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Abstract. This paper concerns the study of the numerical approximation for the
following initial-boundary value problem:

u(z,t) = uze(x, t) + vf(u(0,t), (x,t) € (=,1) x (0,7),

u(_lvt) = O,U(l,t) = Oa te (O,T),
u(z,0) = uo(z) >0, xz € (=1,1),
where f : [0,00) — [0,00) is a C' convex, nondecreasing function, = % < oo, l = %

and 7 is a positive parameter. Under some assumptions, we prove that the solution of a
discrete form of the above problem blows up in a finite time and estimate its numerical
blow-up time. We also show that the numerical blow-up time in certain cases converges to
the real one when the mesh size tends to zero. Finally, we give some numerical experiments
to illustrate our analysis.
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1. Introduction

We consider the following initial-boundary value problem for a semilinear
heat equation of the form

(1) u(z,1) = uga(x, 1) +7f(u(0,2), (2,t) € (=1,1) x (0,T),
(2) u(=l,t) =0,u(l,t) =0, te(0,7),
(3) u(z,0) = ug(z) >0, =z (=11,
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which models the temperature distribution of a large number of physical
phenomena from physics, chemistry and biology. The particularity of the
problem described in (1)—(3) is that it represents a model in physical phe-
nomena where the reaction is driven by the temperature at a single site.
This kind of phenomena is observed in biological systems and in chemical
reaction diffusion processes in which the reaction takes place only at some
local sites. For instance, the above model is appropriate to describe:

(i) The influence of defect structures on a catalytic surface.

(ii) The temperature in a solid-fuel combustion scenario where the heat
that is input into the system is localized, say as in a laser focused on
one spot in the domain.

(iii) Chemical reaction-diffusion processes in which, due to effect of cata-
lyst, the reaction takes place only at a single site.

(iv) A heat stationary source which can support an explosive reaction. A
stationary source provides a continuous supply of heat to the same
environment.

(v) The ignition of a combustible medium with damping, where either a
heated wire or a pair of small electrodes supplies a large amount of
energy to every confined area.

For more physical motivation see [4], [5] and [20]. Here f : [0,00) —
[0,00) is a C! convex, nondecreasing function, [ % < oo, l = %, v is
a positive parameter (which is called the scaled Damkdhler number in the
combustion theory). The initial data ug is a function which is bounded and
symmetric. In addition, ug(z) is nondecreasing in the interval (—[,0) and
ug(x) +vf(up(0)) > 0 in (—I,1). The interval (0,7") is the maximal time
interval of existence of the solution u. The time 7" may be finite or infinite.
When T is infinite, then we say that the solution w exists globally. When T
is finite, then the solution u develops a singularity in a finite time, namely,
limg 7 [Ju(+, t)|lec = o0, where ||u(:,t)|lcc = maxo<z<i |u(z,t)|. In this last
case, we say that the solution u blows up in a finite time, and the time T is
called the blow-up time of the solution u. The local in time existence and
uniqueness of the solution u have been proved (see, [8], [9], [22]).

In this paper, we are interested in the numerical study of the above
problem. Our aim is to build an explicit scheme in which the discrete
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solution reproduces the properties of the continuous one. We start by the
construction of an adaptive scheme as follows. Let I be a positive integer,
and consider the grid z; = ih, 0 <1 < I, where h = 2{/I. Approximate the
solution u of (1)—(3) by the solution U}(Ln) = (Uén), Ul(n), ce Ul(n))T of the
following discrete equations

(4) o™ = U™ +4fU), 1<i<I-1,
(5) UM =0, U™ =0,
(6) U =, >0, 0<i<lI,

where k is the integer part of the number /2,

U —2u™ U™

AU = 5 L l<i<I-—1,
. U‘(n-i—l) . U(n)

wo=0, ¢r=0, pi=¢r—, 0<i<I, 6T¢; >0, 0<i<k-1,
5t = Pirl — P
SOZ h
In order to permit the discrete solution to reproduce the properties of the

continuous one when the time ¢ approaches the blow-up time 7', we need to
adapt the size of the time step so that we take

~ {h2 T}
37 11U o)
with 7 € (0,1).

Let us notice that the restriction on the time step ensures the nonnega-
tivity of the discrete solution. To facilitate our discussion, we need to define
the notion of numerical blow-up.

Definition 1.1. We say that the solution U,(Ln) of the explicit scheme
blows up in a finite time if lim,,_,~ HU}(LH) oo = 00, and the series Y > Aty
converges. The quantity > ° j At, is called the numerical blow-up time of
the discrete solution.
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The theoretical study of blow-up of solutions for localized semilinear
heat equations has been the subject of investigations of many authors (see
8], [9], [12], [22]-[25], and the references cited therein). Under the as-
sumptions given in the introduction of the present paper, the authors have
proved that the solution u of (1)—(3) blows up globally in a finite time on
the whole interval (—[,1), and the blow-up time is estimated (see, [9], [25]).
In the present paper, we are interested in the numerical study using the
discrete form of (1)—(3) defined in (4)—(6). We give some assumptions un-
der which the solution of the discrete problem blows up in a finite time
and estimate its numerical blow-up time. We also show that the numerical
blow-up time converges to the theoretical one when the mesh size goes to
zero. Previously, some authors have used semidiscrete and discrete schemes
to study the phenomenon of blow-up, but only the case where the reaction
term v f(u(0,t)) is replaced by f(u(x,t)) has been taken into account (see
7], [10], [11], [17)).

Our paper is organized in the following manner. In the next section,
we prove some results about the discrete maximum principle for localized
parabolic problems. In the third section, we prove that the solution of the
discrete problem blows up in a finite time and estimate its numerical blow-
up time. In the fourth section, we give a result about the convergence of
numerical blow-up times in some cases where the blow-up occurs. Finally,
in the last section, we give some numerical results to illustrate our analysis.

2. Properties of the semidiscrete scheme

In this section, we give some lemmas about the discrete maximum princi-
ple for localized parabolic problems and reveal certain properties concerning
the discrete solution.

The following lemma is a discrete form of the maximum principle for local-
ized parabolic problems.

Lemma 2.1. Let a(™ and Vh(n) be two sequences such that o™ is non-
negative and

(7) sV =52y v >0 1<i<T—1,n>0,
(8) i >0, vV >0, n>o0,
(9) v >0 0<i<I.

ThenVi(n)ZO,OSiSLn>O, whenAtngh;.
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Proof. A straightforward computation shows that

(n+1 Aty (n Aty n) Aty (n) n)y,(n
Vi )ZMZWE+<1—2,Q v +‘ETW+r+A%@(W%)
1<:<T-1.

If Vh(n) > 0, then using an argument of recursion, we easily see that Vh(nH) >
0. This ends the proof. O

An immediate consequence of the above result is the following compar-
ison lemma. Its proof is straightforward.

Lemma 2.2. Let Vh(n), W,En) and a\™ be three sequences such that a(™
s monnegative and
5tv;(n) . 52‘/1(11) _ a(n)Vk(”) < 6tWZ(n) - 52W1(n) . a(n)ng”)’
1<i<I—1, n>0, V" <w™ v <w™ v <w® o<i<rI.

(2
Then Vi(n) < Wl-(n), 0<i<I,n>0 when At, < %2
The lemma below reveals some properties of the discrete solution.

Lemma 2.3. The discrete solution U}(ln) of (4)—(6) obeys the following
relations

10) vM=v"™ o<i<rI, stU™M>0, 0<i<k-1.

Proof. Introduce the vector fon) defined as follows V;(n) = Ui(n) -U I(ﬁ)l,
0 <i<I,n>0.A routine calculation reveals that

n Aty - (n At,, n Aty .
v +1>:mm£f+<1—2m)m()+mmif, 1<i<I—1,n>0,

v =ovi"=0n>0 v¥=00<i<I

Using an argument of recursion, we easily note that Vh(n) =0,n > 0, and
the first part of the lemma is proved. In order to prove the second one, we
proceed as follows. Set Wi(n) = Ui(ﬂ — Ui(n), 0 <i<k-—1. We remark that

(11) wim =ul™ >o.
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On the other hand, it is easy to check that U lgi)l =U ,in) if I is odd, and
U ,grfr)l =U ,gri)l if I is even. This implies that

—2W,§7i)1 + W:@z

5 , if I is odd,
52WI§ )1 (n{l (n)
=3W, A +W, 2y
12 , if I is even.
Obviously
(12) swiM =w™  0<i<k-2 n>o0

Making use of the above relations, we arrive at
w{M >0, n>o,

W/i(+1)_h2w(i+< h2>Wi()—|—h2W(+i,1<z<k 2,n >0,

i Aty At i
Wk(;_—{l) =72 W,ﬁ )2 + <1 — 3h2> W,g )1, n > 01if I is even,

At, ,At,
n+1 n n
WY = S+ <1 hQ)W,g M n>0if I is odd,

W >0, 1<i<k-1.

We deduce by induction that Wi(n) >0,1<i<k—1,n > 0. This completes
the proof. O

The above lemma says that, if the initial data of the discrete solution
is symmetric in space, then the discrete solution also obeys this property.
In addition, if the initial data is nondecreasing in space, then the discrete
solution also verifies this assertion. These properties imply that the discrete
solution attains its maximum at the node x;.

The following lemma is a discrete version of Green’s formula.

Lemma 2.4. Let Uy, and Vi, € R such that Uy =0, Uy =0, V =0,
Vi =0. Then, we have

-1 -1
> U =) ViU,
=1 i=1
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Proof. A straightforward computation reveals that

I-1 I-1
U1Vy — UV Ur_ Vi = UV,
2 2 1vo — 01 I-1VI IVi—1
Y UV =) Vid’Ui + 3 3 :
=1 =1

and the result follows using the assumptions of the lemma. O

3. Blow-up solutions

In this section, under some assumptions, we show that the solution of
the discrete problem blows up in a finite time and estimate its numerical
blow-up time.

We need the following lemmas.

Lemma 3.1. Let a and b be two positive numbers. Then, we have

1 1 1 [ do
2 favm) <T@ bl oy

Proof. We observe that

/ fa+bx Z/ a—i—bx Z/ a+bn+1))

because f(s) is nondecreasing for s > 0. We deduce that

/ fa—i—bx Zfa—i—bn—l— ) Zfa—i—bn

On the other hand, by a change of variables, we see that fo Tl +bx) =

3 [> fdg), which implies that

1 1 1 [ do
2 v <T@ 5, T

This ends the proof. O
Lemma 3.2. We have

S ton (21) sinirn) =
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Proof. We observe that

I-1 I-1 jrh(I-1) _
C ooy jimh | _ o (€7 1)
El sin(imh) = Re ( E e ) = Re (6 o1 |

i=1

where j = v/—1. Using the fact that ITh = 1, we deduce that

-1 . . .

o eJm™ e]?'(h 6j7rh 41
E - Sln(lﬂ'h) = Re <6j7rh_1> = Re <1_€j7rh> N
1=

or equivalently

= 5 + e wh
Zsin(iwh) = Re <M> = cotan <2> .
i=1

e 2 —e 2

This implies that

I-1 -h
Ztan <2> sin(irh) =1,
i=1

and the proof is complete. [l
The statement of our first result on blow-up is the following.

Theorem 3.1. Suppose that f(0) > 0 and A = [° 2% Let )\, =

0 f(o)
%;(”h). If v > M A, then the solution U}(Ln) of (4)—(6) blows up in a

finite time, and its numerical blow-up time ThAt is estimated as follows

AT r ~ dy
=5 T A Jy Fo)

where B = Y17} tan(Sh)sin(inh)g; and 7' = min{h;f(B), T}.

Proof. Introduce the sequence v™ defined as follows
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Making use of (6), we arrive at

I-1
n 7Th . . n
o™ = ;tan <2> sm(mh 52 + ’)/Ztan < > Sln(mh)f(Uzg ))a
n > 0.

We observe that 62sin(imh) = —M\,sin(irh). Exploiting Lemma 2.4, we
derive the following equality

(13) 6" = =" +~f(U. Ztan )sin(iwh), n > 0.

With the help of Lemma 3.2, we see that
(14) 50" = =X\ + 7 FUM), n>o0,

Invoking Lemma 2.3, we note that ||U ") HOO = U,gn) > " n > 0. We infer
from (14) that 60" > )\hU + ’yf(Uk ) n > 0, which implies that

n by U(n)
(15) o >y f(U) (1 - ) >0,

v ™)
We observe that

°° da /
> sup > sup
0 0 Jo f(0) ~ >0 f ( )’
because f(s) is nondecreasing for s > 0. According to (15), we get

AnA

(16) (5{0 > f}/f( )(1 - T)v n > 07
or equivalently,
(17) V> " 4 (y = MA) AL FO),  n >0,

Recalling that ||U, }En)”m = U,in), we note that

2

At f(U™) = min {f;f(U,gn)),T} .
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Due to (17), we get v"*1 > v n > 0, and by induction, we arrive at
o™ > oY n > 0. Since U,E,") > " > 19, we deduce that Atnf(U,g")) >
min{% f(%), 7} = 7. Exploiting (17), we derive the following estimate

(18) v > 0" (y = M AT, n >0,
and by induction, we see that
(19) o™ >0 4 (y = AT, n>0.

This implies that ||U, }(Ln) |loo goes to infinity as n approaches infinity because

n)

||U;(Ln)Hoo > v™. Now, let us estimate the numerical blow-up time of U}(L .

The restriction on the time step ensures that > > At,, <> > W
h oo

Due to (19) and the fact that HU}(LR)Hoo > " we get

[e.e] o0 T
At, < .
2 A0 S 2 0 (= A )
Invoking Lemma 3.1, we discover that

T * do

3 At, < - .
2 A S ot A L @)

Since B = v°, then the above estimate may be rewritten in the following
manner

i Ap o< T . T *® do
2 A= FE T A Jy T
Use the fact that the quantity on the right hand side of the above inequality
is finite to complete the rest of the proof. O
If f(0) = 0 and B > 0, then Theorem 3.1 remains valid when A is
replaced by %. In fact, we observe that §;v° > 0, and we claim that
ozv™ > 0 for n > 0. To prove the claim, we argue by contradiction. Assume
that there exists N > 1 such that]\étv" >0 for 0 < n < N, but 60N < 0.
This implies that vV > v, and fz)vN) < foO) because ﬁ is nonincreasing

for s > 0. Consequently, we get 0 > &0 > ~f(v™V)(1 — ng)) > 0, which

is a contradiction and the claim is proved. Since d;v™ > 0 for n > 0, we
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(n)
deduce that U™ > o™ > o0 for n > 0, and fg}“ém) < f(vu(?g» = 75y

This
implies that

B
vf(B)

5tv”2'yf(U,£")) <1— ) for n >0,

or equivalently ;0" > ~vf(U. kn))(l — %) for n > 0. Now, reasoning as in
the proof of Theorem 3.1, we arrive at the desired result.

Remark 3.1. Using (18), we deduce by induction that
(20) VP20l (v = MA) (-7, nzg

Thanks to (20), the restriction on the time step leads us to

o0
ThAt—tq:ZAtng

n=q

nz:; fi+ (v = Md)(n —q)7')’

It follows from Lemma 3.1 that

* do
TA _po< T 4 T .
PO ) (v = A)T S f(o)
If we pick 7 = h?, then we note that 77/ = min{@, 1}, which implies

T = 0(1).

T

In the sequel, we choose 7 = h2.
The following theorem renders an upper bound of the numerical blow-up
time when blow-up occurs.

Theorem 3.2. Assume that the discrete solution U,Sn) of (4)—(6) blows
up in a finite time. Then its numerical blow-up time ThAt 1s estimated as
follows

T > + 4=

Nh2 T 1/°° do
3 fllenlloo + (N +1)y1) v

lonlloot (N1 £(@)

where N is the first integer such that

T h?
<=
f(lenlloo + NyT) — 3
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Proof. We observe that
U ( — 2‘/ ) + b,g

277(n) _ Tk+1
0°U, " = h2 <0, n>0,
and making use of (4), we deduce that
(n+1) (n)
U -U n
WS')’JC(U}& ))7 n > 0.

The above inequality may be rewritten as follows
vt < U™ pyAt, fOM), 0> 0.

Since At, = min{% 3 , }, we deduce that U,gnﬂ) < U]En)+’YT, n >0,

HU )
and by induction, we arrive at U,in) < U,go) +ny7 = ||enlloe + nyT, 1> 0.
Now, let us estimate the numerical blow—up time. We have

Z“ >me{ T e

which implies that

ZA“— Y F(onlloe - m77)”

n=N+1
Since
> Z - v
o f(\|<ph||oo+n'w o f(lenlloo + (N + 1)y7 + n77)
then employing Lemma 3.1, we arrive at the desired result. g

When ||¢p|lcc = 0(h), then using Theorems 3.1 and 3.2, we easily derive
the following estimates

A A
— < hmTAt ——— for ~>nA.
v T h—0 vy —m2A
Apply Taylor’s expansion to obtain
1 2 A 1
1_7&4—1—%77 +o 5 as vy — o0
¥
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4. Convergence of the numerical blow-up time
In this section, under some conditions, we show that the discrete solution

blows up in a finite time and its numerical blow-up time converges to the
real one when the mesh size goes to zero. In order to prove this result, we
firstly show that the discrete solution approaches the continuous one on any
interval [0,1] x [0,7 — 7] with 7 € (0,T) as the parameter h goes to zero.

The result on the convergence of the discrete solution to the theoretical
one is stated in the following theorem.

Theorem 4.1. Suppose that the problem (1)—(3) has a solution u €
C*2([0,1] x [0, T — 7]) with T € (0,T). Assume that the initial data at (6)
satisfies || on—un(0)]|co = 0(1) as h — 0. Then, the problem (4)—(6) admits a
unique solution U}(Ln) for h sufficiently small, 0 < n < J, and the following
relation holds supg<,<; ||U}(ln) — up(t)lloo = O(llon — un(0)]loo + h?) as
h — 0, where J is any quantity satisfying the inequality E;-]:_Dl At; <T -7
and t, = Z}:& At;.

Proof. For each h, the problem (4)—(6) has a solution U}(ln). Let N <J
be the greatest value of n such that

(21) 1T — wp(tn)]lse <1 for n < N.
Since u € C*2, then there exists a positive constant R such that

sup  |ju(-, )]0 < R.
te[0,T—7]

An application of the triangle inequality gives
22) U oo < Nun(t)lloo + U = un(tn)loo <1+ R for n < N.

Use Taylor’s expansion to obtain
h? ~
Sru(Tis tn) — 52u(xi7tn) —vf(u(@g, tn)) = — 5 Uazaa (Tis tn)

12
At ~
+7fmm%m%1§i§I—L n<N

Let egn) =U hn) —up(ty) be the error of discretization. From the mean value
theorem, we get
h? _ At ~
e — 67" — 1 (el = T3t (@i tn) — = un(a T),
1<i<I—1, n<N,
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where §,(€n is an intermediate value between wu(xg,t,) and U, ™) Since
Ugzzz (T, 1), ug(z,t) are bounded and At, = O(h?), then there exists a
positive constant M such that

23) 6™ — 52 — (el < MB2, 1<i<T—1,n<N.

Set L = vf'(R+1) and introduce the vector Vh(n) defined as follows Vi(n) =

Lt (| op, — up(0)|loo + MA2), 0 < i < I, n < N. A straightforward
computation gives

24) 5V =2V s 4 eV 4 M2 1 <i<T—1, n<N,
(25) V(n) > e(()n), V(n) > e(ln), n < N,
26) V2> o<i<r

It follows from Lemma 2.2 that Vh( n) > eEL ") In the same way, we also prove
that Vh(n) > egln), which implies that

27) U = unta) oo < XV (o = un(0) oo + MB?), n < N.

Let us show that N = J. Suppose that N < J. If we replace n by N in (27)
and use (21), we find that 1 < ”U}(LN)_uh(tN)Hoo < AT (Y op = (0) oo+
Mh?). Since the term on the right hand side of the second inequality goes
to zero as h goes to zero, we deduce that 1 < 0, which is a contradiction
and the proof is complete. O
Now, we are in a position to prove the main result of this section.

Theorem 4.2. Suppose that the problem (1)—(3) has a solution u which
blows up globally in a finite time T such that u € C*2([0,1] x [0,T)). As-
sume that the initial data at (6) satisfies ||¢n — up(0)]|co = 0(1) as h — 0.
Under the assumption of Theorem 3.1, the problem (4)—(6) admits a unique
solution U}(Ln) which blows up in a finite time T2, and the following relation
holds limy,_,q ThAt =1T.

Proof. We know from Remark 3.1 that 7 is bounded. Letting 0 < e <
T'/2, there exists a positive constant R such that
T T > do

(28) B A Je T~ 2
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Since u blows up globally at the time T', then we observe that S/ hu(z;, t) ;i
also blows up at the time 7. This implies that there exist Ty € (T — §,T)

and ho(e) > 0 such that S21— hu(z, t)@; > 2R for t € [Ty, T), h < ho(e).
Let ¢ be a positive integer such that ¢, = ZZ;B At,, € [Ty, T) for h < ho(e).
Invoking Theorem 4.1, we see that the problem (4)-(6) has a unique solu-
tion U,(Ln) which obeys HU,(Ln) —up(tn)lloo < R for n < q, h < ho(e). This
implies that

~

-1
o > S bty — (U = unlty)lloo > 2R — R = R, h < hoe).
1

-.
Il

An application of Theorem 3.1 shows that U, }(Ln) blows up at the time ThAt.
It follows from Remark 3.1 and (28) that

T * do €
B f(’Uq) (v = MA)T Jya flo) = 2
because v? > R for h < ho(e). We deduce that for h < hy(e),

/\

T — tg] <

e €
|T—ThAt|S‘T—tq|+|tq—ThAt’§§+§:

and the proof is complete. O

5. Numerical results
In this section, we give some computational experiments to illustrate our
analysis. Firstly, we take the explicit scheme defined in (4)—(6). Secondly,
we use the implicit scheme below

gt _ g Ui(ﬁd) U(n+1) + U(n+1)

?

At,, N h2

FyfU™y, 1<i<I-1,

where n > 0. As in the case of the explicit scheme, here, we pick At,, =

W. Let us notice that for the above implicit scheme, existence and
h oo
nonnegativity of the discrete solution are also guaranteed using standard

methods (see, [2]).
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In the following tables, in rows, we present the numerical blow-up times,
the numbers of iterations, CPU times and the orders of the approximations
corresponding to meshes of 16, 32, 64, 128, 256. We take for the numerical
blow-up time ¢, = Z?;& At; which is computed at the first time when
[tn+1 — tn] < 10716, The order (s) of the method is computed from

_ log((Tun, — Ton)/(Ton — Th)).

’ log(2)

Numerical experiments for vf(U,g")) = ye“k

First case: v =5.

,goi:().

Table 1: Numerical blow-up times, numbers of iterations, CPU times (seconds),
and orders of the approximations obtained with the explicit Euler method

I tn n CPU time | s
16 | 0.308909 | 1732 - -
32 | 0.307533 | 6640 1 -
64 | 0.307189 | 25419 2.00
128 | 0.307103 | 97127 14 2.00
256 | 0.307081 | 370333 | 109 1.97

Table 2: Numerical blow-up times, numbers of iterations, CPU times (seconds)
and orders of the approximations obtained with the implicit Euler method

I tn n CPU time | s
16 | 0.314007 | 1716 - -
32 | 0.308802 | 6567 - -
64 | 0.307505 | 25120 | 3 2.01
128 | 0.307182 | 95925 18 2.01
256 | 0.307101 | 365519 | 139 2.00

Second case: v = 10.

Table 3: Numerical blow-up times, numbers of iterations, CPU times (seconds),
and orders of the approximations obtained with the explicit Euler method

I tn n CPU time | s
16 | 0.113315 | 822 - -
32 0.112085 3142 - -
64 | 0.111777 | 11996 |1 2.00
128 | 0.1117000 | 45708 | 7 2.01
256 | 0.111681 173744 | 52 2.03
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Table 4: Numerical blow-up times, numbers of iterations, CPU times (seconds)
and orders of the approximations obtained with the implicit Euler method

I tn n CPU time | s
16 | 0.115227 | 814 - -
32 | 0.112555 | 3110 - -
64 | 0.111894 | 11866 1 2.02
128 | 0.111730 | 45188 2.02
256 | 0.111688 | 171664 | 63 2.03

Third case: v = 50.

Table 5: Numerical blow-up times, numbers of iterations, CPU times (seconds),
and orders of the approximations obtained with the explicit Euler method

I tn n CPU time | s
16 | 0.021664 | 163 - -
32 | 0.020429 | 620 - -
64 | 0.020120 | 2364 1 2.01
128 | 0.020042 | 8999 1 1.99
256 | 0.020023 | 34178 | 10 2.04

Table 6: Numerical blow-up times, numbers of iterations, CPU times (seconds)
and orders of the approximations obtained with the implicit Euler method

I tn n CPU time | s
16 | 0.022108 | 161 - -
32 | 0.020522 | 613 - -
64 | 0.020142 | 2339 1 2.07
128 | 0.020048 | 8898 2.02
256 | 0.020024 | 33775 | 13 1.98

Numerical experiments for fyf(U]g")) = v(U,i"))2 and p; = sin(mih)

First case: v = 50.

Table 7: Numerical blow-up times, numbers of iterations, CPU times (seconds),
and orders of the approximations obtained with the explicit Euler method

I tn n CPU time | s
16 0.024816 | 179 - -
32 0.022287 | 638 - -
64 0.021638 | 2390 | - 1.97
128 | 0.021475 | 9060 1 2.00
256 | 0.021434 | 34380 1.99
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Table 8: Numerical blow-up times, numbers of iterations, CPU times (seconds)
and orders of the approximations obtained with the implicit Euler method

I tn n CPU time | s
16 | 0.025603 | 177 - -
32 | 0.022463 | 630 - -
64 | 0.021681 | 2361 1 2.01
128 | 0.021486 | 8944 1 2.01
256 | 0.021437 | 33916 | 7 2.00

Second case: v = 100.

Table 9: Numerical blow-up times, numbers of iterations, CPU times (seconds),
and orders of the approximations obtained with the explicit Euler method

I tn n CPU time | s
16 0.013572 | 97 - -
32 0.011178 | 326 - -

64 | 0.010552 | 1199 | - 1.94
128 | 0.010394 | 4523 | 1 1.99
256 | 0.010354 | 17140 | 2 1.99

Table 10: Numerical blow-up times, numbers of iterations, CPU times (seconds)
and orders of the approximations obtained with the implicit Euler method

I tn n CPU time | s
16 0.014361 | 96 - -
32 0.011347 | 322 - -

64 | 0.010593 | 1185 | - 2.01
128 | 0.010404 | 4485 | - 2.00
256 | 0.010356 | 16924 | 3 1.98

Remark 5.1. The above tables reveal that, when ~ increases, then
the numerical blow-up time of the discrete solution goes to that of the
solution «(t) of the following differential equation o/ (t) = vf(«(t)), t > 0,
a(0) = |luo|leo, as 7y goes to infinity. A similar result has been established
theoretically by FRIEDMAN and LACEY in [13].

In the following, we also give some plots to illustrate our analysis. In
Figures 1 to 4, we can appreciate that the discrete solution blows up globally.
Let us notice that, theoretically, we know that the continuous solution blows
up globally under under the assumptions given in the introduction of the
present paper (see, [9], [25]).
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1000

Figure 3: Evolution of the discrete solution source

y(u(0,t))?, v = 10, u(z,0) = sin(pi*z)



404 T.K. BONI, H. NACHID, N. DIABATE 20

upn,)

Bo - m o » o

n

Figure 4: Evolution of the discrete solution source
7(u(0,1))2,v = 50, u(z,0) = sin(pi*x)
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Figure 5: Graph of T against ~ source ye*(%) u(x,0) = 0
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Figure 6: Graph of T against v source v(u(z,t))?, u(z,0) = sin(pi*z)
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