NEW SHARP BOUNDS FOR GAMMA AND DIGAMMA FUNCTIONS

BY

CRISTINEL MORTICI

Abstract. Motivated by Sandor and Debnath, Batir, we prove that a function involving gamma function is completely monotonic. As applications, we establish new upper and lower bounds for the gamma and digamma functions, with sharp constants.

Mathematics Subject Classification 2000: 30E15, 26D07, 41A60.

Key words: factorial function, gamma function, digamma and polygamma functions, completely monotonic function, inequalities, Euler constant.

1. Introduction

We discuss here the approximations of the factorial function of the form

(1.1)
$$\frac{n^{n+1}e^{-n}\sqrt{2\pi}}{\sqrt{n-\alpha}} \le n! < \frac{n^{n+1}e^{-n}\sqrt{2\pi}}{\sqrt{n-\beta}},$$

where α, β are real parameters. The bounds (1.1) were stated in Sandor and Debnath [9] with $\alpha = 0$ and $\beta = 1$. Their result was rediscovered by Guo [5]. Very recently, Batir [3] determined the largest number $\alpha = 1 - 2\pi e^{-2}$ and the smallest number $\beta = 1/6$ such that the inequalities (1.1) hold for all $n = 1, 2, 3, \ldots$

Numerical computations made in [3] show that the upper approximation

(1.2)
$$n! \approx \frac{n^{n+1}e^{-n}\sqrt{2\pi}}{\sqrt{n-1/6}}$$

is better than the other lower approximation from (1.1) (with $\alpha = 1 - 2\pi e^{-2}$) and also it is more accurate than other known formulas as Stirling's formula,

or Burnside's formula. These facts entitled us to consider the following function associated with the approximation (1.2):

$$f(x) = \ln \Gamma(x+1) - (x+1) \ln x + x - \ln \sqrt{2\pi} + \frac{1}{2} \ln \left(x - \frac{1}{6}\right).$$

We prove that -f is strictly completely monotonic and as a direct consequence, we establish new double inequalities for $x \ge 1$:

$$\omega \cdot \frac{x^{x+1}e^{-x}\sqrt{2\pi}}{\sqrt{x-1/6}} \le \Gamma(x+1) < \frac{x^{x+1}e^{-x}\sqrt{2\pi}}{\sqrt{x-1/6}},$$

where $\omega=e\sqrt{\frac{5}{12\pi}}=0.989\,95\ldots$ is best possible. Moreover, the following double inequality for $x\geq 1$ is established $\frac{1}{x}-\frac{1}{2\left(x-\frac{1}{6}\right)}<\psi\left(x\right)-\left(\ln x-\frac{1}{x}\right)<\frac{1}{x}-\frac{1}{2\left(x-\frac{1}{6}\right)}+\zeta,$ where $\zeta=-\gamma+\frac{3}{5}=0.022785\ldots\left(\gamma=0.577215\ldots$ is the Euler constant).

2. The results

The gamma Γ and digamma ψ functions are defined by

$$\Gamma\left(x\right) = \int_{0}^{\infty} t^{x-1} e^{-t} dt \quad , \quad \psi\left(x\right) = \frac{d}{dx} \left(\ln\Gamma\left(x\right)\right) = \frac{\Gamma'\left(x\right)}{\Gamma\left(x\right)}$$

for all complex numbers x with Re x > 0, but here we restrict them to positive real numbers x. We also have $\psi\left(x+1\right) = \psi\left(x\right) + \frac{1}{x}$, for all x > 0. The gamma function is an extension of the factorial function, since $\Gamma\left(n+1\right) = n!$, for $n = 0, 1, 2, 3 \dots$ The derivatives ψ' , ψ'' , ..., known as polygamma functions, have the following integral representations:

(2.1)
$$\psi^{(n)}(x) = (-1)^{n-1} \int_0^\infty \frac{t^n e^{-xt}}{1 - e^{-t}} dt$$

for $n = 1, 2, 3, \ldots$. For proofs and other details, see for example, [2]. We also use the following integral representation

(2.2)
$$\frac{1}{x^n} = \frac{1}{(n-1)!} \int_0^\infty t^{n-1} e^{-xt} dt , \quad n \ge 1.$$

Recall that a function f is completely monotonic in an interval I if f has derivatives of all orders in I such that $(-1)^n f^{(n)}(x) \ge 0$, for all $x \in I$

3

and $n=0,1,2,3\ldots$ If this inequality is strict for all $x\in I$ and all nonnegative integers n, then f is said to be strictly completely monotonic. Completely monotonic functions involving $\ln\Gamma(x)$ are important because they produce bounds for the polygamma functions. A consequence of the famous Hausdorff-Bernstein-Widder theorem states that f is completely monotonic on $[0,\infty)$ if and only if $f(x)=\int_0^\infty e^{-xt}\varphi(t)\,dt$, where φ is a nonnegative function on $[0,\infty)$ such that the integral converges for all x>0, see [10, p. 161].

Lemma 2.1. For the sequence $x_n = \frac{1}{2}(\frac{7^{n-1}-1}{6^{n-1}}) + \frac{1}{n} - 1$ we have $x_n > 0$, for all n > 4.

Proof. First note that $x_4 = \frac{1}{24}$ and $x_5 = \frac{17}{135}$, so we are concentrated to show that $x_n > 0$, for all $n \ge 6$.

The function $g(x) = (7^x - 1)/6^x$ is strictly increasing, since $g'(x) = \frac{1}{6^x} \left(\ln 6 + 7^x \ln \frac{7}{6} \right) > 0$. Then for all $n \ge 6$, we have $x_n > \frac{1}{2} \left(\frac{7^{n-1} - 1}{6^{n-1}} \right) - 1 \ge \frac{1}{2} \left(\frac{7^5 - 1}{6^5} \right) - 1 > 0$ and the conclusion follows.

Now we are in position to prove the following

Theorem 2.1. Let $f:(1/6,\infty)\to\mathbb{R}$, given by $f(x)=\ln\Gamma(x+1)-(x+1)\ln x+x-\ln\sqrt{2\pi}+\frac{1}{2}\ln\left(x-\frac{1}{6}\right)$. Then -f is strictly completely monotonic.

Proof. We have $f'(x) = \psi(x) - \ln x + \frac{1}{2(x-\frac{1}{6})}$ and $f''(x) = \psi'(x) - \frac{1}{x} - \frac{1}{2(x-\frac{1}{6})^2}$. Using the representations (2.1)-(2.2), we obtain $f''(x) = \int_0^\infty \frac{e^{-xt}}{e^t-1} \varphi(t) dt$, where $\varphi(t) = te^t - (e^t-1) - \frac{1}{2}t(e^{\frac{7}{6}t} - e^{\frac{1}{6}t})$, or $\varphi(t) = -\sum_{n=4}^\infty \frac{x_n}{(n-1)!} t^n$, where $(x_n)_{n\geq 4}$ is defined in Lemma 2.1. According to Lemma 2.1, we have $\varphi < 0$ and then, -f'' is strictly completely monotonic.

Now, f' is strictly decreasing, since f'' < 0. But we have $\lim_{x \to \infty} f'(x) = 0$, so f'(x) > 0 and consequently, f is strictly increasing. Using the fact that $\lim_{x \to \infty} f(x) = 0$, we deduce that f < 0. Finally, -f is strictly completely monotonic.

As a direct consequence of the fact that f is strictly increasing, we have $f(1) \leq f(x) < \lim_{x \to \infty} f(x) = 0$, for all $x \geq 1$. As $f(1) = 1 + \ln \sqrt{\frac{5}{12\pi}}$, we derive

$$\omega \cdot \frac{x^{x+1}e^{-x}\sqrt{2\pi}}{\sqrt{x-1/6}} \le \Gamma(x+1) < \frac{x^{x+1}e^{-x}\sqrt{2\pi}}{\sqrt{x-1/6}},$$

where $\omega = e\sqrt{\frac{5}{12\pi}} = 0.98995...$ is best possible.

Using the fact that f' is strictly decreasing, we have $\lim_{x\to\infty} f'(x) = 0 < f'(x) \le f'(1)$, for all $x \ge 1$. As we have $f'(1) = -\gamma + \frac{3}{5} = 0.022785...$, we obtain $-\frac{1}{2(x-\frac{1}{6})} < \psi(x) - \ln x < -\frac{1}{2(x-\frac{1}{6})} + \zeta$, with best possible constant $\zeta = -\gamma + \frac{3}{5} = 0.022785...$, which improve other results of the form $\ln x - \frac{1}{x} < \psi(x) < \ln x - \frac{1}{2x}$, x > 1, see [1, 4, 6, 7, 8].

REFERENCES

- 1. Anderson, G.D.; Qiu, S.-L. A monotoneity property of the gamma function, Proc. Amer. Math. Soc., 125 (1997), 3355–3362.
- 2. Andrews, G.E.; Askey, R.; Roy, R. *Special Functions*, Encyclopedia of Mathematics and its Applications, 71, Cambridge University Press, Cambridge, 1999.
- 3. Batir, N. Sharp inequalities for factorial n, Proyectiones, 27 (2008), 97-102.
- Guo, B.-N.; QI, F. An algebraic inequality, II, RGMIA Res. Rep. Coll., 4 (2001), 55–61.
- 5. Guo, S. Monotonicity and concavity properties of some functions involving the gamma function with applications, JIPAM. J. Inequal. Pure Appl. Math., 7 (2006), Article 45, 7 pp.
- 6. Martins, J.S. Arithmetic and geometric means, an applications to Lorentz sequence spaces, Math. Nachr., 139 (1988), 281–288.
- 7. MINC, H.; SATHRE, L. Some inequalities involving $(r!)^{1/r}$, Proc. Edinburgh Math. Soc., 14 (1964/1965), 41–46.
- 8. QI, F. Three classes of logarithmically completely monotonic functions involving gamma and psi functions, Integral Transforms Spec. Funct., 18 (2007), 503–509.
- 9. Sandor, J.; Debnath, L. On certain inequalities involving the constant e and their applications, J. Math. Anal. Appl., 249 (2000), 569–582.
- 10. WIDDER, D.V. *The Laplace Transform*, Princeton Mathematical Series, Princeton University Press, Princeton, N.J., 1941.

Received: 19.V.2009

Valahia University of Târgovişte,
Department of Mathematics,
Bd. Unirii 18, 130082 Târgovişte,
ROMANIA
cmortici@valahia.ro