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1. Introduction and preliminary results

At the beginning of ’80, using the viscosity solutions theory, several ap-
proximation results for the Bellman equation in the deterministic case were
obtained (see [1],[2],[4],[5]). In [6] we proposed an Euler step approxima-
tion scheme (similar to those from [1],[3],[5]) for the viscosity solution of the
Bellman equation of a stochastic optimal control problem and we proved
its convergence. In the present paper we give a result concerning the rate
of convergence for the approximation scheme presented in [6] and also we
improve the convergence result there.

Let us consider the following stationary second order Bellman partial
differential equation

(1.1) λu(x) + sup
a∈A

[−∇u(x) · b(x, a)− f(x, a)]− ε

2
∆u(x) = 0, x ∈ Rn,
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where u(·) is the unknown function, A ⊂ Rm is a compact set, b : Rn×A→
Rn and f : Rn ×A→ Rn are two given functions, λ > 0 and ε > 0 are two
given constants, and “·” stands for the inner product in (Rn, ∥ · ∥).

We suppose that the functions b and f satisfy the following hypotheses:

There exist the positive constants L1 ∈ (0, λ), L2, and M such that

(i) ∥b(x, a)− b(y, a)∥ ≤ L1∥x− y∥, x, y ∈ Rn, a ∈ A

(ii) |f(x, a)− f(y, a)| ≤ L2∥x− y∥, x, y ∈ Rn, a ∈ A(H)

(iiii) ∥b(x, a)∥ ≤M, |f(x, a)| ≤M,x ∈ Rn, a ∈ A.

In [6] we have proved that equation (1.1) has a unique viscosity solution
which is the value functions of the following stochastic control problem with
infinite horizon.

Let (Ω,F , P, (Ft)t≥0) be a fixed complete stochastic basis which means
that (Ω,F , P ) is a complete probability space and (Ft)t≥0 is an increasing
family of sub-σ-algebras of F such that F0 contains every P−negligible
subset of Ω. Also we consider a standard n−dimensional Ft-adapted Wiener
process {w(t), t ≥ 0} and

(1.2)
A = {a : [0,+∞)× Ω → A; a(·, ·) is measurable,

and a(t, ·) is Ft −measurable, t ≥ 0} .

Remark 1.1. In the following we shall consider that the σ−algebra Ft

is generated by {w(s), 0 ≤ s ≤ t} for t ≥ 0.

Now we present the optimal control problem:

Minimize

(1.3) J(x, a) = E

[∫ ∞

0
f(x(t), a(t))e−λtdt

]
,

where E stands for the average, a ∈ A and (x(t), a(t)) satisfies the state
equation

(1.4)

{
dx(t) = b(x(t), a(t))dt+

√
εdw(t), ε > 0

x(0) = x ∈ Rn.

We define

(1.5) J(x) = inf
a∈A

J(x, a), x ∈ Rn.
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As we have mentioned before, the function given by (1.5) is the unique
viscosity solution of (1.1). For the reader’s convenience we shall give the
definition of the viscosity solution for (1.1).

Definition 1.1 ([7]). The function u ∈ C(Rn) is called viscosity sub-
solution (supersolution) of (1.1) iff for every φ ∈ C2(Rn) for which (u− φ)
has a (strict) local maximum (minimum) in x0 we have

λu(x0) + sup
a∈A

[−∇φ(x0) · b(x0, a)− f(x0, a)]−
ε

2
∆φ(x0) ≤ 0 (≥ 0).

A function u(·) which is at the same time a viscosity subsolution and a
viscosity supersolution is called viscosity solution.

In the next we present the approximation scheme ([6]).

Let h > 0 and tj = jh, j = 0, 1, 2, .... Corresponding to each h > 0 we
consider the set of discrete controls:

Ah ={a ∈ A; a is constant on [tj , tj+1), j = 0, 1, 2, ..., i.e.

a(s) = aj(·) ∈ L2(Ω, A), for s ∈ [tj , tj+1), j = 0, 1, 2, ...}.(1.6)

Now we define recursively the sequence {xj}j≥0 (the approximation of
(1.4))

(1.7)

{
x0 = x

xj+1 = xj + hb(xj , aj) +
√
ε(w(tj+1)− w(tj)), j ∈ N

where a ∈ Ah (aj = a(s), s ∈ [tj , tj+1)). Also we consider the following
discretization of the functional (1.3)

(1.8) Jh(x, a) = hE
∞∑
j=0

(1− λh)jf(xj , aj),

were a ∈ Ah and {xj}j≥0 verifies (1.7).

Now we define the approximate solution of (1.1) as

(1.9) vh(x) = inf
a∈Ah

Jh(x, a) = inf
a∈Ah

E

∞∑
j=0

(1− λh)jf(xj , aj).
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For h ∈ (0; 1
λ ] we consider the following approximate equation of (1.1)

uh(x) + sup
a∈A

E[−(1− λh)uh(x+ hb(x, a) +
√
εw(h)) + f(x, a)] = 0,(1.10)

x ∈ Rn.

In the next we shall prove a dynamic programming principle for the
discrete optimal control problem (1.9), (1.7).

Theorem 1.1. For each x ∈ Rn we have

(1.11) vh(x) = inf
a0
E[hf(x, a0) + (1− λh)vh(x1)],

where a0 ∈ L2(Ω, A) is F0−measurable and x1 is given by (1.7) with x0 = x.

Proof. Using (1.9) and (1.8) we obtain that for each ν > 0 there exists
aν ∈ Ah such that

vh(x) + ν ≥ Jh(x, a
ν) = hEf(x, aν0) + (1− λh)hE(1.12)

∞∑
j=0

(1− λh)jf(xνj+1, a
ν
j+1) ≥ hEf(x, aν0) + (1− λh)Evh(x

ν
1),

where {xνj }j∈N and {aνj }j∈N verify (1.7). Taking the infimum in (1.12) we
obtain

(1.13) vh(x) + ν ≥ inf
a∈Ah

E[hEf(x, a0) + (1− λh)vh(x1)],

for every ν > 0. For every ν > 0 there exist ãν , âν ∈ Ah such that

inf
a∈Ah

E [hf(x, a) + (1− λh)vh(x1)] + ν

≥ E [hf(x, ãν0) + (1− λh)vh(x̃
ν
1)](1.14)

≥ E

[
hf(x, ãν0) + (1− λh)h

∞∑
j=0

(1− λh)jf(x̂νj , â
ν
j )

]
− ν,

where {x̃νj }j∈N, {ãνj }j∈N satisfy (1.7) with x̃ν0 = x, and {x̂νj }j∈N, {âνj }j∈N
satisfy (1.7) with x̂ν0 = x̃ν1 .

Let aν = {aνj }j∈N and xν = {xνj }j∈N defined by{
aν0 = ãν0 ,

aνj = âνj−1, j ≥ 1
,

{
xν0 = x̃ν0 = x,

xνj = x̂νj−1, j ≥ 1
(1.15)
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Taking into account (1.13), (1.14), (1.15) and (1.8) it results

(1.16) inf
a∈Ah

E[hf(x, a0) + (1− λh)vh(x1)] + 2ν ≥ Jh(a
ν , x) ≥ vh(x).

Because ν > 0 is arbitrarily chosen, the relations (1.14) and (1.16) imply
(1.11).

In the next, for the reader’s convenience, we shall present some results
(see also [6]) which we need in evaluation of the rate of convergence of our
scheme.

Theorem 1.2 ([6]). In the hypotheses (H) the vh given by (1.9) is the
unique bounded solution of (1.10).

Sketch of the proof. Using Theorem 1.1 we get that vh verifies

vh(x) + sup
a0

E[−(1− λh)vh(x+ hb(x, a0))(1.17)

+
√
εw(h)− hf(x, a0)] = 0, x ∈ Rn,

where a0 ∈ L2(Ω, A) and a0 is F0−measurable (see the definitions (1.2) and
(1.6)).

Taking into account the fact that F0 and Fh are independent (see Re-
mark 1.1) we may write the average in (1.14) as a double integral and so
we obtain

vh(x) + sup
a0∈L2(Ω1,A)

∫
Ω1

{∫
Ω
[−(1− λh)vh(x+ b(x, a0(ω1))(1.18)

+
√
εω(h)(ω))− hf(x, a0(ω1))]dP (ω)

}
dP (ω1) = 0,

where Ω1 is Ω but we put subscript 1 to be more clear. Using boundness of
vh (which is evident from (1.8)), from the relation (1.18) we obtain that vh
is a solution of (1.10).

To prove the uniqueness, we suppose that there exist two solutions u1
and u2 of (1.10) and subtracting the two relations (1.10) which they verify,
using their boundness and some calculus, it results

|u1(x)− u2(x)| ≤ (1− λh) sup
y∈Rn

|u1(y)− u2(y)|, x ∈ Rn,

relation which proves the uniqueness because 0 < h ≤ 1
λ .
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Theorem 1.3 ([6]). In the hypotheses (H) the function vh(·) converges
to J(·) locally uniformly on Rn as h tends to O.

Sketch of the proof. Using (1.9) and the hypotheses on b, f , and λ, it
results

sup
x∈Rn

|vh(x)| ≤
M

λ
(1.19)

|vh(x)− vh(x
′)| ≤ L2

λ− L1
∥x− x′∥, for x, x′ ∈ Rn and h ∈ (0,

1

λ
].

From the Ascoli–Arzela theorem we obtain that there exists a bounded
Lipschitz continuous function u(·) such that vh(·) converges to u(·) locally
uniformly on Rn as h tends to 0.

In the following we shall prove that u(·) is a viscosity subsolution of (1.1)
(in the same manner one can prove that it is also a viscosity supersolution).
We shall present this proof in more details because we consider that it is
interesting and useful for the reader.

Let φ ∈ C2
b (Rn) (a bounded function of class C2), x0 a strict local

maximum point of (u − φ), B(x0, r) = {x ∈ Rn | ∥x − x0∥ ≤ r} and xh0
a global maximum point of (vh − φ) on B(x0, r). The sequence {xh0}h>0

converges to x0 as h tends to 0 (see [3]) and so we can choose h1 > 0 such
that for every h ∈ (0, h1) we have

(1.20) ∥xh0 − x0∥ ≤ r

3
, hM ≤ r

3
.

Let

(1.21) Ωr =
{
ω ∈ Ω; ∥w(h)(ω)∥ ≤ r

3

}
.

It is well-known (see [2]) that

(1.22) P (Ω \ Ωr) ≤
E∥w(h)∥4

r4

81

≤ c
h2

r4
,

where c > 0 is a constant independent of h and r.

Using now (1.10), (1.19), (1.20) and the fact that xh0 is a maximum point
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of (vh − φ) on B(x0, r) we obtain

0 = vh(x
h
0) + sup

a∈A
{
∫
Ωr

[−(1− λh)vh(x
h
0 + hb(xh0 , a) +

√
εw(h))

− hf(xh0 , a)]dP +

∫
Ω\Ωr

[−(1− λh)vh(x
h
0 + hb(xh0 , a) +

√
εw(h))

− hf(xh0 , a)]dP ≥ sup
a∈A

{
∫
Ωr

[φ(xh0)− φ(xh0 + hb(xh0 , a)(1.23)

+
√
εw(h)) + λhvh(x

h
0 + hb(xh0 , a) +

√
εw(h))]dP

+

∫
Ω\Ωr

[vh(x
h
0)− (1− λh)vh(x

h
0 + hb(xh0 , a)

+
√
εw(h))]dP − hf(xh0 , a)}.

Taking into account (1.21) and the boundness of φ and vh, the relation
(1.22) implies

0 ≥ sup
a∈A

E[φ(xh0)− φ(xh0 + hb(xh0 , a) +
√
εw(h))(1.24)

+ λhvh(x
h
0 + hb(xh0 , a) +

√
εw(h))− hf(xh0 , a)]− c1

h2

r4
,

where c1 > 0 is a constant independent of h.
Because φ ∈ C2(Rn), using Itô formula, the relation (1.23) gives

0 ≥ sup
a∈A

E{−
∫ h

0
[∇φ(xh0 + sb(xh0 , a) +

√
εw(s)) · b(xh0 , a)

− ε

2
∆φ(xh0 + sb(xh0 , a) +

√
εw(s))]ds−

∫ h

0
∇φ(xh0 + sb(xh0 , a)(1.25)

+
√
εw(s))dw(s) + λhvh(x

h
0 + hb(xh0 , a) +

√
εw(h))

− hf(xh0 , a)} − c1
h2

r4
.

Dividing (1.24) by h and using the fact that φ ∈ C2(Rn), vh → u (locally
uniformly as h→ 0), and xh0 → x0 as h→ 0, it results

λu(x0) + sup
a∈A

[−∇φ(x0) · b(x0, a)− f(x0, a)]−
ε

2
∆φ(t0) ≤ 0,

i.e. u(·) is a viscosity subsolution of (1.1) (see Definition (1.1)).
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In a similar way one can prove that u(·) is also a viscosity supersolution
of (1.1). In our hypotheses on λ, b, f the equation (1.1) has an unique
viscosity solution given by J(·) (see [7]). So u(·) = J(·) and Theorem 1.3 is
proved.

2. The rate of convergence of the approximation scheme

In this section we shall prove a result with respect to the rate of con-
vergence of the approximate solutions vh(·) to the viscosity solution J(·) of
equation (1.1) and also we shall improve the result in Theorem 1.3. Such
results for the deterministic case were given in [1], [3], [5].

Theorem 2.1. In the hypotheses (H) we have

sup
x∈Rn

|J(x)− vh(x)| ≤ ch, 0 < h ≤ 1

λ
,

where c > 0 is a constant independent of h.

Proof. Let δ, ρ ∈ (0, 1) be fixed. We define the auxiliary function

(2.1) φ(x, y) = vh(x)− J(y)− δ∥x− y∥2

ρ2
, (x, y) ∈ Rn × Rn, 0 < h ≤ 1

λ
.

Using the fact that vh and J are bounded (see (1.19) and (1.3)) it results
that for each γ ∈ (0, 1) there exists (x1, y1) ∈ Rn × Rn such that

(2.2) φ(x1, y1) > sup
(x,y)∈Rn×Rn

φ(x, y)− γ.

Let’s consider a smooth function ξ ∈ C∞
0 (Rn × Rn) which satisfies

(2.3) ξ(x1, y1) = 1, 0 ≤ ξ ≤ 1, ∥∇ξ∥ ≤ 1.

Define

(2.4) ψ(x, y) = φ(x, y) + γξ(x, y), (x, y) ∈ Rn × Rn.

From (2.2) and (2.4) we obtain that there exists (x0, y0) ∈ Rn × Rn such
that

(2.5) ψ(x0, y0) ≥ ψ(x, y), (x, y) ∈ Rn × Rn.
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So, the function −ψ(x0, y) = J(y) − (vh(x0) − δ ∥x0−y∥2
ρ2

+ γξ(x0, y)) has a

global minimum point in y0. Using the fact that J(·) is a viscosity super-
solution of (1.1) it results (see Definition 1.1)

λJ(y0) + sup
a∈A

[−2δ

ρ2
(x0 − y0) · b(y0, a)− γ(∇yξ(x0, y0)) · b(y0, a)

− f(y0, a)] + ε
δ

ρ2
− ε

2
γ∆yξ(x0, y0) ≥ 0.(2.6)

The set A being compact it results that there exists a0 ∈ A such that (see
(2.6))

λJ(y0)−
2δ

ρ2
(x0 − y0) · b(y0, a0)− γ(∇yξ(x0, y0)) · b(y0, a0)

− f(y0, a0) + ε
δ

ρ2
− ε

2
γ∆yξ(x0, y0) ≥ 0.(2.7)

The function vh(·) verifies the relation (1.17) and so we have

(2.8) vh(x0)− (1− λh)Evh(x0 + hb(x0, a0) +
√
εw(h))− hf(x0, a0) ≤ 0.

Using (2.5) we obtain

vh(x0)− J(y0)−
δ∥x0 − y0∥2

ρ2
+ γξ(x0, y0)

≥ E[vh(x0 + hb(x0, a0) +
√
εw(h))

− δ∥x0 + hb(x0, a0) +
√
εw(h)− y0∥2

ρ2

+ γξ(x0 + hb(x0, a0) +
√
ε(h), y0)]− J(y0),

i.e.

Evh(x0 + hb(x0, a0) +
√
εw(h))

≤ vh(x0) + γξ(x0, y0)−
δ∥x0 − y0∥2

ρ2
(2.9)

+
δ

ρ2
E∥x0 − y0 + hb(x0, a0) +

√
εw(h)∥2

− γEξ(x0 + hb(x0, a0) +
√
εw(h), y0).
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The relations (2.8) and (2.9) imply

λhvh(x0)− (1− λh)γξ(x0, y0) +
(1− λh)δ

ρ2
∥x0 − y0∥2

− (1− λh)δ

ρ2
E∥x0 − y0 + hb(x0, a0) +

√
εw(h)∥2(2.10)

+ (1− λh)δEξ(x0 + hb(x0, a0) +
√
εw(h), y0)− hf(x0, a0) ≤ 0.

Dividing (2.10) by h we obtain

λvh(x0)−
1− λh

h
γξ(x0, y0) +

(1− λh)δ

hρ2
∥x0 − y0∥2

− (1− λh)δ

hρ2
E∥x0 − y0 + hb(x0, a0) +

√
εω(h)∥2(2.11)

+
(1− λh)δ

h
Eξ(x0 + hb(x0, a0) +

√
εw(h), y0)− f(x0, a0) ≤ 0.

Using the hypotheses (H) and also the properties of ξ and w(h) (Ew(h) = 0,
E∥w(h)∥2 = h), the inequality (2.11) implies

λvh(x0)−
γ

h
− (1− λh)δhM2

ρ2

− (2− λh)δ

ρ2
ε− 2δ

ρ2
(x0 − y0) · b(x0, a0)(2.12)

− 2λhδ

ρ2
M∥x0 − y0∥ −

hδ

ρ2
− f(x0, a0) ≤ 0.

Subtracting (2.7) from (2.12) it results

λ(vh(x0)− J(y0)) + γ(∇yξ(x0, y0))b(y0, a0)−
γ

h

− (1− λh)

ρ2
δhM2 − (3− λh)δ

ρ2
ε− 2λhδ

ρ2
M∥x0 − y0∥(2.13)

− hδ

ρ2
+
ε

2
γ∆yξ(x0, y0) ≤ 0.

Making x = y = x0 in relation (2.5) and using the properties of vh and ξ
(see (1.19) and (2.3)) it results

(2.14) δ∥x0 − y0∥ ≤
(
γ +

L2

λ− L1

)
ρ2.
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Taking again into account hypotheses (H) and (2.3), the relations (2.13)
and (2.14) imply

(2.15) vh(x0)− J(y0) ≤ c

(
γ +

γ

h
+
hδ

ρ2
+

δ

ρ2
+ h

)
,

where c > 0 is a constant independent of h, ρ, γ, and δ.
Now taking γ = h2, δ = h3, ρ = h, the relation (2.15) gives

(2.16) vh(x0)− J(y0) ≤ ch for 0 < h ≤ 1

λ
.

Putting in the relation (2.5) y = x, it results

vh(x)− J(x) + γξ(x, x) ≤ vh(x0)− J(y0)−
δ∥x0 − y0∥2

ρ2
+ γξ(x0, y0)

from where, using (2.16), we obtain

(2.17) vh(x)− J(x) ≤ ch, x ∈ Rn, 0 < h ≤ 1

λ
,

where c > 0 is a constant independent of h.
To prove the opposite inequality we consider the auxiliary function

φ̃(x, y) = J(y)− vh(x) +
δ∥x− y∥2

ρ2

which is bounded from below.
Using, this time, the fact that J(·) is a viscosity subsolution of (1.1) and

making a similar calculus as before we obtain the desired result.

Remark 2.1. Theorem 2.1 established that the approximate solution
vh(·) converges globally uniformly on Rn to the viscosity solution J(·) and
so we have obtained an improvement of the result in Theorem 1.3 (see [6]).
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