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1. Formulation of the problem. The starting point is the following
nonlinear age-structured population model

(1)



yt + ya + µ(a)y +Φ(Y (t))y = −u(a)y, (a, t) ∈ Q

Y (t) =

∫ A

0
y(a, t) da, t ∈ (0,+∞)

y(0, t) =

∫ A

0
β(a)y(a, t) da, t ∈ (0,+∞)

y(0, a) = y0(a), a ∈ (0, A),

where Q = (0, A)× (0,+∞). Here A ∈ (0,+∞) represents the maximal age
for the population species.

y(a, t) is the population density of age a ∈ [0, A] at time t ∈ [0,+∞)
and by y0 we have denoted the initial distribution of densities.

The third equation in (1) describes the birth process and it is known
as the renewal law; y(0, t) gives the density of the newborn population at
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time t, and β is the fertility rate which depends in this case only on the age
a. Therefore β(a)y(a, t) stands for the density of newborns at time t, with
parents of age a.

µ is the mortality rate and depends also only on age. System (1) de-
scribes the evolution of an age-structured population which includes a lo-
gistic term depending on the total population density at moment t, Y (t).
Φ(Y (t)) represents an additional mortality rate caused by overpopulation.
u is the harvesting effort (and depends on age) and u(a)y(a, t) gives the

harvested population of age a at the moment t, while
∫ A
0 u(a)y(a, t)da gives

the total harvest at the moment t.
The goal of the paper is to find the harvesting effort (control)

u ∈ L∞(0, A), 0 ≤ u(a) ≤ L a.e. in (0, A),

(L ∈ (0,+∞)) which maximizes

lim
t→∞

∫ A

0
u(a)yu(a, t) da,

where yu is the solution to (1) corresponding to u. In fact, we will show
that this problem is equivalent to the following optimal harvesting problem:

(2) max
u∈U

∫ A

0
u(a)ỹu(a) da,

where U = {v ∈ L∞(0, A); 0 ≤ v(a) ≤ L a.e. in (0, A)} denotes the set of
admissible controls, and ỹu is the nontrivial nonnegative solution to

(3)


y′(a) + µ(a)y(a) + Φ(Y0)y(a) = −u(a)y(a), a ∈ (0, A)

Y0 =

∫ A

0
y(a) da

y(0) =

∫ A

0
β(a)y(a) da.

The paper is structured as follows: in the next section we present an
asymptotic behavior result; it will be shown that, under proper assumptions,
the solution to (1) is stabilized toward the nontrivial nonnegative solution
to (3).

Then we consider the optimal harvesting problem (2)-(3); we prove the
existence of an optimal control and provide the necessary optimality condi-
tions.
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We mention that in the case without control, it has been proved that
the system (1) has a unique nonnegative nontrivial solution (see e.g. [4]).

A large amount of papers has been devoted to optimal control problems
for age-structured population dynamics, see e.g. [1], [5], [8], [7], [9], [12].

For the asymptotic behavior of the solutions to age-structured systems
we refer to [2], [3], [6] and [11].

Here are the assumptions of this paper:

(A1) β ∈ L∞(0, A), β(a) ≥ 0 a.e. a ∈ (0, A);

(A2) µ ∈ L1
loc([0, A)), µ(a) ≥ 0 a.e. a ∈ (0, A),

∫ A

0
µ(a) da = +∞;

(A3) y0 ∈ L∞(0, A), y0(a) ≥ 0 a.e. a ∈ (0, A);

(A4) Φ : [0,+∞) 7→ [0,+∞) is an increasing continuously differentiable
function which satisfies Φ(0) = 0 and limr→+∞Φ(r) = +∞;

(A5)

∫ A

0
β(a) exp{−

∫ a

0
(µ(s) + L) ds} da > 1.

2. Large time behavior of the solution. Let us notice that the
solution to (1) is a separable one, i.e., y(a, t) = x(t)p(a, t), (a, t) ∈ Q, where
p is the solution to

(4)


pt + pa + µ(a)p = −u(a)p, (a, t) ∈ Q

p(0, t) =

∫ A

0
β(a)p(a, t) da, t ∈ (0,+∞)

p(a, 0) = y0(a), a ∈ (0, A)

and x is the solution to

(5)


x′(t) + Φ(x(t)P (t))x(t) = 0, t ∈ (0,+∞)

P (t) =

∫ A

0
p(a, t) da

x(0) = 1.

It is obvious that y is a solution to (1). Note that also the solution x depends
on the control u trough the dependence of the function Φ(x(t)P (t)). For
every u ∈ U fixed, (4) has a unique nonnegative solution and (5) has a
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unique Carathéodory solution (which is also nonnegative). Actually the
solution p to (4) is given by

p(a, t) =


b(t− a) exp{−

∫ a

0
(µ(s) + u(s)) ds}, a < t

y0(a− t) exp{−
∫ t

0
(µ(a− t+ s) + u(a− t+ s)) ds}, a > t.

Therefore, for a < t, the solution is written as

p(a, t) = b(t− a) exp{−
∫ a

0
(µ(s) + u(s)) ds},

where b satisfies the following Volterra equation

(6) b(t) = F (t) +

∫ t

0
K(t− s)b(s) ds.

Here

F (t) =


∫ A

t
β(a)e−

∫ t
0 (µ(a−t+s)+u(a−t+s)) dsy0(a− t) da, t < A

0, otherwise

and

K(t) =

β(t) exp{−
∫ t

0
(µ(s) + u(s)) ds}, t < A

0, otherwise.

We have that F ∈ C(R+), K ∈ L∞(R+) and, consequently, b ∈ C(R+).
The following result holds (see e.g. [10]):

Theorem 1. The solution b to (6) satisfies b(t) = eα
∗tb0(t), ∀t ∈ R+,

where limt→∞ b0(t) = b̄0 ≥ 0 and α∗ is the solution to the following equation:∫ A

0
β(a) exp{−

∫ a

0
(µ(s) + u(s) + α) ds} da = 1.

Taking into account the previous result, we obtain that, for a < t, the
solution p can be written as

p(a, t) = eα
∗(t−a)b0(t− a)e−

∫ a
0 (µ(s)+u(s)) ds,

and we can state the next result:
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Theorem 2. In the case of non-trivial datum, i.e., b̄0 > 0, we infer
that

lim
t→∞

∥p(t)∥L∞(0,A) = 0 if α∗ < 0,

lim
t→∞

∥p(t)∥L1(0,A) = +∞ if α∗ > 0,

lim
t→∞

∥p(t)− p̃∥L2(0,A) = 0 if α∗ = 0,

where p̃ = b̄0e
−

∫ a
0 (µ(s)+u(s)) ds is a nontrivial steady state solution to (4).

For more details and complete proofs of the previous theorems see [4].
Denoting by

R =

∫ A

0
β(a)e−

∫ a
0 (µ(s)+u(s)) ds da,

the statements of Theorem 2 are equivalent to:

• If R < 1, then ∥p(t)∥L∞(0,A) → 0, as t → +∞;

• If R > 1, then ∥p(t)∥L1(0,A) → +∞, as t → +∞;

• If R = 1, then ∥p(t)− p̃∥L2(0,A) → 0, as t → +∞, where p̃ is the same
as in Theorem 2.

Let now x be the unique Carathéodory solution to (5); obviously x is
nonincreasing and nonnegative, therefore there exists limt→∞ x(t) ∈ [0, 1].

Analyzing the previous results, we can see that in the case R < 1, the
solution converges to 0 as t → ∞, even without the additional mortality
rate expressed by Φ(Y (t)). Therefore, in what follows we shall consider the
assumption (A5) (which implies R > 1).

Theorem 3. If p0 is a non-trivial datum and assumption (A5) is sat-
isfied, then the solution y to (1) satisfies

lim
t→∞

∥y(t)− ỹ∥L∞(0,A) = 0,

where

ỹ(a) = exp{−α∗a}b̄0 exp{−
∫ a

0
(µ(s) + u(s)) ds} 1

h0
Φ−1(α∗),

a ∈ [0, A], is a stationary solution to (1) and h0 = b̄0
∫ A
0 e−

∫ a
0 (µ(s)+u(s)) ds da.
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Proof. By (A5) we have that P (t)=eα
∗th(t), t ≥ 0, where limt→∞ h(t)=

h0 > 0. Then, the corresponding equation in x takes the form

x′(t) + Φ(x(t)h(t)eα
∗t)x(t) = 0, t > 0,

x(0) = 1,

or, equivalently, taking z(t) = eα
∗tx(t) (t ≥ 0):

z′(t) = (α∗ − Φ(h(t)z(t)))z(t), t > 0,

z(0) = 1.

Obviously, z(t) > 0, ∀t ∈ R+; in fact

lim
t→∞

z(t) = z0, z0 > 0,

where z0 is the unique solution to α∗ − Φ(h0z0) = 0. Indeed, if we denote
by zh the unique solution to α∗ − Φ(hz) = 0, and let 0 < h1 < h0 < h2; it
follows that zh1 > z0 > zh2 ; as limt→∞ h(t) = h0, it can be shown that

lim
t→∞

dist(z(t), [zh2 , zh1 ]) = 0,

which implies that
lim
t→∞

z(t) = z0,

where

z0 =
Φ−1(α∗)

h0
.

Therefore we have obtained that

lim
t→∞

y(t) = ỹ in L∞(0, A),

where

ỹ(a) = exp{−α∗a}b̄0 exp{−
∫ a

0
(µ(s) + u(s)) ds} 1

h0
Φ−1(α∗),

a ∈ [0, A], is a stationary solution to (2)1−3.
In fact (3) has only two nonnegative solutions, one of them being the

trivial one (see [4] and [6]).
We mention that this asymptotic behavior result for the linear age struc-

tured population dynamics has been proved first in [6]. �
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3. Optimal harvesting. Assume in addition that y0(a) > 0 a.e.
in (0, A). We shall consider next the optimal harvesting problem (2)-(3).
First note that for every fixed u ∈ U , the nontrivial and nonnegative so-
lution to (3) is given by ỹ(a) = ỹ(0)e−

∫ a
0 (u(s)+µ(s)+Φ(Y0)) ds, a ∈ [0, A] and

substituting this in the third equation in (3) we get

(7) 1 =

∫ A

0
β(a)e−

∫ a
0 (u(s)+µ(s)+Φ(Y0)) ds da.

We can solve equation (7) for the single variable Y0, and from

Y0 =

∫ A

0
ỹ(a) da = ỹ(0)

∫ A

0
e−

∫ a
0 (u(s)+µ(s)+Φ(Y0)) ds da,

we get the initial value ỹ(0).

Existence of an optimal solution

Theorem 4. Problem (2)-(3) admits at least one optimal control.

Proof. Denote by d = supu∈U J(u), where J(u) =
∫ A
0 u(a)ỹu(a) da and

ỹu denotes the nontrivial and nonnegative solution to (3) corresponding
to the control u ∈ U . By a comparison result we get that 0 ≤ J(u) ≤
L
∫ A
0 y(a) da, where y is the solution to (3) corresponding to u ≡ 0. Let now

a sequence {un}n∈N∗ ⊂ U be such that d− 1
n < J(un) ≤ d, ∀n ∈ N∗. Since

{un} is bounded in L∞(0, A) it follows that is also bounded in L2(0, A),
so we can take a subsequence (also denoted by {un}) such that un → u∗

weakly in L2(0, A). Since U is a convex and closed subset of L2(0, A), it is
also weakly closed, therefore u∗ ∈ U . We have that

(8) 0 ≤ ỹun ≤ y a.e a ∈ (0, A),

which implies that, on a subsequence, ỹun → ỹ∗ weakly in L2(0, A) and
ỹun(0) → γ in R. Using a corollary to Mazur’s theorem, we get that there
exists a sequence ỹn such that

ỹn =

kn∑
i=n+1

λn
i ỹ

ui , λn
i ≥ 0,

kn∑
i=n+1

λn
i = 1,
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and ỹn → ỹ∗ in L2(0, A). Let ũn be defined as

ũn(a) =



∑kn
i=n+1 λ

n
i y

ui(a)ui(a)∑kn
i=n+1 λ

n
i y

ui(a)
, if

kn∑
i=n+1

λn
i y

ui(a) ̸= 0

0, if

kn∑
i=n+1

λn
i y

ui(a) = 0.

For these controls we have ũn ∈ U . In the following, we shall denote by

Y ui
0 =

∫ A

0
ỹui(a) da,

and

Y ∗
0 =

∫ A

0
ỹ∗(a) da.

Since ỹun → ỹ∗ weakly in L2(0, A) it follows that Y un
0 → Y ∗

0 . Let us consider
now the system (3) corresponding to the controls ui:

(9)

(ỹui)′ + µ(a)ỹui +Φ(Y ui
0 )ỹui = −uiỹ

ui , a ∈ (0, A)

ỹui(0) =

∫ A

0
β(a)ỹui(a) da.

Multiplying the system (9) by λn
i and summarizing from n + 1 to kn, we

obtain: 
(ỹn)

′ + µ(a)ỹn +

kn∑
n+1

λn
i Φ(Y

ui
0 )ỹui = −unỹn, a ∈ (0, A)

ỹn(0) =

∫ A

0
β(a)ỹn(a) da.

The solution to the above system, ỹn, is given by

ỹn(a) = ỹn(0)e
−

∫ a
0 (µ(s)+ũn(s)) ds

−
∫ a

0
e−

∫ a
s (µ(τ)+ũn(τ)) dτ

kn∑
n+1

λn
i Φ(Y

ui
0 )ỹui(s) ds,

for a ∈ [0, A]. Passing to the limit, one obtain that

ỹ∗(a) = γe−
∫ a
0 (µ(s)+u∗(s)) ds −

∫ a

0
e−

∫ a
s (µ(τ)+u∗(τ)) dτΦ(Y ∗

0 )ỹ
∗(s) ds,
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a.e. a ∈ (0, A). It follows immediately that there exists a representant of
ỹ∗ in L2(0, A) continuous on [0, A] (also denoted by ỹ∗) which verifies

ỹ∗(a) = ỹ∗(0)e−
∫ a
0 (µ(s)+u∗(s)) ds −

∫ a

0
e−

∫ a
s (µ(τ)+u∗(τ)) dτΦ(Y ∗

0 )ỹ
∗(s) ds,

a ∈ [0, A], i.e. ỹ∗ is a nonnegative solution to (3), corresponding to u∗. We
will prove immediately that this solution is nontrivial (i.e. ỹ∗ = ỹu

∗
). We

will show in addition that ỹn → ỹ∗ in C([0, A]). This yields

|ỹn(a)− ỹ∗(a)| ≤ |ỹn(0)e−
∫ a
0 (µ(s)+ũn(s)) ds − ỹ∗(0)e−

∫ a
0 (µ(s)+u∗(s)) ds|

+

∣∣∣∣∣
∫ a

0

[
e−

∫ a
s (µ(τ)+ũn(τ)) dτ

kn∑
n+1

λn
i Φ(Y

ui
0 )ỹui(s)

− e−
∫ a
s (µ(τ)+u∗(τ)) dτΦ(Y ∗

0 )ỹ
∗(s)

]
ds
∣∣∣

≤ e−
∫ a
0 (µ(s)+u∗(s)) ds|ỹn(0)− ỹ∗(0)|

+ |y∗(0)|
∣∣∣e− ∫ a

0 (µ(s)+ũn(s)) ds − e−
∫ a
0 (µ(s)+u∗(s)) ds

∣∣∣
+

∫ a

0

∣∣∣∣∣e− ∫ a
s (µ(τ)+ũn(τ)) dτ

kn∑
n+1

λn
i Φ(Y

ui
0 )ỹui(s)

− e−
∫ a
s (µ(τ)+u∗(τ)) dτΦ(Y ∗

0 )ỹ
∗(s)

∣∣∣ ds,

for a ∈ [0, A]. Then taking supa∈[0,A] and having in mind the boundedness
of the functions involved, we get that

sup
a∈[0,A]

|ỹn(a)− ỹ∗(a)|

≤ C1|ỹn(0)− ỹ∗(0)|+ C2

∣∣∣e− ∫ a
0 (µ(s)+ũn(s)) ds − e−

∫ a
0 (µ(s)+u∗(s)) ds

∣∣∣
+ C3

∫ A

0

(
|Φ(Y ∗

0 )|

∣∣∣∣∣
kn∑
n+1

λn
i ỹ

ui(s)− ỹ∗(s)

∣∣∣∣∣
+

∣∣∣∣∣
kn∑
n+1

λn
i ỹ

ui(s)

∣∣∣∣∣ |Φ(Y ui
0 )− Φ(Y ∗

0 )|

)
ds,

where C1, C2, C3 are positive constants. Now, since ũn → u∗, ỹn → ỹ∗ in
L2(0, A) and Y un

0 → Y ∗
0 in R (which implies Φ(Y un

0 ) → Φ(Y ∗
0 ) due to the



34 OANA CARMEN TARNICERIU 10

continuity of Φ), it follows that ỹn → ỹ∗ in C([0, A]). Actually, (3) has two
nonnegative solutions: a trivial and a nontrivial one.

Since

J(ũn) =

kn∑
i=n+1

λn
i J(ui) → d, as n → +∞,

we conclude that J(u∗) = d > 0 and consequently that ỹ∗ = ỹu
∗
. �

Necessary optimality conditions. Let us denote by q the adjoint
state, i.e., q satisfies:

(10)


q′ − µ(a)q − Φ(Y ∗

0 )q +Ψ = u∗(a)(1 + q), a ∈ (0, A)

Ψ = β(a)q(0)− Φ′(Y ∗
0 )

∫ A

0
q(a)ỹ∗(a) da

q(A) = 0,

where (u∗, ỹ∗) is an optimal pair for (2)-(3) and Y ∗
0 =

∫ A
0 ỹ∗(a) da.

Then the necessary optimality conditions are given by:

Theorem 5. Let q the corresponding adjoint state (which exists and is
unique). Then

(11) u∗(a) =

{
0, if 1 + q(a) < 0

L, if 1 + q(a) > 0.

Proof. The existence and uniqueness of the adjoint variable q can be
proved via Banach’s fixed point theorem.

Let v ∈ L∞(0, A) such that u∗ + εv ∈ U for any ε > 0 small enough.
From the optimality of u∗ we get:∫ A

0
u∗(a)ỹ∗(a) ≥

∫ A

0
(u∗(a) + εv(a))ỹu

∗+εv(a) da,

which implies that

(12)

∫ A

0
u∗(a)

ỹu
∗+εv(a)− ỹ∗(a)

ε
da+

∫ A

0
v(a)ỹu

∗+εv(a) da ≤ 0.

In order to prove the maximum principle, we need to prove first the following
convergencies:

(13) lim
ε→0

ỹu
∗+εv = ỹ∗ in C([0, A]),
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and

(14) lim
ε→0

ỹu
∗+εv − ỹ∗

ε
= z in L2(0, A),

where z is the solution to

(15)


z′ + [µ(a) + Φ(Y ∗

0 )]z +Φ′(Y ∗
0 )ỹ

∗Z = −u∗z − vỹ∗, a ∈ (0, A)

Z =

∫ A

0
z(a) da

z(0) =

∫ A

0
β(a)z(a) da.

Note that ỹu
∗+εv is the solution to

(16)


(ỹu

∗+εv)′ + r(a)ỹu
∗+εv = −(εv +Φ(Y u∗+εv

0 ))ỹu
∗+εv, a ∈ (0, A)

Y u∗+εv
0 =

∫ A

0
ỹu

∗+εv(a) da

ỹu
∗+εv(0) =

∫ A

0
β(a)ỹu

∗+εv(a) da,

where r(a) = µ(a) + u∗(a). This implies 0 < ỹu
∗+L ≤ ỹu

∗+εv(a) ≤ y(a),
a ∈ [0, A], (for ε ∈ (0, 1) small enough) and, since the sequence is uniformly
equicontinuous, we get that there exists a sequence εn such that ỹu

∗+εnv

converges uniformly to a limit ȳ∗. The uniform convergence of ỹu
∗+εnv also

implies

Y u∗+εv
0 =

∫ A

0
ỹu

∗+εv(a) da → Ȳ ∗
0 =

∫ A

0
ȳ∗(a) da, in R.

Writing the solution to (16), we get for every a ∈ [0, A]:

ỹu
∗+εv(a) = ỹu

∗+εv(0) exp{−
∫ a

0
r(s) ds}

−
∫ a

0
ỹu

∗+εv(s)[Φ(Y u∗+εv
0 ) + εv(s)] exp{−

∫ a

s
r(τ) dτ} ds.

Then, passing to the limit we obtain that:

ȳ∗(a) = ȳ∗(0) exp{−
∫ a

0
r(s) ds}

−
∫ a

0
ȳ∗(s)Φ(Ȳ ∗

0 ) exp{−
∫ a

s
r(τ) dτ} ds, a ∈ [0, A],
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(here ȳ∗(a) ≥ ỹu
∗+L(a), ∀a ∈ [0, A]), which is obviously the nontrivial non-

negative solution to (3) corresponding to u∗, i.e. ȳ∗ = ỹ∗. In order to prove
the second assertion, let us denote by zε = 1

ε

[
ỹu

∗+εv − ỹu
∗]
. Subtracting

(3) from (16) and dividing by ε, we obtain that zε is solution to:

(17)



(zε)′ + f(a)zε +
1

ε

[
Φ(Y u∗+εv

0 )− Φ(Y ∗
0 )
]
ỹu

∗+εv = −vỹu
∗+εv,

a ∈ (0, A)

Φ(Y u∗+εv
0 ) =

∫ A

0
ỹu

∗+εv(a) da

zε(0) =

∫ A

0
β(a)zε(a) da,

where f(a) = µ(a) + u∗(a) + Φ(Y ∗
0 ), a ∈ (0, A).

Let us take next wε = zε−z and prove that wε → 0 as ε → 0 in L2(0, A).
Note that, due to the continuous differentiability of Φ, the following relation
hold:

(18)
1

ε

[
Φ(Y u∗+εv

0 )− Φ(Y ∗
0 )
]
= Φ′(Y ∗

0 )

∫ A

0
zε(a) da+ φ(ε),

where φ(ε) → 0 as ε → 0.
Subtracting now (15) from (17), we obtain that wε is the solution to

(19)


w′
ε + f(a)wε +Φ′(Y ∗

0 )ỹ
∗
∫ A

0
wε(a) da = Fε(a), a ∈ (0, A)

wε(0) =

∫ A

0
β(a)wε(a) da,

where we have denoted by

Fε(a) = −(v(a) + Φ′(Y ∗
0 )

∫ A

0
z(a) da)[ỹu

∗+εv(a)− ỹ∗(a)]− φ(ε)ỹu
∗+εv(a).

Since ỹu
∗+εv → ỹ∗ in C([0, A]), it is obvious that Fε → 0 in L∞(0, A), as

ε → 0. Then we get that wε → w as ε → 0, where w is the solution to:

(20)


w′ + f(a)w +Φ′(Y ∗

0 )ỹ
∗
∫ A

0
w(a) da = 0, a ∈ (0, A)

w(0) =

∫ A

0
β(a)w(a) da.
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Actually, via Banach’s fixed point theorem we infer that the above system
has a unique solution. Therefore we have that wε → 0 in L∞(0, A), which
concludes the proof of the second assertion.

Making now ε → 0 in (12), and using that ỹu
∗+εv → ỹ∗ in C([0, A]), and

that zε → z in L2(0, A), we obtain that∫ A

0
u∗(a)z(a) da+

∫ A

0
v(a)ỹ∗(a) da ≤ 0,

for all v ∈ L∞(0, A) such that u∗ + εv ∈ U for any ε > 0 small enough.
Multiplying the first equation in (10) by z and integrating over (0, A) we
get:∫ A

0
z(a)

[
q′(a)− µ(a)q(a)− Φ(Y ∗

0 )q(a) + Ψ
]
da=

∫ A

0
z(a)u∗(a)(1+q(a))da.

Integrating by parts, replacing z′ and eliminating the identical terms, it
follows ∫ A

0
z(a)u∗(a) da =

∫ A

0
v(a)ỹ∗(a)q(a) da.

Therefore, we obtain that∫ A

0
ỹ∗(a)(1 + q(a))v(a) da ≤ 0,

for any v ∈ L∞(0, A) such that u∗ + εv ∈ U for any ε > 0 small enough,
which is equivalently to (11). �

Corollary 6. By (10) and (11) it follows that the adjoint state satisfies
q′ − µ(a)q − Φ(Y ∗

0 )q + β(a)q(0)

−Φ′(Y ∗
0 )

∫ A

0
q(a)ỹ∗(a) da = L(1 + q)+, a ∈ (0, A)

q(A) = 0.
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