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Abstract. In this paper we deal with a metric measure space equipped with a
doubling measure and supporting an Orlicz-Poincaré inequality, namely a weak (1,Φ)-
Poincaré inequality, that is more general than the (1, 1)-Poincaré inequality. For a wide
class of Orlicz spaces, we prove that the corresponding Orlicz-Sobolev functions have
Lebesgue points outside a set of zero Orlicz-Sobolev capacity. This results extends a
theorem of Tuominen (2009) from the case where Φ is the identity of [0,∞) to the case
where Φ is a doubling Young function. Our main tools are the Hardy-Littlewood maximal
operator and a discrete maximal operator introduced by Kinnunen and Latvala (2002).
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1. Introduction and preliminaries

During the last decade, advances of analysis on metric measure spaces
with no smooth structure included the study of several Sobolev-type spaces:
Haj lasz spaces [8], Newtonian spaces [18], Cheeger spaces [4]. These spaces
are essential in order to extend quasiconformal theory and nonlinear poten-
tial theory to the metric setting. A recent direction of research in analysis
on metric spaces deals with Orlicz-Sobolev spaces [1], [19] and some of their
generalizations [15].

In this paper we generalize a recent result from [20] on the pointwise
behaviour of Orlicz-Sobolev functions on metric measure spaces. We deal
with a metric measure space equipped with a doubling measure and support-
ing an Orlicz-Poincaré inequality, namely a weak (1,Φ)-Poincaré inequality,
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that is more general than the (1, 1)-Poincaré inequality. For a wide class
of Orlicz spaces, we show that the corresponding Orlicz-Sobolev functions
have Lebesgue points outside a set of zero Orlicz-Sobolev capacity. This re-
sult extends [20, Theorem 3] from the case where Φ is the identity of [0,∞)
to the case where Φ is a doubling Young function. Our main tools are
the Hardy-Littlewood maximal operator and a discrete maximal operator
introduced in [13].

For the notions from the theory of Orlicz spaces we refer to [17]. We
deal with the growth rates of Young functions given by ∆2-, ∇2- and ∆′-
conditions. A Young function satisfying a ∆2-condition is called doubling.
Let (X,A, µ) be a measure space with a complete and σ-finite measure
µ and let Φ : [0,∞] → [0,∞] be a Young function. The Orlicz space
associated to Φ, denoted by LΦ(X), is a Banach space with the Luxemburg
norm ∥·∥LΦ(X). For every measurable function u : X → [−∞,+∞], denote

IΦ(u) =
∫
X Φ(|u|)dµ. If IΦ(u) < ∞, then u ∈ LΦ(X) and the converse is

true provided that Φ is doubling.

Remark 1. By [20, Lemma 4], for every doubling Young function Φ
and all u ∈ LΦ(X), the following inequalities hold

∥u∥LΦ(X) ≤ fΦ(IΦ(u)) and IΦ(u) ≤ hΦ(∥u∥LΦ(X)),

where we denoted fΦ(t)= max{t, 2t1/ log2 CΦ} and hΦ(t)= max{t, CΦt
log2 CΦ}.

Throughout this paper we deal with a metric measure space (X, d, µ),
which is a metric space (X, d) equipped with a Borel regular outer measure
µ. Assume that µ is finite and positive on balls. Recall that a metric space
is called proper if every closed ball is compact.

Remark 2. Since µ is finite on balls, for every doubling N -function
Φ : [0,∞) → [0,∞) we have LΦ(X) ⊂ L1

loc(X), by [17, Proposition 3.1.7].

Definition 1. The measure µ on the metric space (X, d, µ) is said to
be doubling if there is a constant Cd ≥ 1 such that

(1.1) µ(B(x, 2r)) ≤ Cdµ(B(x, r))

for every ball B(x, r) ⊂ X.

For every doubling measure µ there are some positive constants Cb and
Q so that µ(B(x,r))

µ(B(x0,r0))
≥ Cb(

r
r0

)Q, for all 0 < r ≤ r0 and x ∈ B(x0, r0). Here
Q is called a homogeneous dimension of the metric measure space X.
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The Hardy-Littlewood maximal function of f ∈ L1
loc(X) is defined by

Mf(x) = sup
r>0

1

µ(B(x, r))

∫
B(x,r)

|f | dµ.

The classical Vitali covering theorem, Lebesgue’s differentiation theorem
and the maximal function theorem have natural extensions to the setting
of doubling metric measure spaces [12], [5].

In the following it is assumed that the measure µ is doubling.
If Φ is an N -function satisfying the ∇2-condition, then M is bounded

as an operator from LΦ(X) into itself [16]. Under this assumptions on Φ it
follows by [7, Theorem 2.2] that there exist some positive constants A and
b such that

(1.2) IΦ(Mf) ≤ AIΦ(bf)

for every f ∈ LΦ(X), a property stronger in general than the boundedness
of M in LΦ(X).

Let u be a real-valued function on a metric measure space X. A Borel
function g : X → [0,+∞] is said to be an upper gradient of u in X if

(1.3) |u(γ(1)) − u(γ(0))| ≤
∫
γ
g ds,

for every rectifiable path γ : [0, 1] → X.
Since upper gradients are unstable under changes µ-a.e. and under

limits, the more general notion of weak upper gradient has been introduced
[11].

The notion of modulus of a path family, an important tool in geometric
function theory, is indispensable in the definition of Sobolev-type spaces
based on upper gradients.

Definition 2 ([19]). Let Φ : [0,∞) → [0,∞) be a Young function. The
Φ-modulus of a family Γ of paths in X is MΦ(Γ) = inf ∥ρ∥LΦ(X), where
the infimum is taken over all Borel functions ρ : X → [0,+∞] satisfying∫
γ ρds ≥ 1 for all locally rectifiable paths γ ∈ Γ.

Definition 3 ([19]). Let u be a real-valued function on a metric measure
space X. A Borel function g : X → [0,+∞] is called a Φ−weak upper
gradient of u if (1.3) holds for all compact rectifiable paths γ : [0, 1] → X
except for a path family Γ0 with MΦ (Γ0) = 0 in X.



178 MARCELINA MOCANU 4

The collection Ñ1,Φ(X) of all functions u ∈ LΦ(X) having a Φ-weak
upper gradient g ∈ LΦ(X) is a vector space. For u ∈ Ñ1,Φ(X) define
∥u∥1,Φ = ∥u∥LΦ(X) + inf ∥g∥

LΦ(X)
, where the infimum is taken over all Φ-

weak upper gradients g ∈LΦ(X) of u. Consider the equivalence relation

u ∼ v ⇔ ∥u− v∥1,Φ = 0. Then N1,Φ(X) = Ñ1,Φ(X)/ ∼ is a Banach space
with the norm ∥u∥N1,Φ := ∥u∥1,Φ [19].

If X = Ω ⊂ Rn is a domain and Φ is a doubling Young function, then
N1,Φ(X) = W 1,Φ(Ω) as Banach spaces and the norms are equivalent [19,
Theorem 6.19].

A capacity with respect to the space N1,Φ(X), called Φ-capacity, is
defined by CapΦ(E) = inf{∥u∥N1,Φ : u ∈ N1,Φ(X) : u ≥ 1 on E} [19].

In the classical theory of Sobolev spaces on Rn, Poincaré inequality is
a result that allows one to obtain integral bounds on the oscillation of a
function in terms of integral bounds on its derivatives.

Denote the mean value of a function u ∈ L1(A) over A by uA :=
1

µ(A)

∫
B udµ, where 0 < µ(A) < ∞.

Definition 4 ([19], Definition 5.2). Let Φ : [0,∞) → [0,∞) be a strictly
increasing Young function and Ω ⊂ X an open set. We say that a function
u ∈ L1

loc(Ω) and a Borel measurable non-negative function g on Ω satisfy a
weak (1,Φ)- Poincaré inequality in Ω if there exist some constants CP,Φ > 0
and τ ≥ 1 such that

(1.4)
1

µ(B)

∫
B
|u− uB| dµ ≤ CP,ΦrΦ−1

(
1

µ(τB)

∫
τB

Φ(g)dµ

)
for each ball B = B(x, r) satisfying τB := B (x, τr) ⊂ Ω. It is said that
Ω supports a weak (1,Φ)-Poincaré inequality if the above inequality holds
for each function u ∈ L1

loc(Ω) and every upper gradient g of u, with fixed
constants.

For Φ(t) = tp, where p ≥ 1, the weak (1,Φ)- Poincaré inequality is the
weak (1, p)- Poincaré inequality introduced in [10] and investigated in [9].

Remark 3. Every Φ-weak upper gradient can be approximated in LΦ-
norm by a sequence of upper gradients [19, Lemma 4.3]. If Φ is doubling,
we may replace in the above definition upper gradients by Φ-weak upper
gradients.
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2. Lebesgue points of Orlicz-Sobolev functions

Recall that x ∈ X is said to be a Lebesgue point of a locally integrable
function u : X → R if

lim
r→0

1

µ(B(x, r))

∫
B(x,r)

|u− u(x)| dµ = 0.

In doubling metric measure spaces Lebesgue differentiation theorem
holds, i.e. almost every point is a Lebesgue point for a locally integrable
function [12]. As the regularity of the function increases, the size of the
complement of the set of Lebesgue point decreases.

For Sobolev functions in Euclidean spaces the exceptional set from
the Lebesgue differentiation theorem has zero capacity. Moreover, if u ∈
W 1,p

loc (Rn), where 1 < p ≤ n, then there exists a set E ⊂ Rn with zero
p-capacity such that

lim
r→0

1

µ(B(x, r))

∫
B(x,r)

|u− u(x)|s dµ = 0

for every x ∈ X \ E, whenever 0 < s < np
n−p [6].

The proofs of the refinements of Lebesgue differentiation theorem for
Sobolev functions on Euclidean spaces are based on weak capacitary esti-
mates for Hardy-Littlewood maximal function and use tools that are not
available in metric spaces.

Kinnunen and Latvala [13] extended the above result to Hajlasz-
Sobolev spaces M1,p(X) on doubling metric measure spaces, using as tool
a discrete maximal operator M∗ : L1

loc (X) → R. The operator M∗ is
pointwise equivalent to the Hardy-Littlewood maximal operator:

(2.1) c−1
e Mu ≤ M∗u ≤ ceMu

for every u ∈ L1
loc (X), where ce ≥ 1 is a constant depending only on the

doubling constant Cd of µ. [13]
Let Q be a homogeneous dimension of the doubling metric measure

space (X, d, µ). If 1 < p ≤ Q, then for every u ∈ M1,p(X) there is E ⊂ X
with Capp(E) = 0 such that

lim
r→0

1

µ(B(x, r))

∫
B(x,r)

|u− u∗(x)|s dµ = 0,

for every x ∈ X \ E, whenever 1 < s ≤ Qp
Q−p [13, Theorem 4.5].
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Kinnunen and Latvala [13] proved that M∗ is bounded in M1,p(X)
for 1 < p < ∞, then Tuominen [20, Theorem 2] obtained the follow-
ing counterpart of this result in Orlicz-Sobolev spaces. If X supports a
(1, 1)-Poincaré inequality, Ψ is doubling and the Hardy-Littlewood ma-
ximal operator M is bounded in LΨ (X), then the discrete maximal ope-
rator M∗ is bounded in N1,Ψ(X), i.e. for every u ∈ N1,Ψ(X) we have
M∗u ∈ N1,Ψ(X)and ∥M∗u∥N1,Ψ(X) ≤ C ∥u∥N1,Ψ(X) for some positive cons-
tant C not depending on u.

Under the assumptions of the above theorem in a proper metric space,
Tuominen [20, Theorem 3] proved that every Orlicz-Sobolev function has
Lebesgue points outside a set with the corresponding Orlicz-Sobolev ca-
pacity zero. If X is proper and supports a (1, 1)-Poincaré inequality, Ψ
is doubling and the Hardy-Littlewood maximal operator M is bounded in
LΨ (X), then for every u ∈ N1,Ψ(X) there is E ⊂ X with CapΨ(E) = 0
such that every x ∈ X \ E is a Lebesgue point of u.

We generalize the above results of Tuominen to spaces supporting a
(1,Φ)-Poincaré inequality. By Jensen’s inequality in integral form, a weak
(1, 1)- Poincaré inequality implies a weak (1,Φ)- Poincaré inequality, for
every Young function Φ.

In all the following lemmas we assume that X supports a weak (1,Φ)-
Poincaré inequality, for some doubling Young function Φ.

Lemma 1. Let Ψ be a doubling N -function. If u ∈ L1
loc (X) and g ∈

LΨ (X) is a Ψ-weak upper gradient of u, then the function C1Φ
−1(M(Φ◦g))

is a Ψ-weak upper gradient of M∗u, where C1 > 0 is a constant depending
only on the doubling constant Cd and on CP,Φ from (1.4).

Proof. For an arbitrary r > 0 we consider an open cover {B(xi, r) : i ≥
1} with bounded overlap: X =

∪∞
i=1 B (xi, r) and

∑∞
i=1 χB(xi,6r) ≤ N < ∞.

Here N is a constant depending on the doubling constant Cd of µ, but
independent of r [5].

The proof is similar to that of [13, Lemma 3.3] and of [20, Lemma 8].
The difference appears in the telescoping argument needed to estimate the
oscillation of u on B(xi, 6r), around the average of u on B(xi, 3r), since the
(1, 1)-Poincaré inequality is replaced by the weak (1,Φ)- Poincaré. As in
[14, Proof of Theorem 2, Step 1], we get the following estimate, using the
weak (1,Φ)- Poincaré inequality in the doubling space X:

(2.2)
∣∣u(x) − uB(xi,3r)

∣∣ ≤ C1rΦ−1(M(Φ ◦ g))(x)
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for almost all x ∈ B(xi, 6r) and for every i ≥ 1, where C1 > 0 is a constant
depending only on Cd and CP,Φ.

As in the proof of [13, Lemma 3.3] and of [20, Lemma 8], it turns out
that C1Φ

−1(M(Φ ◦ g)) is a Ψ-weak upper gradient of |u|r for each r > 0,
hence is a Ψ-weak upper gradient of M∗u, by [20, Lemma 6]. �

Lemma 2. Let Ψ be a doubling Young N -function such that Ψ ◦ Φ−1

is a Young function and the Hardy-Littlewood maximal operator is bounded
in LΨ◦Φ−1

(X). If g ∈ LΨ(X), then Φ−1(M(Φ ◦ g)) ∈ LΨ(X). Moreover,
there exists a strictly increasing continuous function F : [0,∞) → [0,∞)
with F (0) = 0 such that

∥∥Φ−1(M(Φ ◦ g))
∥∥
LΨ(X)

≤ F (∥g∥LΨ(X)) for every

g ∈ LΨ(X). Assuming in addition that Φ and Φ−1 satisfy the ∆′-condition
and Ψ◦Φ−1 is a N -function satisfying the ∇2-condition, we may take in the
previous estimate F (t) = C ′t for all t ≥ 0, where C ′ is a positive constant.

Proof. Let g ∈ LΨ(X). Since Φ ◦ g ∈ LΨ◦Φ−1
(X) and M is bounded

in LΨ◦Φ−1
(X), M(Φ ◦ g) ∈ LΨ◦Φ−1

(X) and

∥M(Φ ◦ g)∥
LΨ◦Φ−1

(X)
≤ CHL ∥Φ ◦ g∥

LΨ◦Φ−1
(X)

for some constant CHL > 0. Since Ψ is doubling, M(Φ ◦ g) ∈ LΨ◦Φ−1
(X)

implies Φ−1(M(Φ ◦ g)) ∈ LΨ(X). According to Remark 1,∥∥Φ−1(M(Φ ◦ g))
∥∥
LΨ(X)

≤ fΨ(IΨ◦Φ−1(M(Φ ◦ g)))

and IΨ◦Φ−1(M(Φ◦g)) ≤ hΨ◦Φ−1(∥M(Φ ◦ g)∥
LΨ◦Φ−1

(X)
), but fΨ and hΨ◦Φ−1

are increasing, hence∥∥Φ−1(M(Φ ◦ g))
∥∥
LΨ(X)

≤ (fΨ ◦ hΨ◦Φ−1)(CHL ∥Φ ◦ g∥
LΨ◦Φ−1

(X)
).

Using again Remark 1, ∥Φ ◦ g∥
LΨ◦Φ−1 (X)

≤ fΨ◦Φ−1 (IΨ (g)) ≤ (fΨ◦Φ−1 ◦
hΨ)(∥g∥LΨ(X)). We obtain∥∥Φ−1(M(Φ ◦ g))

∥∥
LΨ(X)

≤ F (∥g∥LΨ(X)),

where F (t) = (fΨ ◦ hΨ◦Φ−1)(CHL(fΨ◦Φ−1 ◦ hΨ)(t)), for t ≥ 0. By the
subadditivity of Φ−1, we may take CΨ◦Φ−1 = CΨ, hence fΨ◦Φ−1 = fΨ and
hΨ◦Φ−1 = hΨ.
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Assume in addition that Φ and Φ−1 satisfy the ∆′-condition and Ψ◦Φ−1

is a N -function satisfying the ∇2-condition. There is a constant C ≥ 1 such
that

(2.3) Φ(ts) ≤ CΦ(t)Φ(s) and Φ−1(ts) ≤ CΦ−1(t)Φ−1(s)

for every t, s ∈ [0,∞). Since Ψ ◦ Φ−1 is a N -function satisfying the ∇2-
condition, there exist some positive constants A and b such that

IΨ◦Φ−1(Mf) ≤ AIΨ◦Φ−1(bf)

for every f ∈ LΨ◦Φ−1
(X). Assuming without loss of generality that A ≥ 1,

it follows that there is some constant C ′ > 0 such that IΨ(Φ
−1(M(Φ◦g))
C′∥g∥

LΨ(X)
) ≤ 1

for every g ∈ LΨ(X). Then, by the definition of the Luxemburg norm, it
follows that ∥Φ−1(M(Φ ◦ g))∥LΨ(X) ≤ C ′∥g∥LΨ(X) for every g ∈ LΨ(X). �

Lemma 3. If Ψ is a doubling Young N -function, such that the Hardy-
Littlewood maximal operator is bounded both in LΨ(X) and in LΨ◦Φ−1

(X),
then the discrete maximal operator M∗ maps N1,Ψ(X) into N1,Ψ(X). More-
over, there is a continuous strictly increasing function H : [0,∞) → [0,∞)
with H(0) = 0 such that ∥M∗u∥N1,Ψ(X) ≤ H(∥u∥N1,Ψ(X)) for every u ∈
N1,Ψ(X). If in addition Φ and Φ−1 satisfy the ∆′-condition and Ψ◦Φ−1 is
a N -function satisfying the ∇2-condition, then M∗ : N1,Ψ(X) → N1,Ψ(X)
is a bounded operator.

Proof. Since the Hardy-Littlewood maximal operator M is bounded in
LΨ(X),there exists C ′

HL such that ∥Mu∥LΨ(X) ≤ C ′
HL ∥u∥LΨ(X) for every

u ∈ LΨ(X). It follows by (2.1) that M∗ maps LΨ(X) into LΨ(X) and
∥M∗u∥LΨ(X) ≤ ceC

′
HL ∥u∥LΨ(X) for every u ∈ LΨ(X). Let C1 > 0 be as

in Lemma 1 and let F be as in Lemma 2. Fix an arbitrary u ∈ N1,Ψ(X).
Let g ∈ LΨ(X) be a Ψ-weak upper gradient of u. By Lemma 1 and Lemma
2, the function C1Φ

−1(M(Φ ◦ g)) ∈ LΨ(X) is a Ψ-weak upper gradient
of M∗u. Then M∗u ∈ N1,Ψ(X) and ∥M∗u∥N1,Ψ(X) ≤ ceC

′
HL ∥u∥LΨ(X) +

C1F (∥g∥LΨ(X)). We consider a sequence gn ∈ LΨ(X), n ≥ 1, of Ψ-weak
upper gradients of u, such that lim

n→∞
∥gn∥LΨ(X) = ∥u∥N1,Ψ(X) − ∥u∥LΨ(X).

For every n ≥ 1, ∥M∗u∥N1,Ψ(X) ≤ ceC
′
HL ∥u∥LΨ(X) + C1F (∥gn∥LΨ(X)).

Letting n → ∞ and using the continuity and monotonicity of F we get
∥M∗u∥N1,Ψ(X) ≤ H(∥u∥N1,Ψ(X)). We denoted H(t) = ceC

′
HLt + C1F (t),

t ∈ [0,∞).
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Assume that Ψ and Ψ−1 satisfy the ∆′-condition and Ψ ◦ Φ−1 is a N -
function satisfying the ∇2-condition. By Lemma 2, we may take F (t) =
C ′t, hence ∥M∗u∥N1,Ψ(X) ≤ C∗ ∥u∥N1,Ψ(X) for every u ∈ N1,Ψ(X), where

C∗ = ceC
′
HL + C1C

′, therefore M∗ is a bounded operator. �

For u ∈ L1
loc(X) and x ∈ X, denote

Au(x) := lim sup
r→0

1

µ(B(x, r))

∫
B(x,r)

|u| dµ.

Recall that a real function u on X is said to be Ψ-quasicontinuous if
for every ε > 0 there exists a set E ⊂ X with CapΨ(E) < ε such that the
restriction of u to X \E is continuous with respect to the relative topology.

Lemma 4. Let Ψ be a doubling N -function. Assume that continuous
functions are dense in N1,Ψ(X), every function in N1,Ψ(X) is Ψ-quasi-
continuous and there exist a constant k > 0 and a function G : [0,∞) →
[0,∞) with lim

t→∞
G(t) = 0 such that, for every f ∈ N1,Ψ(X)

(2.4) CapΨ ({x ∈ X : Af (x) > λ}) ≤ kλ−1G
(
∥f∥N1,Ψ(X)

)
.

Then for every u ∈ N1,Ψ(X) there is E ⊂ X with CapΨ(E) = 0 such that
every x ∈ X \ E is a Lebesgue point of u.

Proof. We modify the proof of [20, Lemma 4], where in the estimate
(2.4) the special case G(t) ≡ t was considered. Denote

Du(x) := lim sup
r→0

1

µ(B(x, r))

∫
B(x,r)

|u− u(x)|dµ.

The complement of the set of all Lebesgue point of u is E = {x ∈ X :
Du(x) > 0}. Let Eλ = {x ∈ X : Du(x) > λ} for each λ > 0. We prove
that CapΨ(Eλ) = 0 for all λ > 0. Since E = ∪∞

i=1E1/i and the Ψ-capacity
is countably subadditive, the claim CapΨ(E) = 0 follows.

Let u ∈ N1,Ψ(X) and λ > 0. Let ε > 0. Using the density of C(X) in
N1,Ψ(X) we find v ∈ C(X) ∩N1,Ψ(X) such that ∥u − v∥N1,Ψ(X) < ε. The
function w = u− v is quasicontinuous. For every x ∈ X, using the triangle
inequality and the continuity of v at x, we get Du(x) ≤ Dw(x) ≤ Aw(x) +
|w(x)|. The inequality Du(x) ≤ Aw(x) + |w(x)|, x ∈ X, shows that Eλ ⊂



184 MARCELINA MOCANU 10

{x ∈ X : Aw(x) > λ/2}∪{x ∈ X : |w(x)| > λ/2}. By (2.4), CapΨ({x ∈ X :
Aw(x) > λ/2}) ≤ 2kλ−1G(∥w∥N1,Ψ(X)) ≤ 2kλ−1G(ε). By the definition of

Ψ-capacity, we have CapΨ({x ∈ X : |w(x)| > λ/2}) ≤ ∥2λ−1|w|∥N1,Ψ(X),

hence CapΨ({x ∈ X : |w(x)| > λ/2}) ≤ 2λ−1∥w∥N1,Ψ(X) < 2λ−1ε. The

subadditivity of Ψ-capacity yields CapΨ(Eλ) ≤ 2λ−1(kG(ε) + ε). Letting
ε → 0 we get CapΨ(Eλ) = 0. �

Theorem 1. Assume that the metric space X is equipped with a dou-
bling measure and supports a weak (1,Φ)-Poincaré inequality for some
doubling Young function Φ. Let Ψ be a doubling N -function such that
Ψ ◦Φ−1 is a Young function and the Hardy-Littlewood maximal operator is
bounded both in LΨ(X) and LΨ◦Φ−1

(X). Assume that continuous functions
are dense in N1,Ψ(X) and every function in N1,Ψ(X) is Ψ-quasicontinuous.
Then for every u ∈ N1,Ψ(X) there is E ⊂ X with CapΨ(E) = 0 such that
every x ∈ X \ E is a Lebesgue point of u.

Proof. Let u ∈ N1,Ψ(X). Since Au(x) ≤ Mu(x) ≤ ceM∗u(x) for every
x ∈ X,

CapΨ ({x ∈ X : Au(x) > λ}) ≤ CapΨ ({x ∈ X : ceM∗u(x) > λ}) .

Using the definition of Ψ-capacity and Lemma 3, we get

CapΨ ({x ∈ X : ceM∗u(x) > λ}) ≤ ceλ
−1 ∥M∗u∥N1,Ψ(X)

≤ ceλ
−1H(∥u∥N1,Ψ(X)).

Then CapΨ({x ∈ X : Au(x) > λ}) ≤ ceλ
−1H(∥u∥N1,Ψ(X)). The proof is

completed by Lemma 4. �

Remark 4. If Ψ is a doubling Young function and X supports a weak
(1,Ψ)-Poincaré inequality, then Lipschitz continuous functions are dense in
N1,Ψ(X), both in norm and in Lusin’s sense [19, Theorem 6.17]. If X is
proper, Ψ is a doubling Young function and continuous functions are dense
in N1,Ψ(X), then each function u ∈ N1,Ψ(X) is Ψ- quasicontinuous [20,
Theorem 1].

Remark 5. If Φ is the identity, Lemma 1, Lemma 3, Lemma 4 and
Theorem 1 give Lemma 8, Theorem 2, Lemma 9 and Theorem 3 from [20].
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