117 0.039 0.453 0.018 1.250 6.559 9.647 3.19
Max 24.2 37 12.90 8.30 0.150 2.31 0.065 6.90 32.20 49.00 11.80
Min 1.5 5 7.80 8.00 0.050 0.82 0.011 4.60 15.00 27.00 0.90

Čenta Mean 13.71 19.556 10.28 8.18 0.068 1.485 0.044 6.467 21.957 36.333 2.000
Std.dev 9.267 8.172 2.157 0.132 0.043 0.430 0.021 2.25 6.175 7.146 0.729
Max 24.1 34 13.10 8.40 0.150 2.37 0.068 8.70 31.70 48 3.10
Min 1.6 10 7.70 8.00 0.010 0.85 0.011 4.20 14.90 29 0.90

Zemun Mean 15.19 24.181 9.255 8.08 0.152 0.782 0.057 5.420 22.373 37.727 1.746
Std.dev 7.889 35.858 2.530 0.133 0.074 0.402 0.056 1.589 7.421 8.200 0.710
Max 25.0 130 12.7 8.30 0.260 1.70 0.218 7.90 36.00 26 3.50
Min 5.9 2 6.30 7.80 0.050 0.40 0.002 3.20 14.00 50 1.00

Pančevo Mean 13.00 29.80 9.78 8.11 0.080 1.232 0.051 8.344 24.750 41.700 1.778
St.dev 9.676 25.223 1.914 0.160 0.043 0.294 0.022 2.956 4.855 6.075 0.438
Max 24.6 76 12.40 8.30 0.150 1.71 0.082 13.50 36.00 53 2.60
Min 1.3 5 7.20 7.80 0.020 0.76 0.013 4.60 20.30 33 1.20

Bgd.Vinča Mean 15.81 16.55 9.85 8.19 0.128 0.736 0.037 4.740 20.882 34.546 1.755
Std.dev 8.216 22.065 2.301 0.178 0.063 0.266 0.014 0.944 5.141 6.023 0.789
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Sampling 
station T SM RK pH NH4 NO3 PO4 SiO2 Cl- SO4 BPK5

Max 25.7 80 12.9 8.5 0.220 1.40 0.052 5.80 33.00 44 3.60
Min 6.9 2 7.30 7.9 0.040 0.40 0.004 2.80 15.00 26 1.00

Smederevo Mean 15.72 16.64 9.24 8.07 0.257 0.682 0.041 4.540 21.782 33.636 1.946
Std.dev. 8.418 25.378 2.426 0.127 0.396 0.352 0.016 1.094 6.475 5.608 0.848
Max 26.0 89 12.9 8.4 1.440 1.60 0.060 6.20 33.00 41 3.90
Min 6.2 1 6.8 7.9 0.050 0.30 0.007 2.90 16.00 23 1.00

Banatska P Mean 14.77 20.90 9.27 7.88 0.141 1.270 0.046 6.882 24.436 38.818 1.782
Std.dev 8.905 11.318 2.082 0.147 0.043 0.321 0.015 2.341 4.909 10.722 0.586
Max 26.2 40 12.70 8.20 0.220 1.72 0.062 11.00 34.70 58 2.90
Min 2.2 5 6.60 7.70 0.080 0.82 0.019 4.00 18.30 23 1.00

V.Gradište Mean 15.17 6.33 9.26 8.09 0.314 0.617 0.050 5.858 19.833 35.333 2.150
Std.dev 8.446 5.015 2.323 0.239 0.668 0.374 0.028 1.972 4.783 8.500 0.632
Max 28.2 18 13.50 8.60 2.400 1.30 0.116 9.40 29.00 45 3.10
Min 3.8 2 6.40 7.70 0.010 0.10 0.003 2.00 10.00 23 1.30

Dobra Mean 14.93 6.42 10.13 8.15 0.100 0.567 0.053 5.444 19.833 36.727 1.925
Std.dev 8.541 5.534 2.188 0.224 0.068 0.303 0.028 2.688 3.786 12.823 0.422
Max 27.1 22 14.4 8.70 0.250 1.10 0.119 11.90 25.00 69 2.60
Min 3.6 2 7.3 7.90 0.010 0.20 0.014 2.00 13.00 26 1.10

Tekija Mean 15.28 4.89 9.78 8.22 0.112 0.600 0.051 5.489 22.333 36.917 1.842
Std.dev 8.785 5.422 2.591 0.233 0.082 0.316 0.025 3.253 3.985 10.501 0.500
Max 28.1 21 15.30 8.70 0.300 1.00 0.102 13.50 31.00 53 2.80
Min 2.6 0.70 5.70 8.00 0.010 0.10 0.005 1.60 15.00 18 1.00

Brza P. Mean 15.04 4.23 9.40 8.13 0.081 0.625 0.041 5.033 21.000 34.167 1.908
Std.dev 8.934 5.238 2.208 0.230 0.060 0.644 0.027 1.427 3.075 10.071 0.545
Max 27.0 20 13.10 8.60 0.200 1.30 0.093 8.30 25.00 48 2.60
Min 2.1 0.50 6.90 7.80 0.010 0.10 0.003 3.60 15.00 13 1.10

Radujevac Mean 14.29 8.13 9.05 7.79 0.095 0.625 0.137 5.717 20.500 36.833 1.958
Std.dev 9.073 7.404 2.413 0.156 0.054 0.387 0.112 1.389 4.275 8.569 0.523
Max 28.0 28 12.40 8.10 0.200 1.40 0.356 8.40 30.00 49 2.80
Min 2.3 0.50 6.30 7.50 0.030 0.10 0.034 3.60 15.00 23 1.20

Table 1. Results of water quality parameters from 17 sampling stations 
(T – temperature; SM – suspended solids; RK – dissolved oxygen; BPK5 – biological oxygen demand) – cont.

Fig. 2. Dendrogram showing hierarchical clustering of sampling stations on Danube River in Serbia
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and the distance can be represented by the difference between 
analytical values from the samples (Otto, 1998). 

Cluster 1 consists of seven sampling stations on 
Danube in Serbia (Apatin, Bezdan, Bogojevo, Čenta, Bačka 
Palanka, Novi Sad and Slankamen), cluster 2 includes two 
sampling stations (Banatska Palanka and Pančevo), while the 
third cluster consists of eight sampling stations (Belgrade-
-Vinča, Dobra, Zemun, Brza Palanka, Tekija, Smederevo, 
V. Gradište and Radujevac). The locations within the same 
cluster have similar characteristics and pollution source. 
Therefore, for a rapid water quality assessment, only one 
site from each cluster is enough, and it can serve as a good 
indicator of water quality of the whole group. On this basis, 
it can be concluded that the sampling stations in cluster 1 are 
located in areas of high pollution. 

Furthermore, cluster 2 and all corresponding sampling 
stations indicate moderate pollution areas. Finally, cluster 
3 could be classifi ed as the low polluted region of Danube in 
Serbia. This result of spatial grouping, partly (cluster 1 and 
cluster 2) matches a division of Serbian Danube into the upper 
and lower section. The upper section covers the stretch from the 
Hungarian border to Belgrade, while the lower section, which 
is strongly infl uenced by the Iron Gates I and II dam complex, 
covers the stretch from Belgrade to the Bulgarian border.

Temporal similarities
As a result of the hierarchical CA applied on the data sorted 
monthly, the dendrogram (Figure 3), which indicates the 
existence of two clusters or periods, was obtained. Period 1 
includes January, February, March, April, November and 
December. Other months (May, June, July, August, September 
and October) belong to the second period. Based on the results, 
it can be concluded that this temporal pattern of water quality 
does not match the traditional classifi cations to four seasons 
(spring, summer, autumn, winter) or the dry and wet seasons.

Principal component analysis/factor analysis
PCA/FA was applied to the normalized data in order to make 
a comparison between patterns of the water samples chemical 
structure as well as to identify the factors that infl uence each 
other (Singh et al. 2004). PCA of the whole data set shows 

that four principal components account for 68.95% of the total 
water quality data set variance (Table 2). 

The fi rst principal component (PC1), which accounts 
for 33.1% of the total variance, has strong positive loadings 
(>0.75) on dissolved oxygen (RK), Cl- i SO4, but strong negative 
loading on water temperature (Т). There is evident moderate 
loading on NO3 and weak positive loading on SiO2. This group 
can be interpreted as a mineral component of the river water 
(Singh et al. 2004). This clustering points to a common origin 
for these variables, similar to the dissolution of limestone, marl 
and gypsum soils (Vega et al. 1998).

In the second PC (PC2), which accounts for 
16.04% of the total variance, it can be noticed that there 
are moderate positive loadings on pH value and BPK5 but 
moderate negative loadings on orthophosphates. It can 
be concluded that PC2 is connected with anthropogenic 
pollution sources (Vega et al. 1998) caused by the use of 
fertilizers in agricultural activities. 

PC3 (10.43% of the total variance) has strong positive 
loadings on suspended solids, moderate positive ones on SiO2 
and weak positive loadings on NO3. This factor, loaded by 
solids, indicates that their origin lies in run-off from the fi elds 
with a high load of solids and waste disposal activities (Singh 
et al. 2004). 

Finally, the principal component PC4, which 
participates with 9.4% of the total variance, is characterized 
by a strong negative loading of ammonium and weak positive 
loading on nitrite, which also leads to the pollution of the 
source of anthropogenic origin. 

The results, obtained by PCA/FA, indicate that the 
changes in water quality mainly occur under the infl uence of 
soluble salts (natural) and organic pollutants (anthropogenic) 
and nutrients. Given that 11 out of 17 originally selected 
variables are still needed to account for 69% of the total 
variance of the data, it can be concluded that the factor analysis 
did not cause a signifi cant data reduction.

Conclusions
This study proves the utility of multivariate statistical methods, 
cluster analysis (CA), principal component analysis (PCA) and 

Fig. 3. Dendrogram showing hierarchical clustering of monitoring period
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factor analysis (FA) above all, for the analysis and interpretation 
of the complex water quality data sets. With these techniques, it 
is possible not only to identify and distribute pollution sources, 
but also to gain a better insight into the temporal and spatial 
changes in surface water quality.

The application of the above mentioned methods on 
the water quality data of Danube through Serbia, led to the 
following conclusions: 

1.  the spatial cluster analysis grouped 17 sampling 
stations on Danube in three clusters which could 
be divided into groups with low, moderate and high 
level of pollution;

2.  with the temporal cluster analysis, 12 months of 
monitoring were divided in two periods; 

3.  PCA/FA allocated for the most important factors 
responsible for water quality changes, due to which, 
the following are recognized as main pollution 
sources of Danube River in Serbia: mineral salts 
(natural origin), organic pollution and nutrients 
(anthropogenic origin). 

Defi ning the spatial and temporal similarities of the 
water quality of Danube River in Serbia, provides a more 
effi cient organization of sampling station network and data 
collecting, which is a prerequisite for creating an optimal 
sampling strategy and reducing associated costs. The 
application of multivariate statistical methods to the monitoring 
data provides a collection of new types of information about 
sampling and the chemical structure of the water body.
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