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1. Introduction

This paper deals with the existence of solutions of boundary value problems
(BVP for short), for fractional order differential equations with nonlinear
integral conditions of the form:

(1) cDαy(t) = f(t, y), for each t ∈ J = [0, T ], 1 < α ≤ 2;

(2) y(0) =
∫ T
0 g(s, y)ds;

(3) y(T ) =
∫ T
0 h(s, y)ds,

where cDα is the Caputo fractional derivative, and f, g, h : J × R → R are
given continuous functions.

Differential equations of fractional order have recently proved to be valu-
able tools in the modeling of many phenomena in various fields of science
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and engineering. Numerous applications in viscoelasticity, electrochemistry,
electromagnetic etc., can be found in the papers [8], [9], [10].

Using the technique of Picard operators, Benchohra and Hamani [3],
established the following existence theorem for the BVP (1)-(3).

Theorem 1.1 ([3]). Assume:
(H1) There exists a constant k > 0 such that

|f(t, u)− f(t, u)| ≤ k · |u− u| , ∀ t ∈ [0, T ], u, u ∈ R.

(H2) There exists a constant k∗ > 0 such that

|g(t, u)− g(t, u)| ≤ k∗ · |u− u| , ∀ t ∈ [0, T ], u, u ∈ R.

(H3) There exists a constant k∗∗ > 0 such that

|h(t, u)− h(t, u)| ≤ k∗∗ · |u− u| , ∀ t ∈ [0, T ], u, u ∈ R.

(H4) If
2kT

Γ(α+ 1)
+ T (k∗ + k∗∗) < 1

then the BVP (1)-(3) has at least one solution on [0, T ].

The proof of this result in [3] is essentially based on Banach’s contraction
principle. Starting from Theorem 1.1, the main aim of this paper is to obtain
a more general result, by using the technique of nonexpansive mappings,
see [1], instead of the Banach fixed point theorem.

The same technique has been applied in [1] and also used in the paper
[10]. Boundary value problems with integral boundary conditions constitute
a very interesting and important class of problems, see [5], [6].

They include two, three, multipoint and nonlocal boundary value pro-
blems as special cases. Integral boundary conditions appear in population
dynamics and cellular systems [9] and [10].

2. Preliminaries

In this section we introduce notations, definitions and preliminary facts
which will be used throughout this paper. By C(J,R) we denote the
Banach space of all continuous functions from J to R with the norm:

∥y∥∞ = sup {|y(t)| : t ∈ J} .
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Definition 2.1 ([3]). For a function h given on the interval [a, b], the
fractional order integral of h ∈ L1 ([a, b],R+) of order α ∈ R+ is defined by:

Iαa h(t) =

∫ t

a

(t− s)α−1

Γ(α)
· h(s)ds,

where Γ is the gamma function, h ∈ L1 ([a, b],R+) and L1 ([a, b],R+) is
space of integrable functions h : [a, b] → R+. When a = 0, we write

Iαh(t) = [h ∗ φα] (t) where φα(t) =
tα−1

Γ(α) for t > 0 and φα(t) = 0 for t ≤ 0.

Definition 2.2 ([3]). For a function h given on the interval [a, b], the
α−th Riemann-Liouville fractional-order derivative of h is defined by(

Dα
a+h

)
(t) =

1

Γ(n− α)

(
d

dt

)n ∫ t

a
(t− s)n−α−1h(s)ds.

Here n = [α] + 1, [α] denote the integer part of α.

Definition 2.3 ([3]). For a function h given on the interval [a, b], the
Caputo fractional-order derivative of h is defined by:(

cDα
a+h

)
(t) =

1

Γ(n− α)

∫ t

a
(t− s)n−α−1 · h(n)(s)ds.

Here n = [α] + 1.

Remark 2.1. For α = 0 we have n = 1 and then(
cD0

a+h
)
(t) =

1

Γ(1)

(
d

dt

)∫ t

a
h

′
(s)ds.

Definition 2.4 ([2]). Let K be a nonempty subset of a real normed
linear space E and T : K → K be a map. A point x ∈ K is called a fixed
point of T if Tx = x. In this setting, T is nonexpansive if

∥Tx− Ty∥ ≤ ∥x− y∥ , for each x, y ∈ K.

Nonexpansive mappings, although are generalizations of contractions do not
inherit more from contraction mappings.

We can now formulate one of the most important fixed point theorems
for nonexpansive mappings, due to Browder, Ghode and Kirk, see for ex-
ample [1], [12] and Schauder’s fixed point theorem [4].
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Theorem 2.1 (Browder-Ghode-Kirk, [1]). Let K be a nonempty closed
convex and bounded subset of a uniformly Banach space E. Then any non-
expansive mapping T : K → K has at least a fixed point.

Theorem 2.2 (Schauder, [4]). Let K be a nonempty compact and convex
subset of normed space E. Then any continuous mapping T : K → K has
at least a fixed point.

Remark 2.2. As showed by Theorem 2.1, no information on the ap-
proximation of the fixed point of T is given. The most usual methods for
approximation the fixed point will be defined in the following in view of
their use.

LetK be a convex subset of a normed linear space E and let T : K → K
be a self mapping. For x0 ∈ K and λ ∈ [0, 1] the sequence {xn} defined by

xn+1 = (1− λ)xn + λTxn, n = 0, 1, 2, ...

is usually called Krasnoselskij iteration.

For x0 ∈ K the sequence {xn} defined by:

xn+1 = (1− λn)xn + λnTxn, n = 0, 1, 2, ... where {λn} ⊂ [0, 1]

is called Mann iteration.

It was shown by Krasnoselskij in [7], for λ = 1/2 and by Schaefer
[11], for an arbitrary λ ∈ (0, 1), that if E is a uniformly convex Banach
space and K is a nonempty, convex and compact subset of E, then the
Krasnoselskij iteration converges to a fixed point of T.

Theorem 2.3 ([1]). Let K be a subset of a Banach space E and let
T : K → K be a nonexpansive mapping. For arbitrary x0 ∈ K, consider the
Mann iteration process {xn} under the following assumptions:

(a) xn ∈ K for all positive integers;

(b) 0 ≤ λn ≤ b < 1 for all positive integers;

(c)
∑∞

n=0 λn = ∞.

If {xn} is bounded, then x− Txn → 0, as n → ∞.
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Corollary 2.1 ([1]). Let K be a convex and compact subset of Banach
space E and let T : K → K be a nonexpansive mapping. If the Mann ite-
ration process {xn}satisfies assumptions (a)-(c) in Theorem 2.2, then {xn}
converge strongly to a fixed point of T.

Corollary 2.2 ([1]). Let E be a real normed space, K a closed bounded
convex subset of E and let T : K → K be a nonexpansive mapping. If I−T
maps closed bounded subset of E into closed subset of E and {xn}is the
Mann iteration,with {λn} satisfying assumptions (a)-(c) in Theorem 2.2,
then {xn} converges strongly to a fixed point of T in K.

3. Existence of solutions

By a solution of the BVP (1)-(3) we mean a function y ∈ C2(J,R) wich
satisfies equations (1)-(3).

For the existence of solutions for the problem (1)-(3), we need the fol-
lowing auxiliary lemmas.

Lemma 3.1 ([3]). Let α > 0, then

IαcDαh(t) = c0 + c1t+ . . .+ cn−1t
n−1

for some ci ∈ R, i = 0, 1, 2, . . . , n− 1, n = [α] + 1.

As a consequence of Lemma 3.1., Benchohra and Hamani [3] have
obtained the following result.

Lemma 3.2 ([1]). Let 1 < α ≤ 2 and let σ, ρ1, ρ2 : J → R be continuous
functions. A function y is a solution of the fractional integral equations

y(t) =
1

Γ(α)
·
∫ t

0
(t− s)α−1σ(s)ds− t

T · Γ(α)

∫ T

0
(T − s)α−1σ(s)ds

−
(

t

T
− 1

)∫ T

0
ρ1(s)ds+

t

T

∫ T

0
ρ2(s)ds(4)

if and only if y is a solution of the following fractional BVP.

cDαy(t) = σ(t) , t ∈ J(5)

y(0) =

∫ T

0
ρ1(s)ds(6)

y(T ) =

∫ T

0
ρ2(s)ds(7)
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The following result, established in [3], is based on the Banach contrac-
tion mapping principle.

Theorem 3.1 ([3]). Assume that
(H1) There exists a constant k > 0 such that

|f(t, u)− f(t, u)| ≤ k · |u− u| , ∀ t ∈ [0, T ], u, u ∈ R.

(H2) There exists a constant k∗ > 0 such that

|g(t, u)− g(t, u)| ≤ k∗ · |u− u| , ∀ t ∈ [0, T ], u, u ∈ R.

(H3) There exists a constant k∗∗ > 0 such that

|h(t, u)− h(t, u)| ≤ k∗∗ · |u− u| , ∀ t ∈ [0, T ], u, u ∈ R.

(H4) If
2kT

Γ(α+ 1)
+ T (k∗ + k∗∗) < 1

then the BVP (1)-(3) has at least one solution on C([0, T ]).

Starting from Theorem 3.1, the main aim of this paper is to obtain a
more general result, by using the technique of nonexpansive mappings, see
[1], instead of the Banach fixed point theorem.

The same technique has been used previous in [1], [9].
For a constant L > 0, denote

(*) CL = {y ∈ C(J, J) : |y(t1)− y(t2)| ≤ L · |t1 − t2| , ∀t1, t2 ∈ J}.

As a consequence of Arzela-Ascoli theorem, the set CL is a nonempty
convex and compact subset of the Banach space (C[a, b], ∥·∥), where ∥·∥ is
the usual sup norm.

The main result of this paper is given by the next theorem. This theorem
extends Theorem 3.1, by weakening (H4) to condition (H8).

Theorem 3.2. Assume that for BVP (1)-(3), the hypotheses (H1)-(H3)
are satisfied and:

(H ′
4) f, g, h ∈ C(J × R);

(H5) If L is the Lipschitz constant involved in (∗), let

M = max{|f(t, u)| : (t, u) ∈ J × R} ≤ L,

N = max{|g(t, u)| : (t, u) ∈ J × R} ≤ L,

Q = max{|h(t, u)| : (t, u) ∈ J × R} ≤ L
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(H6)
M ·Tα−1

Γ(α+1) +N +Q ≤ L;

(H7)
2·Tα−1

Γ(α+1) + 1 ≤ 1
L ;

(H8)
2·k·Tα

Γ(α+1) + T (k∗ + k∗∗) ≤ 1.

Then there exists at least one solution y∗ ∈ CL of the BVP (1)-(3).

Proof. Consider the integral operator F : CL → C(J,R)

(Fy)(t) =
1

Γ(α)

∫ t

0
(t− s)α−1 · f(s, y(s))ds

− t

T · Γ(α)

∫ T

0
(T − s)α−1f(s, y(s))ds

−
(

t

T
− 1

)∫ T

0
g(s, y(s))ds+

t

T

∫ T

0
h(s, y(s))ds

it is clear that y ∈ CL is a solution of problem (1)-(3) if and only if y is a
fixed point of F , that is y = Fy.

We first prove that CL is an invariant set with respect to F , i.e., we
have F (CL) ⊂ CL.

0 ≤ |(Fy)(t)| ≤ 1

Γ(α)

∫ t

0
|t− s|α−1 · |f(s, y(s))| ds

+
t

T · Γ(α)

∫ T

0
|T − s|α−1 |f(s, y(s))| ds

+

(
t

T
− 1

)∫ T

0
|g(s, y(s))| ds+ t

T

∫ T

0
|h(s, y(s))| ds

≤ −1

Γ(α)
M

(t− s)α

α

∣∣∣∣t
0

+
tM

TΓ(α)
· (−1) · (T − s)α

α

∣∣∣∣T
0

+

(
t

T
− 1

)
NT +

t

T
QT =

Mtα

Γ(α− 1)
+

tMTα

TΓ(α+ 1)

+ (t− T ) ·N + t ·Q =
M

Γ(α+ 1)
(tα + t · Tα−1) + t(N +Q)− TN

≤ L

Γ(α+ 1)
(tα + t · Tα−1) + T · L ≤ T · L

(
2Tα−1

Γ(α+ 1)
+ 1

)
≤ T.

So, Fy ∈ [0, T ] , ∀ y ∈ CL. Now, for t1, t2 ∈ [0, T ] we have

|(Fy)(t1)− (Fy)(t2)| ≤
1

Γ(α)

∫ t2

t1

|f(s, y(s))| · [|t1 − s|α−1 + |t2 − s|α−1]ds
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+
|t1 − t2|
T Γ(α)

∫ T

0
(T − s)α−1 |f(s, y(s))| ds

+
|t1 − t2|

T

∫ T

0
|g(s, y(s))| ds+ |t1 − t2|

T

∫ T

0
|h(s, y(s))| ds

≤ |t1 − t2| ·M
Γ(α+ 1)

· Tα−1 + |t1 − t2| · (N +Q)

=

(
M · Tα−1

Γ(α+ 1)
+N +Q

)
· |t1 − t2| ≤ L · |t1 − t2| .

So, Fy ∈ CL, ∀ y ∈ CL.

We consider x, y ∈ CL, t ∈ [0, T ]

|(Fx)(t)− (Fy)(t)| ≤ 1

Γ(α)

∫ t

0
(t− s)α−1 · |f(s, x(s))− f(s, y(s))| ds

+
1

Γ(α)

∫ T

0
(T − s)α−1 · |f(s, x(s))− f(s, y(s))| ds

+

∫ T

0
|g(s, x(s))− g(s, y(s))| ds

+

∫ T

0
|h(s, x(s))− h(s, y(s))| ds ≤ tαk

Γ(α+ 1)
|x(s)− y(s)|

+
Tαk

Γ(α+ 1)
|x(s)− y(s)|+ T (k∗ + k∗∗) · |x(s)− y(s)|

≤
[

2kTα

Γ(α+ 1)
+ T (k∗ + k∗∗)

]
· |x(s)− y(s)| .

Now, by letting suppremum in the last inequality, we get

∥Fx− Fy∥∞ ≤
[

2kTα

Γ(α+ 1)
+ T (k∗ + k∗∗)

]
· ∥x− y∥∞

which, in view of conditions (H8), proves that F is a nonexpansive operator,
hence continuous.

Now apply the Schauder’s fixed point theorem, we obtain the conclusion.�
Under the assumption of Theorem 3.5, see [3], it is known that the

solution y∗ of BVP (1)-(3) can be approximated by means of the Picard
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iterations {yn} defined by y1 ∈ CL and

yn+1(t) =
1

Γ(α)

∫ t

0
(t− s)α−1 · f(s, yn(s))ds

− t

T · Γ(α)

∫ T

0
(T − s)α−1 · f(s, yn(s))ds

−
(

t

T
− 1

)∫ T

0
g(s, yn(s))ds+

t

T

∫ T

0
h(s, yn(s))ds.

If the condition (H4) of Theorem 3.1 is replaced by (H8) of Theorem 3.2, we
still could approximate the (non unique) solution of BVP (1)-(3) by means
of Krasnoselski-Mann iteration procedure.

Theorem 3.3. Assume all conditions of Theorem 3.2 are satisfied.
Then, the solution y∗ ∈ CL of BVP (1)-(3) can be approximated by means
of the Krasnoselskij iteration

yn+1(t) = (1− λ)yn(t) + λ

[(
t

T
− 1

)∫ T

0
g(s, yn(s))ds

+
t

T

∫ T

0
h(s, yn(s))ds

]
+ λ

[
1

Γ(α)

∫ t

0
(t− s)α−1 · f(s, yn(s))ds

− t

T · Γ(α)

∫ T

0
(T − s)α−1f(s, yn(s))ds

]
where λ ∈ (0, 1) and y1 ∈ CL is arbitrary.

Proof. By applying Corollary 2.1 or Corollary 2.2 we get the conclusion
of Theorem 3.3. �

4. An example

The example in this section illustrates the effectiveness of our new results
in this paper, i.e., Theorem 3.2 is more general than Theorem 3.1.

Let us consider the following fractional boundary value problem:

cD∞y(t) =
e−t · |y(t)|

(17 + et)(1 + |y(t)|)
, t ∈ [0, 1], 1 < α ≤ 2(8)

y(0) =

∫ 1

0

4s2 · e−s

8 + es
· y(s)ds(9)

y(1) =

∫ 1

0

1

1 + es
· y(s)ds.(10)



146 MONICA LAURAN and VASILE BERINDE 10

For x, y ∈ [0,∞) and t ∈ [0, 1] we have:

|f(t, x)− f(t, y)| = e−t

17 + et
· |x− y|
(1 + x)(1 + y)

≤ e−t

17 + et
·|x− y| ≤ 1

18
·|x− y| .

Hence condition (H1) holds with k = 1
6

|g(t, x)− g(t, y)| = 4t2e−t

8 + et
· |x− y| ≤ 4

9
· |x− y|

|h(t, x)− h(t, y)| = 1

1 + et
· |x− y| ≤ 1

2
· |x− y| .

The conditions (H2) and (H3) hold with k∗ = 4
9 and k∗∗ = 1

2 . We shall check
that condition (H8) is satisfied with T = 1, k∗ = 4

9 and k∗∗ = 1
2 .

Indeed:

2k · Tα

Γ(α+ 1)
+ T (k∗ + k∗∗) = 2 · 1

18
· 1

Γ(α+ 1)
+

17

18
= 1 ⇒ Γ(α+ 1) = 2

and from (H7) one obtains Γ(α+ 1) ≥ 1, which is satisfied for α ∈ (1, 2].
The assumptions of Theorem 3.5 in [3] arren’t satisfied, but the Theorem

3.2 can be applied and the problem (8)-(10) has at least one solution in CL

for L = 1
3 . Starting from y0(t) = et and λ = 1

2 we obtain the first iteration

y1(t) =
1

2
y0(t) +

1

2

[(
t

T
− 1

)∫ t

0
g(s, y0(s))ds+

t

T

∫ T

0
h(s, y0(s))ds

+
1

Γ(α)

∫ t

0
(t− s)α−1 − f(s, y0(s))ds−

t

TΓ(α)

∫ T

0
(T − s)α−1f(s, y0(s))ds

]
y1(t) =

1

2
et +

1

2

[(
t

T
− 1

)
· 4
3
· t

8 + et
+

t2

T
· et

1 + et
− 1

4
Iα(17 + es)−1(t)

+
1

4
Iα(1 + es)−1(t)− t

T

(
−1

4
Iα(17 + es)−1(T ) +

1

4
Iα(1 + es)−1(T )

)]
.

By applying the Lemma 3.1, the first iteration y1(t) for T = 1 and n = 3
can be approximated as:

y1(t) u
1

2
· et + 2

3
· (t− 1) t3

8 + et
+

1

2
· t2et

1 + et
+ t2 − 2 t+ t3.

The first iteration for T = 1, n = 3 and Iα(17 + es)−1(t) + Iα(1 +
es)−1(t) = 1

4 · t2 − 3
8 · t+ 1

8 · t3 can be approximated as:

y1(t) u
1

2
· et + 2

3
· (t− 1) t3

8 + et
+

1

2
· t2et

1 + et
+

1

4
· t2 − 3

8
· t+ 1

8
· t3.
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Figure 1. Graphics representation of first iteration

Figure 2. Graphics representation of first iteration
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Figure 3. Graphics representation of y0 and y1
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