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Abstract. This paper concerns the study of the numerical approximation for the
following initial-boundary value problem:

ut(x, t) = uxx(x, t) + γf(u(0, t)), (x, t) ∈ (−l, l)× (0, T ),

u(−l, t) = 0, u(l, t) = 0, t ∈ (0, T ),

u(x, 0) = u0(x) ≥ 0, x ∈ (−l, l),

where f : [0,∞) → [0,∞) is a C1 convex, nondecreasing function,
∫∞ dσ

f(σ)
< ∞, l = 1

2

and γ is a positive parameter. Under some assumptions, we prove that the solution of a
discrete form of the above problem blows up in a finite time and estimate its numerical
blow-up time. We also show that the numerical blow-up time in certain cases converges to
the real one when the mesh size tends to zero. Finally, we give some numerical experiments
to illustrate our analysis.
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1. Introduction

We consider the following initial-boundary value problem for a semilinear
heat equation of the form

ut(x, t) = uxx(x, t) + γf(u(0, t)), (x, t) ∈ (−l, l)× (0, T ),(1)

u(−l, t) = 0, u(l, t) = 0, t ∈ (0, T ),(2)

u(x, 0) = u0(x) ≥ 0, x ∈ (−l, l),(3)
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which models the temperature distribution of a large number of physical
phenomena from physics, chemistry and biology. The particularity of the
problem described in (1)–(3) is that it represents a model in physical phe-
nomena where the reaction is driven by the temperature at a single site.
This kind of phenomena is observed in biological systems and in chemical
reaction diffusion processes in which the reaction takes place only at some
local sites. For instance, the above model is appropriate to describe:

(i) The influence of defect structures on a catalytic surface.

(ii) The temperature in a solid-fuel combustion scenario where the heat
that is input into the system is localized, say as in a laser focused on
one spot in the domain.

(iii) Chemical reaction-diffusion processes in which, due to effect of cata-
lyst, the reaction takes place only at a single site.

(iv) A heat stationary source which can support an explosive reaction. A
stationary source provides a continuous supply of heat to the same
environment.

(v) The ignition of a combustible medium with damping, where either a
heated wire or a pair of small electrodes supplies a large amount of
energy to every confined area.

For more physical motivation see [4], [5] and [20]. Here f : [0,∞) →
[0,∞) is a C1 convex, nondecreasing function,

∫∞ dσ
f(σ) < ∞, l = 1

2 , γ is

a positive parameter (which is called the scaled Damköhler number in the
combustion theory). The initial data u0 is a function which is bounded and
symmetric. In addition, u0(x) is nondecreasing in the interval (−l, 0) and
u′′0(x) + γf(u0(0)) ≥ 0 in (−l, l). The interval (0, T ) is the maximal time
interval of existence of the solution u. The time T may be finite or infinite.
When T is infinite, then we say that the solution u exists globally. When T
is finite, then the solution u develops a singularity in a finite time, namely,
limt→T ∥u(·, t)∥∞ = ∞, where ∥u(·, t)∥∞ = max0≤x≤1 |u(x, t)|. In this last
case, we say that the solution u blows up in a finite time, and the time T is
called the blow-up time of the solution u. The local in time existence and
uniqueness of the solution u have been proved (see, [8], [9], [22]).

In this paper, we are interested in the numerical study of the above
problem. Our aim is to build an explicit scheme in which the discrete
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solution reproduces the properties of the continuous one. We start by the
construction of an adaptive scheme as follows. Let I be a positive integer,
and consider the grid xi = ih, 0 ≤ i ≤ I, where h = 2l/I. Approximate the

solution u of (1)–(3) by the solution U
(n)
h = (U

(n)
0 , U

(n)
1 , . . . , U

(n)
I )T of the

following discrete equations

δtU
(n)
i = δ2U

(n)
i + γf(U

(n)
k ), 1 ≤ i ≤ I − 1,(4)

U
(n)
0 = 0, U

(n)
I = 0,(5)

U
(0)
i = φi ≥ 0, 0 ≤ i ≤ I,(6)

where k is the integer part of the number I/2,

δ2U
(n)
i =

U
(n)
i+1 − 2U

(n)
i + U

(n)
i−1

h2
, 1 ≤ i ≤ I − 1,

δtU
(n)
i =

U
(n+1)
i − U

(n)
i

∆tn
, 1 ≤ i ≤ I − 1,

φ0 = 0, φI = 0, φi = φI−i, 0 ≤ i ≤ I, δ+φi > 0, 0 ≤ i ≤ k − 1,

δ+φi =
φi+1 − φi

h
.

In order to permit the discrete solution to reproduce the properties of the
continuous one when the time t approaches the blow-up time T , we need to
adapt the size of the time step so that we take

∆tn =

{
h2

3
,

τ

f(∥U (n)
h ∥∞)

}
,

with τ ∈ (0, 1).

Let us notice that the restriction on the time step ensures the nonnega-
tivity of the discrete solution. To facilitate our discussion, we need to define
the notion of numerical blow-up.

Definition 1.1. We say that the solution U
(n)
h of the explicit scheme

blows up in a finite time if limn→∞ ∥U (n)
h ∥∞ = ∞, and the series

∑∞
n=0∆tn

converges. The quantity
∑∞

n=0∆tn is called the numerical blow-up time of
the discrete solution.
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The theoretical study of blow-up of solutions for localized semilinear
heat equations has been the subject of investigations of many authors (see
[8], [9], [12], [22]–[25], and the references cited therein). Under the as-
sumptions given in the introduction of the present paper, the authors have
proved that the solution u of (1)–(3) blows up globally in a finite time on
the whole interval (−l, l), and the blow-up time is estimated (see, [9], [25]).
In the present paper, we are interested in the numerical study using the
discrete form of (1)–(3) defined in (4)–(6). We give some assumptions un-
der which the solution of the discrete problem blows up in a finite time
and estimate its numerical blow-up time. We also show that the numerical
blow-up time converges to the theoretical one when the mesh size goes to
zero. Previously, some authors have used semidiscrete and discrete schemes
to study the phenomenon of blow-up, but only the case where the reaction
term γf(u(0, t)) is replaced by f(u(x, t)) has been taken into account (see
[7], [10], [11], [17]).

Our paper is organized in the following manner. In the next section,
we prove some results about the discrete maximum principle for localized
parabolic problems. In the third section, we prove that the solution of the
discrete problem blows up in a finite time and estimate its numerical blow-
up time. In the fourth section, we give a result about the convergence of
numerical blow-up times in some cases where the blow-up occurs. Finally,
in the last section, we give some numerical results to illustrate our analysis.

2. Properties of the semidiscrete scheme

In this section, we give some lemmas about the discrete maximum princi-
ple for localized parabolic problems and reveal certain properties concerning
the discrete solution.
The following lemma is a discrete form of the maximum principle for local-
ized parabolic problems.

Lemma 2.1. Let a(n) and V
(n)
h be two sequences such that a(n) is non-

negative and

δtV
(n)
i − δ2V

(n)
i − a(n)V

(n)
k ≥ 0, 1 ≤ i ≤ I − 1, n ≥ 0,(7)

V
(n)
0 ≥ 0, V

(n)
I ≥ 0, n ≥ 0,(8)

V
(0)
i ≥ 0, 0 ≤ i ≤ I.(9)

Then V
(n)
i ≥ 0, 0 ≤ i ≤ I, n > 0, when ∆tn ≤ h2

2 .
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Proof. A straightforward computation shows that

V
(n+1)
i ≥ ∆tn

h2
V

(n)
i−1 +

(
1− 2

∆tn
h2

)
V

(n)
i +

∆tn
h2

V
(n)
i+1 +∆tna

(n)V
(n)
k ,

1 ≤ i ≤ I − 1.

If V
(n)
h ≥ 0, then using an argument of recursion, we easily see that V

(n+1)
h ≥

0. This ends the proof. �
An immediate consequence of the above result is the following compar-

ison lemma. Its proof is straightforward.

Lemma 2.2. Let V
(n)
h , W

(n)
h and a(n) be three sequences such that a(n)

is nonnegative and

δtV
(n)
i − δ2V

(n)
i − a(n)V

(n)
k ≤ δtW

(n)
i − δ2W

(n)
i − a(n)W

(n)
k ,

1 ≤ i ≤ I − 1, n ≥ 0, V
(n)
0 ≤ W

(n)
0 , V

(n)
I ≤ W

(n)
I , V

(0)
i ≤ W

(0)
i , 0 ≤ i ≤ I.

Then V
(n)
i ≤ W

(n)
i , 0 ≤ i ≤ I, n > 0 when ∆tn ≤ h2

2 .

The lemma below reveals some properties of the discrete solution.

Lemma 2.3. The discrete solution U
(n)
h of (4)–(6) obeys the following

relations

U
(n)
i = U

(n)
I−i, 0 ≤ i ≤ I, δ+U

(n)
i ≥ 0, 0 ≤ i ≤ k − 1.(10)

Proof. Introduce the vector V
(n)
h defined as follows V

(n)
i = U

(n)
i −U

(n)
I−i,

0 ≤ i ≤ I, n ≥ 0. A routine calculation reveals that

V
(n+1)
i =

∆tn
h2

V
(n)
i−1 +

(
1− 2

∆tn
h2

)
V

(n)
i +

∆tn
h2

V
(n)
i+1 , 1 ≤ i ≤ I − 1, n ≥ 0,

V
(n)
0 = 0, V

(n)
I = 0, n ≥ 0, V

(0)
i = 0, 0 ≤ i ≤ I.

Using an argument of recursion, we easily note that V
(n)
h = 0, n ≥ 0, and

the first part of the lemma is proved. In order to prove the second one, we

proceed as follows. Set W
(n)
i = U

(n)
i+1 −U

(n)
i , 0 ≤ i ≤ k− 1. We remark that

W
(n)
0 = U

(n)
1 ≥ 0.(11)
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On the other hand, it is easy to check that U
(n)
k+1 = U

(n)
k if I is odd, and

U
(n)
k+1 = U

(n)
k−1 if I is even. This implies that

δ2W
(n)
k−1 =


−2W

(n)
k−1 +W

(n)
k−2

h2
, if I is odd,

−3W
(n)
k−1 +W

(n)
k−2

h2
, if I is even.

Obviously

δtW
(n)
i = δ2W

(n)
i , 0 ≤ i ≤ k − 2, n ≥ 0.(12)

Making use of the above relations, we arrive at

W
(n)
0 ≥ 0, n ≥ 0,

W
(n+1)
i =

∆tn
h2

W
(n)
i−1 +

(
1− 2

∆tn
h2

)
W

(n)
i +

∆tn
h2

W
(n)
i+1, 1 ≤ i ≤ k − 2, n ≥ 0,

W
(n+1)
k−1 =

∆tn
h2

W
(n)
k−2 +

(
1− 3

∆tn
h2

)
W

(n)
k−1, n ≥ 0 if I is even,

W
(n+1)
k−1 =

∆tn
h2

W
(n)
k−2 +

(
1− 2

∆tn
h2

)
W

(n)
k−1, n ≥ 0 if I is odd,

W
(0)
i ≥ 0, 1 ≤ i ≤ k − 1.

We deduce by induction thatW
(n)
i ≥ 0, 1 ≤ i ≤ k−1, n ≥ 0. This completes

the proof. �
The above lemma says that, if the initial data of the discrete solution

is symmetric in space, then the discrete solution also obeys this property.
In addition, if the initial data is nondecreasing in space, then the discrete
solution also verifies this assertion. These properties imply that the discrete
solution attains its maximum at the node xk.

The following lemma is a discrete version of Green’s formula.

Lemma 2.4. Let Uh and Vh ∈ RI+1 such that U0 = 0, UI = 0, V0 = 0,
VI = 0. Then, we have

I−1∑
i=1

Uiδ
2Vi =

I−1∑
i=1

Viδ
2Ui.
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Proof. A straightforward computation reveals that

I−1∑
i=1

Uiδ
2Vi =

I−1∑
i=1

Viδ
2Ui +

U1V0 − U0V1

h2
+

UI−1VI − UIVI−1

h2
,

and the result follows using the assumptions of the lemma. �

3. Blow-up solutions

In this section, under some assumptions, we show that the solution of
the discrete problem blows up in a finite time and estimate its numerical
blow-up time.
We need the following lemmas.

Lemma 3.1. Let a and b be two positive numbers. Then, we have

∞∑
n=0

1

f(a+ bn)
≤ 1

f(a)
+

1

b

∫ ∞

a

dσ

f(σ)
.

Proof. We observe that∫ ∞

0

dx

f(a+ bx)
=

∞∑
n=0

∫ n+1

n

dx

f(a+ bx)
≥

∞∑
n=0

∫ n+1

n

dx

f(a+ b(n+ 1))
,

because f(s) is nondecreasing for s ≥ 0. We deduce that∫ ∞

0

dx

f(a+ bx)
≥

∞∑
n=0

1

f(a+ b(n+ 1))
= − 1

f(a)
+

∞∑
n=0

1

f(a+ bn)
.

On the other hand, by a change of variables, we see that
∫∞
0

dx
f(a+bx) =

1
b

∫∞
a

dσ
f(σ) , which implies that

∞∑
n=0

1

f(a+ bn)
≤ 1

f(a)
+

1

b

∫ ∞

a

dσ

f(σ)
.

This ends the proof. �

Lemma 3.2. We have

I−1∑
i=1

tan

(
πh

2

)
sin(iπh) = 1.
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Proof. We observe that

I−1∑
i=1

sin(iπh) = Re

(
I−1∑
i=1

ejiπh

)
= Re

(
ejπh

(ejπh(I−1) − 1)

ejπh − 1

)
,

where j =
√
−1. Using the fact that Ih = 1, we deduce that

I−1∑
i=1

sin(iπh) = Re

(
ejπ − ejπh

ejπh − 1

)
= Re

(
ejπh + 1

1− ejπh

)
,

or equivalently

I−1∑
i=1

sin(iπh) = Re

(
e

jπh
2 + e−

jπh
2

e−
jπh
2 − e

jπh
2

)
= cotan

(
πh

2

)
.

This implies that

I−1∑
i=1

tan

(
πh

2

)
sin(iπh) = 1,

and the proof is complete. �
The statement of our first result on blow-up is the following.

Theorem 3.1. Suppose that f(0) > 0 and A =
∫∞
0

dσ
f(σ) . Let λh =

2−2 cos(πh)
h2 . If γ > λhA, then the solution U

(n)
h of (4)–(6) blows up in a

finite time, and its numerical blow-up time T∆t
h is estimated as follows

T∆t
h ≤ τ

f(B)
+

τ

(γ − λhA)τ ′

∫ ∞

B

dσ

f(σ)
,

where B =
∑I−1

i=1 tan(π2h) sin(iπh)φi and τ ′ = min{h2

3 f(B), τ}.

Proof. Introduce the sequence vn defined as follows

vn =

I−1∑
i=1

tan

(
πh

2

)
sin(iπh)U

(n)
i , n ≥ 0.

A straightforward computation reveals that

δtv
n =

I−1∑
i=1

tan

(
πh

2

)
sin(iπh)δtU

(n)
i , n ≥ 0.
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Making use of (6), we arrive at

δtv
n =

I−1∑
i=1

tan

(
πh

2

)
sin(iπh)δ2U

(n)
i + γ

I−1∑
i=1

tan

(
πh

2

)
sin(iπh)f(U

(n)
k ),

n ≥ 0.

We observe that δ2 sin(iπh) = −λh sin(iπh). Exploiting Lemma 2.4, we
derive the following equality

δtv
n = −λhv

n + γf(U
(n)
k )

I−1∑
i=1

tan(
πh

2
) sin(iπh), n ≥ 0.(13)

With the help of Lemma 3.2, we see that

δtv
n = −λhv

n + γf(U
(n)
k ), n ≥ 0.(14)

Invoking Lemma 2.3, we note that ∥U (n)
h ∥∞ = U

(n)
k ≥ vn, n ≥ 0. We infer

from (14) that δtv
n ≥ −λhU

(n)
k + γf(U

(n)
k ), n ≥ 0, which implies that

δtv
n ≥ γf(U

(n)
k )(1−

λhU
(n)
k

γf(U
(n)
k )

), n ≥ 0.(15)

We observe that ∫ ∞

0

dσ

f(σ)
≥ sup

t≥0

∫ t

0

dσ

f(σ)
≥ sup

t≥0

t

f(t)
,

because f(s) is nondecreasing for s ≥ 0. According to (15), we get

δtv
n ≥ γf(U

(n)
k )(1− λhA

γ
), n ≥ 0,(16)

or equivalently,

vn+1 ≥ vn + (γ − λhA)∆tnf(U
(n)
k ), n ≥ 0.(17)

Recalling that ∥U (n)
h ∥∞ = U

(n)
k , we note that

∆tnf(U
(n)
k ) = min

{
h2

3
f(U

(n)
k ), τ

}
.
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Due to (17), we get vn+1 ≥ vn, n ≥ 0, and by induction, we arrive at

vn ≥ v0, n ≥ 0. Since U
(n)
k ≥ vn ≥ v0, we deduce that ∆tnf(U

(n)
k ) ≥

min{h2

3 f(v0), τ} = τ ′. Exploiting (17), we derive the following estimate

vn+1 ≥ vn + (γ − λhA)τ
′, n ≥ 0,(18)

and by induction, we see that

vn ≥ v0 + (γ − λhA)nτ
′, n ≥ 0.(19)

This implies that ∥U (n)
h ∥∞ goes to infinity as n approaches infinity because

∥U (n)
h ∥∞ ≥ vn. Now, let us estimate the numerical blow-up time of U

(n)
h .

The restriction on the time step ensures that
∑∞

n=0∆tn ≤
∑∞

n=0
τ

f(∥U(n)
h ∥∞)

.

Due to (19) and the fact that ∥U (n)
h ∥∞ ≥ vn, we get

∞∑
n=0

∆tn ≤
∞∑
n=0

τ

f(v0 + (γ − λhA)nτ ′)
.

Invoking Lemma 3.1, we discover that

∞∑
n=0

∆tn ≤ τ

f(v0)
+

τ

(γ − λhA)τ ′

∫ ∞

v0

dσ

f(σ)
.

Since B = v0, then the above estimate may be rewritten in the following
manner

∞∑
n=0

∆tn ≤ τ

f(B)
+

τ

(γ − λhA)τ ′

∫ ∞

B

dσ

f(σ)
.

Use the fact that the quantity on the right hand side of the above inequality
is finite to complete the rest of the proof. �

If f(0) = 0 and B > 0, then Theorem 3.1 remains valid when A is
replaced by B

f(B) . In fact, we observe that δtv
0 > 0, and we claim that

δtv
n > 0 for n > 0. To prove the claim, we argue by contradiction. Assume

that there exists N ≥ 1 such that δtv
n > 0 for 0 ≤ n < N , but δtv

N ≤ 0.
This implies that vN ≥ v0, and vN

f(vN )
≤ v0

f(v0)
because s

f(s) is nonincreasing

for s > 0. Consequently, we get 0 ≥ δtv
N ≥ γf(vN )(1− λhv

0

γf(v0)
) > 0, which

is a contradiction and the claim is proved. Since δtv
n > 0 for n > 0, we
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deduce that U
(n)
k ≥ vn > v0 for n > 0, and

U
(n)
k

f(U
(n)
k )

≤ v(0)

f(v(0))
= B

f(B) . This

implies that

δtv
n ≥ γf(U

(n)
k )

(
1− λhB

γf(B)

)
for n > 0,

or equivalently δtv
n ≥ γf(U

(n)
k )(1 − λhA

γ ) for n > 0. Now, reasoning as in
the proof of Theorem 3.1, we arrive at the desired result.

Remark 3.1. Using (18), we deduce by induction that

vn ≥ vq + (γ − λhA)(n− q)τ ′, n ≥ q.(20)

Thanks to (20), the restriction on the time step leads us to

T∆t
h − tq =

∞∑
n=q

∆tn ≤
∞∑
n=q

τ

f(vq + (γ − λhA)(n− q)τ ′)
.

It follows from Lemma 3.1 that

T∆t
h − tq ≤

τ

f(vq)
+

τ

(γ − λhA)τ ′

∫ ∞

vq

dσ

f(σ)
.

If we pick τ = h2, then we note that τ ′

τ = min{f(B)
3 , 1}, which implies

τ
τ ′ = O(1).

In the sequel, we choose τ = h2.
The following theorem renders an upper bound of the numerical blow-up

time when blow-up occurs.

Theorem 3.2. Assume that the discrete solution U
(n)
h of (4)–(6) blows

up in a finite time. Then its numerical blow-up time T∆t
h is estimated as

follows

T∆t
h ≥ Nh2

3
+

τ

f(∥φh∥∞ + (N + 1)γτ)
+

1

γ

∫ ∞

∥φh∥∞+(N+1)γτ

dσ

f(σ)
,

where N is the first integer such that

τ

f(∥φh∥∞ +Nγτ)
≤ h2

3
.
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Proof. We observe that

δ2U
(n)
k =

U
(n)
k+1 − 2U

(n)
k + U

(n)
k−1

h2
≤ 0, n ≥ 0,

and making use of (4), we deduce that

U
(n+1)
k − U

(n)
k

∆tn
≤ γf(U

(n)
k ), n ≥ 0.

The above inequality may be rewritten as follows

U
(n+1)
k ≤ U

(n)
k + γ∆tnf(U

(n)
k ), n ≥ 0.

Since ∆tn = min{h2

3 , τ

f(∥U(n)
h ∥∞)

}, we deduce that U (n+1)
k ≤ U

(n)
k +γτ, n ≥ 0,

and by induction, we arrive at U
(n)
k ≤ U

(0)
k + nγτ = ∥φh∥∞ + nγτ, n ≥ 0.

Now, let us estimate the numerical blow-up time. We have
∞∑
n=0

∆tn ≥
∞∑
n=0

min{h
2

3
,

τ

f(∥φh∥∞ + nγτ)
},

which implies that
∞∑
n=0

∆tn ≥ Nh2

3
+

∞∑
n=N+1

τ

f(∥φh∥∞ + nγτ)
.

Since
∞∑

n=N+1

τ

f(∥φh∥∞ + nγτ)
=

∞∑
n=0

τ

f(∥φh∥∞ + (N + 1)γτ + nγτ)
,

then employing Lemma 3.1, we arrive at the desired result. �
When ∥φh∥∞ = o(h), then using Theorems 3.1 and 3.2, we easily derive

the following estimates

A

γ
≤ lim

h→0
T∆t
h ≤ A

γ − π2A
for γ ≥ π2A.

Apply Taylor’s expansion to obtain

1

1− π2A
γ

= 1 +
π2A

γ
+ o

(
1

γ

)
as γ → ∞,

which implies that

0 ≤ lim
h→0

T∆t
h − A

γ
≤ π2A2

γ2
+ o

(
1

γ2

)
as γ → ∞.
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4. Convergence of the numerical blow-up time

In this section, under some conditions, we show that the discrete solution
blows up in a finite time and its numerical blow-up time converges to the
real one when the mesh size goes to zero. In order to prove this result, we
firstly show that the discrete solution approaches the continuous one on any
interval [0, 1]× [0, T − τ ] with τ ∈ (0, T ) as the parameter h goes to zero.

The result on the convergence of the discrete solution to the theoretical
one is stated in the following theorem.

Theorem 4.1. Suppose that the problem (1)–(3) has a solution u ∈
C4,2([0, 1]× [0, T − τ ]) with τ ∈ (0, T ). Assume that the initial data at (6)
satisfies ∥φh−uh(0)∥∞ = o(1) as h → 0. Then, the problem (4)–(6) admits a

unique solution U
(n)
h for h sufficiently small, 0 ≤ n ≤ J , and the following

relation holds sup0≤n≤J ∥U
(n)
h − uh(tn)∥∞ = O(∥φh − uh(0)∥∞ + h2) as

h → 0, where J is any quantity satisfying the inequality
∑J−1

j=0 ∆tj ≤ T − τ

and tn =
∑n−1

j=0 ∆tj.

Proof. For each h, the problem (4)–(6) has a solution U
(n)
h . Let N ≤ J

be the greatest value of n such that

∥U (n)
h − uh(tn)∥∞ < 1 for n < N.(21)

Since u ∈ C4,2, then there exists a positive constant R such that

sup
t∈[0,T−τ ]

∥u(·, t)∥∞ ≤ R.

An application of the triangle inequality gives

(22) ∥U (n)
h ∥∞ ≤ ∥uh(tn)∥∞ + ∥U (n)

h − uh(tn)∥∞ ≤ 1 +R for n < N.

Use Taylor’s expansion to obtain

δtu(xi, tn)− δ2u(xi, tn)− γf(u(xk, tn)) = −h2

12
uxxxx(x̃i, tn)

+
∆tn
2

utt(xi, t̃n), 1 ≤ i ≤ I − 1, n < N.

Let e
(n)
h = U

(n)
h −uh(tn) be the error of discretization. From the mean value

theorem, we get

δte
(n)
i − δ2e

(n)
i − γf ′(ξ

(n)
k )e

(n)
k =

h2

12
uxxxx(x̃i, tn)−

∆tn
2

utt(xi, t̃n),

1 ≤ i ≤ I − 1, n < N,
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where ξ
(n)
k is an intermediate value between u(xk, tn) and U

(n)
k . Since

uxxxx(x, t), utt(x, t) are bounded and ∆tn = O(h2), then there exists a
positive constant M such that

(23) δte
(n)
i − δ2e

(n)
i − γf ′(ξ

(n)
k )e

(n)
k ≤ Mh2, 1 ≤ i ≤ I − 1, n < N.

Set L = γf ′(R+1) and introduce the vector V
(n)
h defined as follows V

(n)
i =

e(L+1)tn(∥φh − uh(0)∥∞ + Mh2), 0 ≤ i ≤ I, n < N. A straightforward
computation gives

δtV
(n)
i − δ2V

(n)
i > γf ′(ξ

(n)
k )V

(n)
k +Mh2, 1 ≤ i ≤ I − 1, n < N,(24)

V
(n)
0 > e

(n)
0 , V

(n)
I > e

(n)
I , n < N,(25)

V
(0)
i > e

(0)
i , 0 ≤ i ≤ I.(26)

It follows from Lemma 2.2 that V
(n)
h ≥ e

(n)
h . In the same way, we also prove

that V
(n)
h ≥ −e

(n)
h , which implies that

(27) ∥U (n)
h − uh(tn)∥∞ ≤ e(L+1)tn(∥φh − uh(0)∥∞ +Mh2), n < N.

Let us show that N = J . Suppose that N < J . If we replace n by N in (27)

and use (21), we find that 1 ≤ ∥U (N)
h −uh(tN )∥∞ ≤ e(L+1)T (∥φh−uh(0)∥∞+

Mh2). Since the term on the right hand side of the second inequality goes
to zero as h goes to zero, we deduce that 1 ≤ 0, which is a contradiction
and the proof is complete. �

Now, we are in a position to prove the main result of this section.

Theorem 4.2. Suppose that the problem (1)–(3) has a solution u which
blows up globally in a finite time T such that u ∈ C4,2([0, 1] × [0, T )). As-
sume that the initial data at (6) satisfies ∥φh − uh(0)∥∞ = o(1) as h → 0.
Under the assumption of Theorem 3.1, the problem (4)–(6) admits a unique

solution U
(n)
h which blows up in a finite time T∆t

h , and the following relation
holds limh→0 T

∆t
h = T.

Proof. We know from Remark 3.1 that τ
τ ′ is bounded. Letting 0 < ε <

T/2, there exists a positive constant R such that

τ

f(R)
+

τ

(γ − λhA)τ ′

∫ ∞

R

dσ

f(σ)
<

ε

2
.(28)
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Since u blows up globally at the time T , then we observe that
∑I−1

i=1 hu(xi, t)φi

also blows up at the time T . This implies that there exist T0 ∈ (T − ε
2 , T )

and h0(ε) > 0 such that
∑I−1

i=1 hu(xi, t)φi ≥ 2R for t ∈ [T0, T ), h ≤ h0(ε).

Let q be a positive integer such that tq =
∑q−1

n=0∆tn ∈ [T0, T ) for h ≤ h0(ε).
Invoking Theorem 4.1, we see that the problem (4)–(6) has a unique solu-

tion U
(n)
h which obeys ∥U (n)

h − uh(tn)∥∞ < R for n ≤ q, h ≤ h0(ε). This
implies that

vq ≥
I−1∑
i=1

hu(xi, tq)φi − ∥U (q)
h − uh(tq)∥∞ ≥ 2R−R = R, h ≤ h0(ε).

An application of Theorem 3.1 shows that U
(n)
h blows up at the time T∆t

h .
It follows from Remark 3.1 and (28) that

|T∆t
h − tq| ≤

τ

f(vq)
+

τ

(γ − λhA)τ ′

∫ ∞

vq

dσ

f(σ)
≤ ε

2
,

because vq ≥ R for h ≤ h0(ε). We deduce that for h ≤ h0(ε),

|T − T∆t
h | ≤ |T − tq|+ |tq − T∆t

h | ≤ ε

2
+

ε

2
= ε,

and the proof is complete. �

5. Numerical results

In this section, we give some computational experiments to illustrate our
analysis. Firstly, we take the explicit scheme defined in (4)–(6). Secondly,
we use the implicit scheme below

U
(n+1)
i − U

(n)
i

∆tn
=

U
(n+1)
i+1 − 2U

(n+1)
i + U

(n+1)
i−1

h2
+ γf(U

(n)
k ), 1 ≤ i ≤ I − 1,

U
(n+1)
0 = 0, U

(n+1)
I = 0,

U
(0)
i = φi, 0 ≤ i ≤ I,

where n ≥ 0. As in the case of the explicit scheme, here, we pick ∆tn =
τ

f(∥U(n)
h ∥∞)

. Let us notice that for the above implicit scheme, existence and

nonnegativity of the discrete solution are also guaranteed using standard
methods (see, [2]).
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In the following tables, in rows, we present the numerical blow-up times,
the numbers of iterations, CPU times and the orders of the approximations
corresponding to meshes of 16, 32, 64, 128, 256. We take for the numerical
blow-up time tn =

∑n−1
j=0 ∆tj which is computed at the first time when

|tn+1 − tn| ≤ 10−16. The order (s) of the method is computed from

s =
log((T4h − T2h)/(T2h − Th))

log(2)
.

Numerical experiments for γf(U
(n)
k ) = γeU

(n)
k , φi = 0.

First case: γ = 5.

Table 1: Numerical blow-up times, numbers of iterations, CPU times (seconds),
and orders of the approximations obtained with the explicit Euler method

I tn n CPU time s
16 0.308909 1732 - -
32 0.307533 6640 1 -
64 0.307189 25419 2 2.00
128 0.307103 97127 14 2.00
256 0.307081 370333 109 1.97

Table 2: Numerical blow-up times, numbers of iterations, CPU times (seconds)
and orders of the approximations obtained with the implicit Euler method

I tn n CPU time s
16 0.314007 1716 - -
32 0.308802 6567 - -
64 0.307505 25120 3 2.01
128 0.307182 95925 18 2.01
256 0.307101 365519 139 2.00

Second case: γ = 10.

Table 3: Numerical blow-up times, numbers of iterations, CPU times (seconds),
and orders of the approximations obtained with the explicit Euler method

I tn n CPU time s
16 0.113315 822 - -
32 0.112085 3142 - -
64 0.111777 11996 1 2.00
128 0.1117000 45708 7 2.01
256 0.111681 173744 52 2.03
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Table 4: Numerical blow-up times, numbers of iterations, CPU times (seconds)
and orders of the approximations obtained with the implicit Euler method

I tn n CPU time s
16 0.115227 814 - -
32 0.112555 3110 - -
64 0.111894 11866 1 2.02
128 0.111730 45188 9 2.02
256 0.111688 171664 63 2.03

Third case: γ = 50.

Table 5: Numerical blow-up times, numbers of iterations, CPU times (seconds),
and orders of the approximations obtained with the explicit Euler method

I tn n CPU time s
16 0.021664 163 - -
32 0.020429 620 - -
64 0.020120 2364 1 2.01
128 0.020042 8999 1 1.99
256 0.020023 34178 10 2.04

Table 6: Numerical blow-up times, numbers of iterations, CPU times (seconds)
and orders of the approximations obtained with the implicit Euler method

I tn n CPU time s
16 0.022108 161 - -
32 0.020522 613 - -
64 0.020142 2339 1 2.07
128 0.020048 8898 2 2.02
256 0.020024 33775 13 1.98

Numerical experiments for γf(U
(n)
k ) = γ(U

(n)
k )2 and φi = sin(πih)

First case: γ = 50.

Table 7: Numerical blow-up times, numbers of iterations, CPU times (seconds),
and orders of the approximations obtained with the explicit Euler method

I tn n CPU time s
16 0.024816 179 - -
32 0.022287 638 - -
64 0.021638 2390 - 1.97
128 0.021475 9060 1 2.00
256 0.021434 34380 4 1.99
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Table 8: Numerical blow-up times, numbers of iterations, CPU times (seconds)
and orders of the approximations obtained with the implicit Euler method

I tn n CPU time s
16 0.025603 177 - -
32 0.022463 630 - -
64 0.021681 2361 1 2.01
128 0.021486 8944 1 2.01
256 0.021437 33916 7 2.00

Second case: γ = 100.

Table 9: Numerical blow-up times, numbers of iterations, CPU times (seconds),
and orders of the approximations obtained with the explicit Euler method

I tn n CPU time s
16 0.013572 97 - -
32 0.011178 326 - -
64 0.010552 1199 - 1.94
128 0.010394 4523 1 1.99
256 0.010354 17140 2 1.99

Table 10: Numerical blow-up times, numbers of iterations, CPU times (seconds)
and orders of the approximations obtained with the implicit Euler method

I tn n CPU time s
16 0.014361 96 - -
32 0.011347 322 - -
64 0.010593 1185 - 2.01
128 0.010404 4485 - 2.00
256 0.010356 16924 3 1.98

Remark 5.1. The above tables reveal that, when γ increases, then
the numerical blow-up time of the discrete solution goes to that of the
solution α(t) of the following differential equation α′(t) = γf(α(t)), t > 0,
α(0) = ∥u0∥∞, as γ goes to infinity. A similar result has been established
theoretically by Friedman and Lacey in [13].

In the following, we also give some plots to illustrate our analysis. In
Figures 1 to 4, we can appreciate that the discrete solution blows up globally.
Let us notice that, theoretically, we know that the continuous solution blows
up globally under under the assumptions given in the introduction of the
present paper (see, [9], [25]).
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Figure 1: Evolution of the discrete solution source γeu(0,t), γ = 10, u(x, 0) = 0

Figure 2: Evolution of the discrete solution source γeu(0,t), γ = 50, u(x, 0) = 0

Figure 3: Evolution of the discrete solution source

γ(u(0, t))2, γ = 10, u(x, 0) = sin(pi∗x)
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Figure 4: Evolution of the discrete solution source

γ(u(0, t))2, γ = 50, u(x, 0) = sin(pi∗x)

Figure 5: Graph of T against γ source γeu(0,t), u(x, 0) = 0

Figure 6: Graph of T against γ source γ(u(x, t))2, u(x, 0) = sin(pi∗x)
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CÔTE D’IVOIRE

nabongo diabate@yahoo.fr


