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Abstract
Soil organic matter (SOM) can be divided into three main pools: labile, stable and inert. 
Research over recent years has focused on the labile fraction (LF), as it is considered a quickly 
reactive indicator of soil productivity and health, and important as a supply of energy for 
soil micro-organisms. A wide spectrum of analytical methods has been used to determine 
and/or evaluate LF, based on physical, chemical and biochemical principles. The advantages 
and disadvantages of each technique are explored in this work, but none of the methods can 
determine LF sufficiently, either because a part of the LF is not involved or because further 
characterisation is missing. Although analytical methods are widely used to evaluate changes 
in soil management or organic carbon turnover, the practical question of the quantity and 
quality of SOM cannot be answered completely. It is also suggested that future research 
should focus on the interactions among SOM fractions and their better chemical and functional 
characterisation. It is possible to use a combination of the analytical methods reviewed here 
in order to accomplish this objective.
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List of abbreviations
BOD	 Biochemical Oxygen Demand
BSR 	 Basal Soil Respiration
CCWS 	 Cold Water-Soluble Carbon
CHWS	 Hot Water-Soluble Carbon
COD	 Chemical Oxygen Demand

CPM	 Carbon oxidised with potassium
		  permanganate
DOC	 Dissolved Organic Carbon
DOM	 Dissolved Organic Matter
DON	 Dissolved Organic Nitrogen
LF	 Labile Fraction
LtF	 Light Fraction
MBC	 Microbial Biomass Carbon
OC	 Organic Carbon
POC	 Particulate Organic Carbon
SOM	 Soil Organic Matter
TOC	 Total Organic Carbon
TON	 Total Organic Nitrogen
WEOC	 Water-Extractable Carbon
WEOM	 Water-Extractable Organic Matter
WSC	 Water-Soluble Carbon
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INTRODUCTION

Soil organic matter (SOM) is considered an 
important part of soil for its high contribution to 
soil productivity. Generally, SOM contains two 
main fractions: humic substances and labile soil 
organic matter.

Humic substances have been found to be a 
stable material, specific to each soil and not 
markedly changing over decades of soil use 
(Siewert 1989, Stevenson 1994). There is also a 
new paradigm of what humic substances really 
are (Piccolo 2002). They have been the focus of 
pedological research for more than 50 years 
(Najmr 1958, Kononovová and Belčiková 1961, 
Flaig et al. 1975, Stevenson 1982), but, in the 
last decades, more attention has been paid to 
the labile SOM pool (Körschens et al. 1990, 
Blair et al. 1995, Kubát et al. 1999, Gregorich 
et al. 2003, Kolář et al. 2009), which has been 
acknowledged as a good indicator of soil quality 
and environmental health (Ghani et al. 2003, 
Haynes 2005, Laik et al. 2009). It is more sensitive 
to tillage, manuring, fertilisation, crop rotation 
and other interventions than total organic matter 
(Bongiovanni and Lobartini 2006, Heitkamp et al. 
2009). Furthermore, the effects of changes in soil 
management are observable sooner in the labile 
SOM pool than in the total SOM (Lee et al. 2009).

The aim of this work is to introduce a new 
approach to SOM classification and to give an 
overview of principles and methods for labile pool 
separation, quantification and evaluation.

SOIL ORGANIC MATTER 
CLASSIFICATION

Former classifications were based on the extraction 
procedure of the different chemical fractions 

(Tjurin 1937, Najmr 1958), and the morphological 
(Scheffer and Ulrich 1960) and visual properties 
(colour) (Stevenson 1982) of SOM or of its origin 
(field, forest, soil type) (Alexandrovová 1970). The 
function and importance of the above mentioned 
pools were only secondarily derived indicators.

However, a recent classification, which uses 
function as an important criterion, differentiates:
a) labile SOM – a quickly reactive labile organic 
matter, which provides energy and nutrients for 
soil micro-organisms and releases part of the 
nutrients for plant usage. Its half-life is between 
days and few years. It provides short-term organic 
matter turnover during the year;
b) stable SOM – a reservoir of less decomposable 
organic matter. The main and the most important 
function of this pool is its cation-exchange 
capacity. This pool is often bounded in organic-
mineral aggregates. Its half-life is between years 
and decades;
c) inert SOM – an amost non-reactive organic 
matter which affects the physical properties of 
the soil. It has a potentially low sorption capacity. 
This pool is physico-chemically protected against 
decomposition. Its half-life is between decades 
and centuries.

Labile SOM
Definition and origin
Various approaches use different terms and 
definitions of the labile SOM pool (labile fraction 
(LF)). Previous classifications, as mentioned abo- 
ve, never used the concept of LF. However, some 
similarities in the character of former concepts 
can be observed and the evolution of the definition 
of the fraction approximating to the LF and the 
final emergence of the term itself, are shown in 
Table 1. The recent SOM classification used in 
the Czech Republic is shown in Fig. 1.

Table 1. Evolution of the labile soil organic matter definition

Term Reference Description

Non-humic substances Tjurin (1937) lignin, cellulose, hemicelluloses, low-molecular proteins, 
products of decomposition – organic acids, amino acids

Nutritive humus Najmr (1958) hydrolysable organic matter

Non-specific humic substances Kononovová (1963) products of organic residues decomposition and 
products of microbial resynthesis

Active fraction Paul (1984) non-biomass active components, temporary pool for 
nutrients

Primary organic matter Schulz and Klimanek (1988) non-humified organic matter

Labile fraction Biederbeck et al. (1994) readily-decomposable organic matter with temporal 
fluctuations
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Fig. 1. Fractionation of soil organic matter by classical methods

Composition and characteristics
The LF consists of: micro-organisms, plant and 
soil fauna residues at different levels of decay 
and the products of their decomposition, easily 
decomposable non-humic organic substances 
such as carbohydrates, polysaccharides, proteins, 
organic acids, amino acids, waxes, fatty acids, 
and other non-specific compounds (Poirier et al. 
2005).

The rate of decomposition or mineralisation 
depends on two conditions: firstly, the presence 
of relevant soil condition – mainly, moisture, 
temperature, porosity and pH – which support or 
inhibit the decomposition process, and secondly, 
the nature of the compounds present and their 
availability for micro-organisms affected by their 
chemical structure and composition (Capriel 
1997).

Analytical methods focus on these properties 
from various points of view.

METHODS OF ANALYSIS

Two types of analytical methods are most 
frequently used: i) Physical, chemical and 
biochemical analysis of the non-living substrate 
and ii) determination of the microbial activity. 
Table 2 presents the methods selected for 
separation and/or evaluation of the LF. The aim 
is not to identify the individual chemical, but to 
understand the purpose and function of these 
fractions in soil as a whole (Loveland and Webb 
2003).

Physical methods
Particulate organic carbon (POC)
By definition, POC consists of pieces of plant or 
fauna residues, but according to Krull et al. (2006), 
it may sometimes also contain inert charcoal. 
In addition, there is no evidence to explain why 
free organic matter in soil solution sediments in 
particles of a specific size. These issues illustrate 
the inconsistency of the POC analysis.

Densitometric separation
Density fractionation is based on the different 
densities of mineral fraction (usually over  
2 g.cm-3) and organic matter (usually below 
1.6 g.cm-3). The light fraction (LtF) contains free 
organic matter, medium or occluded fractions, 
aggregates (where organic matter and minerals 
are slightly bound) and heavy fractions (where 
organic matter is strongly bound to minerals) 
(Cambardella and Elliot 1993, Alvarez et al. 
1998).

The idea that SOM is protected against 
decomposition when bound into organo-mineral 
aggregates was proposed by Körschens (1980). It 
was considered that organo-mineral aggregates 
contain humic substances. However, further 
work has shown that low-molecular compounds, 
especially saccharides, also create highly 
stabilised sorption complexes (Schulten and 
Leinweber 1999).
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This method takes into account neither 
chemical composition nor structure. The LF should 
not correspond only to the LtF. It is recommended 
that additional analyses be carried out in order 
to obtain a more accurate characterisation of the 
organic matter contained in LtF. Densitometric 
fractionation is more suitable for comparison of 
the disturbing effects in soil profile, caused by 
tillage or plant roots (Oades 1984, Gregorich and 
Ellert 1993).

Dissolved organic matter and water-extractable 
organic matter
The term dissolved organic matter (DOM) will be 
used within the following text for organic matter 
naturally dissolved in soil-water solution (mainly 
saccharides, amino acids, aminosugars), and the 
term water-extractable organic matter (WEOM) for 
organic matter extracted from soil under various 
laboratory conditions. Thus, WEOM contains a 
wider spectrum of extracted compounds, such as 
hemicelluloses (Balaria et al. 2009), but neither 
DOM nor WEOM involve the whole spectrum of 
available substrates for microorganisms.

The content of WEOM varies according to 
the modified extraction procedures such as 
extraction solvent, shaking time, temperature, 
soil preparation and final titration (Körschens 
et al. 1990, Zsolnay and Gorlitz 1994, Ghani et 
al. 2003, Tirol-Padre and Ladha 2004). These 
modifications make comparison of the results 
rather complicated. The resulting effects of the 
chosen conditions are thoroughly discussed by 
Jones and Willet (2005). The main difference 
appears to be between hot- and cold-water 
extractions, which has led to their individual 
definitions, viz: the hot water-soluble carbon CHWS 
(Körschens et al. 1990) and the cold water-soluble 
carbon CCWS (Ghani et al. 2003). 

A high content of DOM or WEOM is not 
necessarily beneficial in all cases of soil analysis. 
This effect can be caused by a good supply of labile 
organic matter but also by poor microbial activity 
and limited mineralisation (Hilli et al. 2008).

Despite this disadvantage, DOM and WEOM 
are widely used methods due to their ease of 
application and good reproducibility.

Chemical methods
Oxidation
Wet oxidation is a very popular method for the 
determination of organic matter content in soil. 
Chan et al. (2001) modified the classic Walkley-
Black (1934) oxidation method (in Eastern Europe 

according to Tjurin 1951), dividing SOM into four 
fractions with different lability. Strosser (2008) 
has proposed a similar method called “sequential 
oxidation”. Neither method oxidizes organic 
carbon (OC) completely, but only about 90% in 
the sequential oxidation procedure and about 
75% in the modified Walkley-Black procedure. 
This disadvantage is not significant because the 
unoxidized percentage of carbon is represented 
by the most stable OC, which can be calculated 
as: total OC less oxidizable C. The size of the four 
fractions in “sequential oxidation” is strictly in 
proportion to the power of the oxidation agent 
used. This fact makes the method inapplicable. 
The increasing popularity of the modified 
Walkley-Black procedure is well documented. 
(Mills and Fey 2004, Majumder et al. 2007, 2008, 
Xavier et al. 2009).

The LF can also be measured using neutral 
potassium permanganate as an agent (Blair et 
al. 1995). Depending on the concentration used, 
this fraction includes approximately 8–14% of 
total organic carbon (TOC). Although early works 
considered CPM a susceptible indicator with a 
good response to the changes in SOM, later 
reports have found serious imperfections. The 
value of CPM depends on the TOC, and moreover, 
lignin undergoes permanganate oxidation much 
more easily than cellulose, while cellulose is more 
susceptible to microbial decomposition (Tirol-
Padre and Ladha 2004). CPM includes a wider 
spectrum of organic matter than WEOM, but the 
character of this matter has not been sufficiently 
investigated (Skjemstad et al. 2006). It is certain 
that CPM has small relevance to the respired 
soil OCs, which contain mainly saccharides 
(Mendham et al. 2002). Despite this, some authors 
recommend estimation of the biologically active 
carbon pool using a very dilute KMnO4 solution 
(concentration 2.5 mM) (Dell 2009).

Additional oxidizers are sometimes applied; for 
instance, hydrogen peroxide (Leifeld and Kogel-
Knabner 2001) or sodium hypochlorite (NaClO) 
(Zimmermann et al. 2007) which oxidizes more 
OC without bonds to the minerals.

Acid hydrolysis
Hydrolysis with mineral acids simulates 
the stability of SOM against hydrolytical 
decomposition caused by extracellular enzymes 
of soil microorganisms. According to Rovira and 
Vallejo (2000) three-step H2SO4 hydrolysis is more 
extensive when combined with the Rothamsted 
Carbon Model application (Shirato and Yokozawa 
2006).
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It is considered that H2SO4 is more effective 
than HCl in hydrolysis of organic matter, 
especially plant tissues (Plante et al. 2006).

Biochemical methods
Microbial Biomass Carbon (MBC)
Soil MBC estimation is used and acknowledged 
as an advanced method for evaluation of LF 
(Carter 1986, Sparling 1992). MBC does not 
depend on the actual degree of activity in 
microbial communities and can be used to 
derive the rate of the mineralization process 
(Vance et al. 1987). Nevertheless, it does not 
take into account the species composition of 
these microbial communities or their enzymatic 
capacity (Adamczyk et al. 2009).

Most papers emphasize the MBC as an 
important indicator for useful and reliable results. 
However, one report shows the limitations of the 
use of MBC (Broos et al. 2007) in extreme cases 
where spatial oscillation of field conditions calls 
for a too large number of samples.

Soil respiration and biochemical oxygen demand
The LF can be measured as carbon dioxide 
released by micro-organisms in a respiration 
test. The amount of CO2 is determined by 
titration or manometrically. The work of Novák 
(1964, 1965, 1966) should be mentioned here, 
as the development and modification of the 
respiration test were carried out in what was 
then Czechoslovakia. With the respiration test 
the disadvantages of both MBC and WEOM can 
be avoided.

Kolář et al. (2003) have proposed another 
method for evaluation of the quality of LF 
based on the biochemical oxygen demand (BOD) 
procedure. The amount of CO2 is measured 
manometrically and recorded on a time scale 
(360-times during one sample/replication); thus 
the reaction kinetics can be observed and the 
reaction rate constant derived. In this way, both 
the quantity (the amount of CO2) and the quality 
(the reaction rate constant) characterisation of 
the LF can be established. In addition, the method 
can be applied to the WEOM fraction, although 
the quality determination is less pronounced, 
as WEOM contains compounds with a narrow 
frame of reaction rate constant (Heitkamp et al. 
2009). Moreover, high sensitivity to the quality 
of inoculation makes for oscillating results 
and reduces reproducibility. Researchers are 
also discouraged by the long time needed for 
incubation.

Currently, there is a vast choice of analytical 
methods. However, none of them provides a 
determination of the complete LF without the 
need for additives. There is still a large gap in 
the understanding of what the specific function of 
each fraction of SOM is. 

THE USE OF METHODS

The LF determination is mainly used for: i) 
evaluation of SOM quality; ii) evaluation of 
the efficiency of sustainable farming (Wang 
et al. 2009); iii) a comparison of different soil 
managements or treatments (Blair 2006, Pajares 
et al. 2009); iv) understanding the decomposition 
processes in soil and related energy and nutrient 
flows (Jabro et al. 2008), and v) measurement 
of carbon sequestration in soil (Berg et al. 2009, 
Prechtel et al. 2009).

The LF is considered an indicator of the 
estimation of the SOM content and its changes 
(Carter 2002). LF changes relatively quickly with 
alterations in soil management (Chatterjee and 
Lal 2009, Lopez-Fando and Pardo 2009, Melero 
et al. 2009). However, this does not apply to the 
SOM content. Additionally, the SOM content is 
not a relevant indication (Kasozi et al. 2009). High 
SOM content in soil with a high TOC value can 
be blocked in the inert form or the mineralization 
process can be limited (typical for highlands, acid 
or permanently waterlogged soils) (Barriuso et al. 
1987, Kolář et al. 2006). On the other hand, the 
reduction of TOC under the critical limit affects 
soil properties and productivity very negatively 
and the balanced organic matter turnover is 
necessary for sustainable soil management and 
carbon sequestration is advantageous for the 
environment (Mullen et al. 1999, King et al. 2005, 
Stewart et al. 2008). Unclear interpretation of a 
result when using only TOC determination can be 
avoided with the use of LF analysis.

The analytical methods for labile SOM 
determination presented above are widely 
accepted. Although the fundamental principle 
for SOM defines it as heterogeneous, SOM 
shows homogenous behaviour under some of the 
methods (viz. modified Walkley-Black oxidation, 
respiration tests and BOD). In the author’s 
opinion, this finding can be explained by the fact 
that, if a high number of different compounds 
are mixed (as in SOM), the resulting matter can 
behave similarly to homogenous material.
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CONCLUSION

Despite the large number of methods for labile 
SOM evaluation, the farmers’ need to know the 
amount and quality of organic matter in their 
fields still cannot be satisfied completely. Two 
approaches appear to provide an answer: 1) the 
methods reviewed can be used with the lack of 
certainty that the SOM fraction plays the key 
role in soil productivity or 2) the results of long-
term field experiments under defined conditions 
can be used without an investigation of the real 
processes in the soil. Using each option separately 
is evidently inadequate.

The objectives of future research should be the 
investigation of relations between the individual 
fractions, and their mutual transformations. An 
improved characterisation – both chemical and 
functional – of the individual fraction is needed 
(Gregorich et al. 2006, Broos et al. 2007, Helfrich 
et al. 2009, Prechtel et al. 2009).

A new approach should be proposed for 
measurement of the intensity of carbon 
mineralization and the sequestration process. 
It is suggested that this new approach should 
be based on a combination of the analytical 
procedures presented, applied on a tested area at 
repeated time periods.
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