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Abstract. In this paper, a nonlinear age-dependent population model with logistic
term is considered. In the first part is reminded a large time behavior result, and next
an optimal harvesting problem associated to a limit problem is investigated. Existence
of an optimal control and necessary optimality conditions are established.
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1. Formulation of the problem. The starting point is the following
nonlinear age-structured population model

Yt + Yo + ;j(a)y + (Y (t)y = —ula)y, (a,t)€Q

Y(t) = / y(a,t) da, t € (0,+00)
(1) 0 A

y(0,t) = /0 B(a)y(a,t) da, t € (0,400)

y(O, a) = yO(a)’ a & (0’ A)’

where @ = (0, A) x (0, +00). Here A € (0, +00) represents the maximal age
for the population species.

y(a,t) is the population density of age a € [0, A] at time t € [0, 400)
and by yo we have denoted the initial distribution of densities.

The third equation in (1) describes the birth process and it is known
as the renewal law; y(0,t) gives the density of the newborn population at



26 OANA CARMEN TARNICERIU 2

time ¢, and  is the fertility rate which depends in this case only on the age
a. Therefore 5(a)y(a,t) stands for the density of newborns at time ¢, with
parents of age a.

u is the mortality rate and depends also only on age. System (1) de-
scribes the evolution of an age-structured population which includes a lo-
gistic term depending on the total population density at moment ¢, Y'(¢).
®(Y (t)) represents an additional mortality rate caused by overpopulation.
u is the harvesting effort (and depends on age) and u(a)y(a,t) gives the
harvested population of age a at the moment ¢, while fOA u(a)y(a,t)da gives
the total harvest at the moment ¢.

The goal of the paper is to find the harvesting effort (control)

u € L0, A), 0<u(a) <L ae in (0,A4),

(L € (0,400)) which maximizes

A
li v
Am ) u(a)y“(a,t) da,
where y* is the solution to (1) corresponding to w. In fact, we will show
that this problem is equivalent to the following optimal harvesting problem:

A
(2) max/o u(a)y*(a) da,

ueld

where U = {v € L*(0,A4); 0 <wv(a) < L a.e. in (0, A)} denotes the set of
admissible controls, and g* is the nontrivial nonnegative solution to

V(@) + ula)yla) + 2(3Dy(@) = ~u(ay(a). a< (0.4)
(3) Yo :/0 Z(a) da
y(0) = /0 Bla)y(a) da.

The paper is structured as follows: in the next section we present an
asymptotic behavior result; it will be shown that, under proper assumptions,
the solution to (1) is stabilized toward the nontrivial nonnegative solution
to (3).

Then we consider the optimal harvesting problem (2)-(3); we prove the
existence of an optimal control and provide the necessary optimality condi-
tions.
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We mention that in the case without control, it has been proved that
the system (1) has a unique nonnegative nontrivial solution (see e.g. [4]).

A large amount of papers has been devoted to optimal control problems
for age-structured population dynamics, see e.g. [1], [5], [8], [7], [9], [12].

For the asymptotic behavior of the solutions to age-structured systems
we refer to [2], [3], [6] and [11].

Here are the assumptions of this paper:

(A1) € L>®(0,A), B(a) >0 ae. ac (0,A);
A
(A2) pe Ll ([0,A)), u(a) >0 ae. ac(0,4), /0 p(a) da = +oo;

(A3) yo € L>*(0,A), yo(a) >0 a.e. a € (0,A);

(A4) @ : [0,+00) — [0,+00) is an increasing continuously differentiable
function which satisfies ®(0) = 0 and lim, 4 ®(r) = +o0;

(A5)/ B(a) exp{— / )+ L) ds} da> 1.

2. Large time behavior of the solution. Let us notice that the
solution to (1) is a separable one, i.e., y(a,t) = z(t)p(a, t), (a,t) € Q, where
p is the solution to

Pt + pa + pu(a p——u(a)p (a,t) € Q
(4) p(0,t) / B(a t € (0, +00)
p(a,0) = yo(a ), a € (0,A)

and z is the solution to

2/ (t) + ®(z(t)P(t))z(t) = 0, t € (0,400)
5) P(t:/Apat da
( 0
z(0) = 1.

It is obvious that y is a solution to (1). Note that also the solution x depends
on the control u trough the dependence of the function ®(x(t)P(t)). For
every u € U fixed, (4) has a unique nonnegative solution and (5) has a
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unique Carathéodory solution (which is also nonnegative). Actually the
solution p to (4) is given by

b(t — a) exp{— / )) ds}, a<t

pla,t) =
yo(a — t) exp{— / (a—t+s)+ula—t+s))ds}, a>t.

Therefore, for a < t, the solution is written as

pla.t) = bt = a)exp{= [ (n(s) + us) ds},
where b satisfies the following Volterra equation
(6) b(t) = F(t) + /O Kt — s)(s) ds.
Here

A
F(t) B / ﬁ( ) fo (a—t+s)tu(a—t+s)) dsyo(a —t) da,t < A
=93/t
0, otherwise

and

K(t) = (t) exp{— / )) ds}, t< A

0, otherwise.

We have that F' € C(R'), K € L*°(R") and, consequently, b € C(R").
The following result holds (see e.g. [10]):

Theorem 1. The solution b to (6) satisfies b(t) = e“thy(t), Vt € RT,
where limy_,o0 bo(t) = by > 0 and ™ is the solution to the following equation:

/5 exp{/ s)+ a) ds} da=1.

Taking into account the previous result, we obtain that, for a < t, the
solution p can be written as

pla,t) = e E=Dpy(t — a)e Jo uls)+uls)) ds

and we can state the next result:
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Theorem 2. In the case of non-trivial datum, i.e., by > 0, we infer
that

Tim (0]l (0.4) = 0 if a” <0,
Jim ([p(8)[|1(0,4) = +00 if @ >0,
lim [p(t) ~ Bl 20,0 = 0 if 0" =0,

where p = boe™ Jo (o) u) ds 5 o pontrivial steady state solution to (4).

For more details and complete proofs of the previous theorems see [4].
Denoting by

/ /3 n(s)+u(s)) ds da,
the statements of Theorem 2 are equivalent to:
o If R <1, then ||p(t)[[z(,4) — 0, as t = +o0;
o If R> 1, then |[p(t)| 11(0,4) — +00, as t — +00;

e If R =1, then ||p(t) — pllr2(0,4) — 0, as t — 400, where p is the same
as in Theorem 2.

Let now x be the unique Carathéodory solution to (5); obviously x is
nonincreasing and nonnegative, therefore there exists lim; ., z(t) € [0, 1].

Analyzing the previous results, we can see that in the case R < 1, the
solution converges to 0 as t — oo, even without the additional mortality
rate expressed by ®(Y(¢)). Therefore, in what follows we shall consider the
assumption (A5) (which implies R > 1).

Theorem 3. If pg is a non-trivial datum and assumption (Ab) is sat-
isfied, then the solution y to (1) satisfies

Jim [ly(t) = 3lz=0.0) = O,
where

(@) = exp{—a”a}Bo exp{— / u(s)) ds} 5071 ),

€ [0, A], is a stationary solution to (1) and ho = by fo e~ Jo (u(s)+uls)) ds gq.
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Proof. By (A5) we have that P(t)=e® h(t), t > 0, where lim;_,o h(t)=
ho > 0. Then, the corresponding equation in z takes the form

o' (t) + ®(z(t)h(t)e® DHa(t) =0, t>0,

z(0) =1,
or, equivalently, taking z(t) = etz (t) (t > 0):

Z(t) = (o = 2(h(t)z(1)))2(t), t>0,
2(0) =

Obviously, z(t) > 0, Vt € R*; in fact

t1i>I£l<> z(t) =20, 20>0,
where zg is the unique solution to a* — ®(hgzg) = 0. Indeed, if we denote
by zj the unique solution to a* — ®(hz) = 0, and let 0 < hy < hg < ho; it
follows that zj, > 20 > zn,; as lim;_,o h(t) = ho, it can be shown that
t1l>r£10 dist(2(t), [zhy, 2n,]) = 0,
which implies that

tliglo 2(t) = =0,

where
o1 (a¥)
0= ———=.
0 ho
Therefore we have obtained that

lim y(t) =g in L0, A),

t—o00

where
i(a) = exp{—a*a}bo exp{— / u(s)) ds) 07! ),

a € [0, 4], is a stationary solution to (2);_3.

In fact (3) has only two nonnegative solutions, one of them being the
trivial one (see [4] and [6]).

We mention that this asymptotic behavior result for the linear age struc-
tured population dynamics has been proved first in [6]. O
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3. Optimal harvesting. Assume in addition that yo(a) > 0 a.e.
n (0,A). We shall consider next the optimal harvesting problem (2)-(3).
First note that for every fixed u € U, the nontr1v1al and nonnegative so-
lution to (3) is given by g(a) = g(0)e —Jo (wls)+us)+@(¥0)) ds g ¢ [0, A] and
substituting this in the third equation in (3) we get

(7) - / B(a () +B(Y0)) ds g,
We can solve equation (7) for the single variable Yp, and from
A A "
Vo= [ o) da=5(0) [ e 00 i gy
0 0

we get the initial value g(0).

Existence of an optimal solution
Theorem 4. Problem (2)-(3) admits at least one optimal control.

Proof. Denote by d = sup,¢, J(u), where J(u fo ) da and
y" denotes the nontrivial and nonnegative Solutlon to (3) correspondlng
to the control u € U. By a comparison result we get that 0 < J(u) <
L fo ) da, where 7 is the solution to (3) corresponding to u = 0. Let now
a sequence {un}nen+ C U be such that d — L < J(u,) < d, ¥n € N*. Since
{uy} is bounded in L>°(0, A) it follows that is also bounded in L?(0, A),
so we can take a subsequence (also denoted by {u,}) such that u, — u*
weakly in L2(0, A). Since U is a convex and closed subset of L?(0, A), it is
also weakly closed, therefore u* € U. We have that

(8) 0<g" <y ae ac(0,A),
which implies that, on a subsequence, g% — §* weakly in L?(0, A) and

7" (0) — « in R. Using a corollary to Mazur’s theorem, we get that there
exists a sequence ¥, such that

kn kn
gn= > AU, AP =0, doar=1

i=n+1 i=n+1
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and ¢, — §* in L?(0, A). Let i, be defined as

Zz 71-5—1)\;Z :( Cif Z Ay (a) # 0

ﬂ,n(a) _ Zz =n+1 /\z uz( i= n+1
0, if Z APyt (a) = 0.

i=n-+1

For these controls we have @, € U. In the following, we shall denote by

A
v = [ 5@ da
0

and
A
Y= [ 7@ da
0

Since §“n — §* weakly in L?(0, A) it follows that Y — Y. Let us consider
now the system (3) corresponding to the controls w;:

") + u(a )y“1+<1>(Y“1) j'i = —ug", a € (0,4)

) 7 / B(a)7"(a) da.

Multiplying the system (9) by A" and summarizing from n + 1 to k,, we
obtain:

kn

(§) + p(@)in + D APB(YG )" = ~un, a € (0, A)
n+1

A
_ / B(a)jin(a) da.
0

The solution to the above system, ¢, is given by

n(a) = §in(0)e™ Jo () in(s)) ds

a kn
B / e [ () dr N \ngy (v gui(s) ds,
0

n+1

for a € [0, A]. Passing to the limit, one obtain that

7 (a) = e~ Jo () +u () ds _ / * o St (7)) (Y55t (s) ds,
0
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a.e. a € (0,A). It follows immediately that there exists a representant of
g* in L%(0, A) continuous on [0, A] (also denoted by §*) which verifies

7 (a) = 57 (0)e o (st () ds _ / e~ S+ () dr gy vy 5 () ds,
0

a € [0, A], i.e. §* is a nonnegative solution to (3), corresponding to u*. We
will prove immediately that this solution is nontrivial (i.e. §* = 4% ). We
will show in addition that g, — §* in C(]0, A]). This yields

Gn(a) = 5" (@) < |Ga(0)e Jo (OIFEEN o gr(g)em St

a kn
| le_f:(“(w”“” 3 NB(Y) (o)
0

n+1

+

e STt () dT(I)(YO*)g*(S)] ds‘

< e~ fo (u(s)+u*(s)) ds‘gn(o) . g* (O)|
+ |y*(0)] ’e— Jo (o) +in(s)) ds _ o= [ (u(s)+u*(s)) ds

a
/
0

e i)t () d‘fq)(yo*)g*(s)‘ ds,

kn
e [ () +in (7)) dr Z )\:L(I)(YOUZ)QM(S)
n+1

for a € [0, A]. Then taking sup,c[o 4 and having in mind the boundedness
of the functions involved, we get that

sup [yn(a) — " (a)|
a€[0,4]

< C1lgn(0) = g7 (0)[ + C2 \e— Jo (o) an(s)) ds _ o= Jo'(u(s)+u”(s)) ds

A
e /0 (|<1><Y5ﬂ>|

Fon
Do AG(s)

n+1

kn
D NG (s) = 7 (s)

n+1

_|_

[@(Yg") - <1>(Yo*)|> ds,

where (', Co, C3 are positive constants. Now, since @, — u*, J, — ¢* in
L%*(0,A) and Y3 — Y in R (which implies ®(Yy") — ®(Yy) due to the
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continuity of ®), it follows that g, — * in C([0, A]). Actually, (3) has two
nonnegative solutions: a trivial and a nontrivial one.

Since .
J () = Z AT (u;) = d, as n — +oo,
i=n+1
we conclude that J(u*) = d > 0 and consequently that §* = 7% . O

Necessary optimality conditions. Let us denote by ¢ the adjoint
state, i.e., ¢ satisfies:

¢~ n@)g = B()g+ ¥ = w(@)(1+q). a€ (0.4
(10) T = B(a)g(0) — ' (¥;) /O ¢(@)7" (a) da

where (u*,g*) is an optimal pair for (2)-(3) and Y = OA 7*(a) da.
Then the necessary optimality conditions are given by:
Theorem 5. Let q the corresponding adjoint state (which exists and is

unique). Then
(1) (@) = {0, i1+ qla) <0
L, ifl1+q(a)>0.

Proof. The existence and uniqueness of the adjoint variable ¢ can be
proved via Banach’s fixed point theorem.

Let v € L*°(0, A) such that u* + ev € U for any € > 0 small enough.
From the optimality of u* we get:

which implies that

A ~u*+ev a) — 7 (a A .
(12) /0 u*(a)y ( 8) J'(a) da—l—/o v(a)§* T (a) da < 0.

In order to prove the maximum principle, we need to prove first the following
convergencies:

(13) lim 7t = 7* in  C([0, A)),

e—0
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and

~utdev ok
(14) lim 7 Y =2 in L%0,A),

e—0 15
where z is the solution to

24 [pla) + 205 + ¥ 002 =~z i, a€ (0,4)
15 §7° / o) de
/ Bl
Note that §* % is the solution to
(G5 4 (@) = (v + DY HENFEH, a e (0, A)
e |V oo _ /A 7+ () da

gureu / B(a)i* " (a) d

where 7(a) = p(a) + u*(a). This implies 0 < §* ¥ < g+ (a) < 7(a),
a € [0, 4], (for € € (0, 1) small enough) and, since the sequence is uniformly
equicontinuous, we get that there exists a sequence €, such that g% +&n?
converges uniformly to a limit *. The uniform convergence of % *¢»¥ also
implies

yte = /OA g " (a) da — Yy = /OA y*(a) da, in R.
Writing the solution to (16), we get for every a € [0, A]:
FUH@) = §UH(0) exp{— / ) ds}
- / G ()@Y ) + eu(s)] exp{— / ) dr} ds,

0

Then, passing to the limit we obtain that:
y"(0) exp{— / ) ds}
/ O(Yy) exp{— / ) dr} ds, a €0, 4],
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(here 4*(a) > §* *¥(a), Va € [0, A]), which is obviously the nontrivial non-
negative solution to (3) corresponding to u*, i.e. * = g*. In order to prove

the second assertion, let us denote by 2 = % [yj“*“” — g}“*]. Subtracting

(3) from (16) and dividing by ¢, we obtain that z° is solution to:

1 * * *
(ZE)/ + f(a)zs 4 g [@(You +EU) . CI)(YZ)*)} gu +ev _ —’U@]u +sv,
ac(0,A)

A
B ) = [ 57 @) da
0

A
2#(0) = /O B(a)2*(a) da,

where f(a) = p(a) +u*(a) + (YY), a € (0, A).

Let us take next w. = 2° —z and prove that w. — 0 as e — 0 in L%(0, A).
Note that, due to the continuous differentiability of ®, the following relation
hold:

1

. A
a8) <o) —ey)] = ) /0 2*(a) da+ (2),

where p(e) - 0as e — 0.
Subtracting now (15) from (17), we obtain that w, is the solution to
A
wt+ flaywe + ¥07)7 [ i) do=Fifa), ae(0.4)
(19) A 0
w0) = [ Bla)u.(e) da,
0

where we have denoted by

A * *
Fe(a) = —(v(a) + <1>’(Yo*)/0 z(a) da)[5" =" (a) — 7" (a)] — (e)7" " (a).

Since §* T¢¥ — §* in C([0, A]), it is obvious that F. — 0 in L>(0, A), as
€ = 0. Then we get that w. — w as € — 0, where w is the solution to:

A
w + fla)w+ @'(YO*)@*/O w(a) da=0, a€(0,A)

(20) A
w(0) :/0 Bla)w(a) da.



13 A LIMIT HARVESTING PROBLEM 37

Actually, via Banach’s fixed point theorem we infer that the above system
has a unique solution. Therefore we have that w. — 0 in L>°(0, A), which
concludes the proof of the second assertion.

Making now € — 0 in (12), and using that §* +¢* — §* in C(]0, A]), and
that 2° — z in L?(0, A), we obtain that

A A
/0 u*(a)z(a) da—l—/o v(a)y*(a) da <0,

for all v € L*(0, A) such that u* + ev € U for any € > 0 small enough.
Multiplying the first equation in (10) by z and integrating over (0, A) we
get:

A A
| +(@ [4@) = nl@ate) ~ 0 )ate) + W) da= [ <(a)uc (@) (1+a(a))de.

Integrating by parts, replacing 2z’ and eliminating the identical terms, it
follows

A A
/0 z(a)u*(a) da :/0 v(a)y*(a)q(a) da.

Therefore, we obtain that

A
| 7@+ @@ da<o,
0
for any v € L*°(0, A) such that u* + ev € U for any £ > 0 small enough,

which is equivalently to (11). O

Corollary 6. By (10) and (11) it follows that the adjoint state satisfies

q — p(a)g — 2(Yy)g + ﬁ(a)Q(O)
V() [ a@i (@) da= L1+, ae (0.4
q(A) = 0.
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