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1. Introduction

Let X be a linear normed space and let A be a given nonvoid set A in
X. Let us consider the farthest point problem

(Fx) max
y∈A

∥x− y∥, x ∈ X.

This problem is similar to the well known best approximation problem

(Ax) min
y∈A

∥x− y∥, x ∈ X,

but the most properties of this two problems are different.
First, we remark that the problem (Fx) can be considered only for convex

sets A because it has solutions if and only if there exist solutions in its
convex hull, conv A (see, for instance, [16]). Even in the case of convex sets
A when problem (Ax) is a convex optimization problem, the problem (Fx)
is not convex being a typical d.c. optimization problem (see [15], [28], [30]).
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According to the classification ofHirriart-Urruty [15], the farthest point
problem (Fx) can be given in one of the following three types: P1 (the
maximization of a convex function on a convex set) P2 (the minimization of
a difference of two convex functions on a convex set) or P3 (the minimization
of a convex function on the complement of a convex set). Indeed, the
problem (Fx) can be equivalently written as:

(F ′
x) min

y∈A
{IA(x)− ∥x− y∥},

or

(F ′′
x ) min

∥x−y∥≥t
{IA(x)− t},

where IA is the indicator function of A ([5], [17]).
Consequently, we obtain some optimality conditions using the normal

cone of A and the ε-subdifferential of the norm.
In the sequel, we recall some concepts associated to the farthest point

problem which are similar to some known concepts of the best approxima-
tion theory.

We denote

(1.1) ∆A(x) = sup
y∈A

∥x− y∥, x ∈ X,

called the farthest distance function of the set A,

(1.2) QA(x) = {x ∈ A; ∥x− x∥ = ∆A(x)},

called the farthest point mapping (or antiprojection by several authors, see
for example, [2], [34]) with respect to A. The elements of QA(x) are called
farthest points of x through elements of the set A. The mappings ∆A(x)
and QA(x) correspond to d(A;x) and PA(x), respectively the distance from
x to the set A and the projection of x in the set A. The set A is called
remotal if QA(x) ̸= ∅ for all x ∈ X, and antiremotal if QA(x) = ∅ for all
x ∈ X. Special properties of remotal and antiremotal sets are established by
Asplund [1], [2], Balaganskii [3], [4], Baronti and Papini [6], Blatter
[7], Cobzaş [9], Edelstein [10], Hiriart-Urruty [16], Klee [21], Ka-
Sing Lau [19], Panda and Kapoor [23], Vlasov [33], Zhivkov [34] (see
also the literature cited therein). Detailed and important bibliographics
comments can be found in [9].
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All the elements of nonlinear analysis used in this paper are in accor-
dance with [5] and [17].

It is obvious that the mapping ∆A is a continuous convex function.
Moreover

(1.3) |∆A(x1)−∆A(x2)| ≤ ∥x1 − x2∥, x1, x2 ∈ X.

Consequently, ∆A is subdifferentiable and ∂∆A(x) ⊂ SX∗(0; 1) for every
x ∈ X [15].

On the other hand we remark that by Toland duality [30], [31] we have
the following equality

∆A(x) = sup{x∗(x)− sA(x
∗); ∥x∗∥ ≤ 1},

where sA is the support functional of A, i.e. sA(x
∗) = sup{x∗(u);u ∈ A}.

Other dual forms for ∆A(x) are established, for example, in [22], [28], [32].
We also recall some simple convexity properties.

(1.4) ∆A(x) = ∆conv A(x),

(1.5) ∆A(λx+ (1− λ)y) = λ∆A(x), for all y ∈ QA(x).

(1.6) y ∈ QA(λx+ (1− λ)y) if y ∈ QA(x) and λ > 1.

(See, for instance, [16].)
In this paper we establish characterizations of remotal and antiremotal

sets by a closedness, respectively openess, condition for an associated set
of the set A. These results hold for an arbitrary nonvoid set of a linear
normed space being at the same type as the earlier characterizations of
proximal and antiproximinal sets obtained even in nonconvex case in [25].
Therefore, the remotability and antiremotability are strong dependent with
two important properties in functional analysis, namely the sum of two
special set is closed or open. While one of sets is closed and convex the
other is a complement of an open convex set. Moreover, we remark that
the remotability (antiremotability) of a set A having the origin in its interior
is equivalent to the proximinality (antiproximinality) of the set cS(0; 1) (the
complement of the open unit ball) with respect to Minkowski functional pA
associated to the set A.

In the last part of this paper, we establish a pointwise result which says
that the farthest point problem (Fx) is equivalent to a best approximation
problem of the type (Ax), where the set A and the norm ∥ · ∥ are replaced
by cS(0;α), respectively by pA for a certain α > 0.
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2. Characterizations of remotal and antiremotal sets

In an earlier paper [27] we established a characterization of optimality of
a family of optimization problems indexed in an abstract topological space
Y , by a closedness property in the associated affine space Y × R (see also
[5]).

In [24], [25] this result was adapted to characterize the gloabal nonopti-
mality of a family of optimization problems by an openess property. More-
over, in some special cases the closedness, respectively the openess property
can be required only for the all sections in Y for a fixed element in R. This
is the case of problems (Fx)x∈X and (Ax)x∈X , when we obtain characteriza-
tions of remotal and antiremotal sets by closedness and openess properties
in X.

Theorem 1. A nonvoid bounded set A in a linear normed space X is
remotal if and only if the following associated set

(2.1) Kd = A+ cS(0; d),

is closed for every d > 0.

Proof. Let x be an adherent element of A + cS(0; d), i.e. there exist
a sequence (xn)n∈N convergent to x and a sequence (un)n∈N ⊂ A such that
∥xn − un∥ ≥ d for all n ∈ N. Thus, for every ε > 0 there exists nε ∈ N such
that ∥x−un∥ > d−ε for all n ≥ nε. Now, if A is remotal, taking an element
x ∈ QA(x) we obtain that ∥x−x∥ ≥ ∥x−un∥, n ∈ N, and so ∥x−x∥ > d−ε,
for every ε > 0. Consequently, ∥x− x∥ ≥ d, i.e. x ∈ A+ cS(0; d).

Conversely, for an arbitrary element x ∈ X we take d = ∆A(x). We can
suppose d > 0 since ∆A(x) = 0 if and only if A = {x} when A is obviously
remotal. For every n ∈ N∗ there exits un ∈ A such that ∥x−un∥ ≥ d−1/n.
But, we have

1

n
(d− 1/n)−1(x− un) + x ∈ un + cS(0; d) ⊂ A+ cS(0; d)

for all n ∈ N∗ such that n > 1/d. Since (un)n∈N is bounded passing to
the limit we get x ∈ A+ cS(0; d). Therefore, if A+ cS(0; d) is closed there
exists x ∈ A such that ∥x − x∥ ≥ d, i.e. x ∈ QA(x). Hence the set A is
remotal. �

Remark 1. It is easy to see that

(2.2) cKd =
∩
a∈A

S(a; d)
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and so, the set Kd is always the complement of a convex bounded set.
Consequently, a nonvoid bounded set A is remotal if and only if the convex
set

∩
a∈A S(a; d) is open for any d > 0.

Corollary 1. Any closed ball in a linear normed space is remotal.

Remark 2. We denote r(A) = inf{∆A(x);x ∈ X}, usually called the
radius of A. If d < r(A), then Kd = X, and so in Theorem 1 it suffices
to consider only the case d ≥ r(A). Obviously, the set Kd is nonvoid
complement of a convex set for any d ≥ 0 and Kd ̸= X if d > r(A).

Remark 3. We say that a set A is d-remotal (d-proximinal) if QA(x) ̸=
∅, PA(x) ̸= ∅ whenever ∆A(x) = d (d(A;x) = d). From the proof of
Theorem 1 it follows that a set A is d-remotal if Kd is closed. Generally,
the converse statement is not true. But, if a set is d-remotal for any d ≥ d0,
then the sets Kd are closed for all d ≥ d0. Therefore, the property of d-
remotability is different of the property of the set Kd to be closed. Similar
statements for d-proximinality hold. A relationship between d-proximinality
and d-remotability we will given in the last section (see Remark 9).

The above characterization of remotal sets is similar to the one of prox-
iminal sets given as a consequences of the same general optimality criterium
for an arbitrary family of optimization problems established in [5], [25], [26].

Theorem 2 ([25]). A nonvoid set A in a linear normed space is prox-
iminal if and only if the set

(2.3) Hd = A+ S(0; d)

is closed for every d ≥ 0.

Remark 4. In the case of linear closed subspaces Theorem 2 was ob-
tained by Godini [14] in the following equivalent form: a closed linear
subspace A is proximinal if and only if the image of the closed unit ball by
the quotient operator with respect to A is closed (see also [17], p.98).

Equivalently, the image of the unit ball is just the unit ball of quotient
space.

In the case of convex bounded sets the associated sets Hd defined by
(2.3) was considered by Edelstein [11] to prove an elegant characterization
of the best approximation elements.
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Theorem 3 ([11], Lemma 1). An element x ∈ X has at least best
approximation element in a closed, bounded and convex set A with d(x;A) >
0, if and only if x ∈ Hd\(intHd), where d = d(x;A).

This result has already been used by Edelstein and Thompson in [12]
to obtain the well known characterization of antiproximinal sets.

Theorem 4 ([12]). A closed bounded convex set A is antiproximinal if
and only if the set Hd is open for any d > 0.

Remark 5. This result is also true for any nonvoid set A ([24], [25]).

Now, we establish a similar characterization of antiremotal set where
the closed ball is replaced by the complement of an open ball. Therefore,
the set Kd has the role of the set Hd.

Theorem 5. A bounded set A is antiremotal if and only if the set Kd

is open for any d > 0.

Proof. Let A be an antiremotal set and let us consider an arbitrary
element x ∈ Kd, i.e. x = u + v where u ∈ A and ∥v∥ ≥ d. Therefore
∆A(x) > d and so there exist u ∈ A and ε0 > 0 such that ∥x− u∥ = d+ ε0.
Thus, if y ∈ S(x; ε0) we have

∥y − u∥ ≥ ∥x− u∥ − ∥y − x∥ > d+ ε0 − ε0 = d,

that is y ∈ Kd. Hence Kd is an open set.

Now, let us suppose by contradiction that the sets Kd are open for
every d > 0 and there exists x ∈ X and x ∈ A such that ∥x− x∥ = ∆A(x).
Obviously, x ∈ Kd for d = ∆A(x) and so, there exists ε0 > 0 such that
S(x; ε0) ⊂ Kd. Therefore, for every y ∈ S(x; ε0) there exists uy ∈ A such
that ∥y − uy∥ ≥ d. Hence ∆A(y) ≥ d = ∆A(x) for all y ∈ S(x; ε0) which
prove that the element x is a local minimum element of the function ∆A.
Since ∆A is convex (an upper hull of a family of convex functions) it follows
that x is also an absolute minimum element (see for example [5], [17])
and so, the functions ∆A is constant on dom QA. On the other hand, if
y ∈ QA(x), then taking xλ = λx + (1 − λ)y, λ > 1, by (1.5), (1.6) we also
have y ∈ QA(xλ) and ∆A(xλ) = λ∆A(x). �

Consequently, there exists elements xλ ∈domQA such that ∆A(xλ) >
∆A(x) which is a contradiction. Hence the set A is necessary antiremotal.
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Remark 6. We remark that all results of this paper are conserved if
we consider asymmetric norms.

The problem of existence of some sets with bounded complement which
have different approximation properties was studied by many authors un-
der various conditions on the norm of the liniar normed space X. Thus
Balaganski [3] proved that there are no antiproximinal sets with smooth
complement in any reflexive Banach spaces. Other similar results can be
found, for example, in [4], [6], [9], [13], [21], [29], [33].

Taking into account that the associated sets Hd and Kd have the proper-
ties of symmetry with respect to the sets A and S(0; 1), respectively cS(0; 1)
we obtain some properties of duality between proximinality (antiproximi-
nality) and remotability (antiremotability).

Theorem 6 ([13]). Let A be a closed bounded convex set such that
0 ∈ intA. Then:

(i) A is proximinal (antiproximinal) if and only S(0; 1) is proximinal
(antiproximinal) with respct to pA;

(ii) A is remotal (antiremotal) if and only if cS(0; d) is proximinal (anti-
proximinal), for any d > 0, with respect to pA,

where pA is the Minkowski functional associated to the set A.

Proof. (i) By hypothesis the Minkowski functional pA is an equivalent
norm in X, generally asymmetric and

SpA(0; d) = dA, SpA(0; 1) = intA.

Therefore, according to Theorem 2, in the linear (asymmetric) normed space
(X, pA) the closed set S(0; 1) is proximinal with respect to pA if and only if
S(0; 1) +SpA(0; d) = d(A+S(0; 1/d)) is closed for all d > 0, i.e., A is prox-
iminal in X. The other assertions can be proved using the corresponding
above theorems.

Corollary 2. If in a linear normed space X there exists a remotal
(antiremotal) set, then X can be endowed with an equivalent norm, gener-
ally asymmetric, such that there exists a bounded, symmetric, convex body
whose complement is proximinal (antiproximinal).
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Proof. By Theorem 6 the set S(0; 1) has the required properties.

Remark 7. The Theorems 3, 5 and 6 are also true in any asymmetric
normed space.

Therefore, the four approximation properties: proximinality, antiprox-
iminality, remotability and antiremotability, are dependent of the topolog-
ical properties of a pair of sets (A,B) such that A + B,A + cB is closed,
respectively open. If A,B are convex sets then A+B is also convex, while
A + cB is not convex being the complement of a convex set. Thus, the
case A + cB is little difficult. An important problem studied by many au-
thors is to find some types of spaces which contain antiproximinal convex
sets whose complements are bounded convex bodies, or equivalently are
antiremotal with respect to an equivalent norm. Moreover, for example,
Balaganskii proved that any linear normed space which does not satisfy the
Radon-Nikodym condition contains bounded, closed symmetric antiremotal
sets [4]. Moreover, he found an antiremotal set in L1[0; 1] whose the closure
of its complement is antiproximinal.

If A,B are bounded closed convex bodies the above four topological
properties of the sets A + B and A + cB can be reformulated in terms
of equivalent norms, generally asymmetric. Thus, a pair two equivalent
norms ∥ · ∥1, ∥ · ∥2 in a linear space X is called proximinal (antiproximinal)
if S∥·∥1(0; 1) + S∥·∥2(0; d) is closed (open) for every d > 0. Therefore, in
a linear space any pair of equivalent complete norms is proximinal only
in the reflexive case (see [18], p.322). Also, some sufficient conditions for
proximinality can be obtained using the closedness criterium established by
Ka-Sing Lau in [20]. The antiproximinal norms was studied by Borwein,
Jimenez-Sevilla and Moreno [8]. They obtained many existence results
in some special spaces.

Similarly, two equivalent norms ∥ · ∥1, ∥ · ∥2 can be called remotal-
proximinal (antiremotal-antiproximinal) if S∥·∥1(0; 1)+ cS∥·∥2(0; d) is closed
(open) for every d > 0.

3. An equivalent best approximation problem associated to a
farthest point problem

The property (ii) in Theorem 6 can be also presented in a pointwise
form which, at the same time, establishes a relationship between two d.c.
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optimization problems. Let us consider the farthest point problem

(Px) max{∥x− y∥1; y ∈ S∥·∥2(0; 1)}, x ∈ X,

and the following associated best approximation problem

(Dx) min{∥x− αy∥2; y ∈ cS∥·∥1(0; 1)∥}, x ∈ X,

where ∥ · ∥1, ∥ · ∥2 are two equivalent norms in X and

(3.1) α = sup{∥x− y∥1; y ∈ S∥·∥2(0; 1)}.

Theorem 7. The problem (Px) has an optimal solution if and only if
the problem (Dx) has an optimal solution.

Proof. Let y be an optimal solution of (Px), i.e. α = ∥x − y∥1 and
∥y∥2 ≤ 1. Obviously, α > 0 and ∥y∥2 = 1. Taking x−y = αz we have ∥z∥1 =
1 and ∥x − αy∥2 ≥ 1 for any y ∈ cS∥·∥1(0; 1). Indeed, in the contrary case
it follows that there exists y1 ∈ X such that ∥y1∥1 ≥ 1 and ∥x−αy1∥2 < 1.
Since ∥x−y∥1 < α for any y ∈ S∥·∥2(0; 1) (the solutions of (Px) are boundary
elements of S∥·∥2(0; 1)) it follows α∥y1∥1 = ∥x − (x − αy1)∥1 < α, that is
∥y1∥ < 1 which is a contradiction.

Conversely, if z is an optimal solution of (Dx) we denote x − αz = y.
But, necessarily it follows ∥z∥1 = 1 and so ∥x−y∥1 = α. On the other hand,
for every ε > 0 there exits yε ∈ S∥·∥2(0; 1) such that ∥x− yε∥1 > α− ε and
so

∥x− α

α− ε
(x− yε)∥2 ≥ ∥x− αz∥2

which implies

∥yε −
ε

α− ε
(x− yε)∥2 ≥ ∥x− αz∥2 = ∥y∥2.

But

∥yε −
ε

α− ε
(x− yε)∥2 ≤ ∥yε∥2 +

ε

α− ε
∥x− yε∥2 ≤ 1 +

ε

α− ε
(∥x∥2 + 1).

Therefore
∥y∥2 ≤ 1 +

ε

α− ε
(1 + ∥x∥2)

for any ε > 0. Consequently, for ε ↘ 0 we obtain ∥y∥2 ≤ 1. Since ∥x−y∥1 =
α it follows that y is an optimal solution of (Px). �
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Remark 8. In fact we have

val(Px) = val(Dx) = α

and booth problems are d.c. optimization problems of type P2, respectively
P3, according to classification of Hirtart-Urruty [15].

Remark 9. According to Remark 3, we obtain that Theorem 7 can be
reformulated as follows: if S∥·∥2(0; 1) is d-remotal with respect to ∥·∥1, then
cS∥·∥1(0; d) is d-proximinal for ∥ · ∥2 (see also (2.1) in this special case).
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