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Abstract. In a previous paper, the first author made a general study of the geometry
of J(2,0)M jets bundle, which has a holomorphic structure.

In the present paper we define the complex second order Lagrange space (M,L) and
we prove the existence of a special complex nonlinear connection, provided by a complex
spray deduced from the variational problem. With respect to adapted frames of this
(c.n.c.) we emphasize the existence of a N -linear connection, named the Chern-Lagrange
connection on (M,L), which is of (1, 0)-type and will play a fundamental role in the study
of the complex second order Lagrange spaces.
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1. Introduction

Let M be a complex manifold, dimCM = n, (zi) be complex coordinates
in a local chart. The complexified tangent bundle TCM admits the classical
decomposition TCM = T ′M ⊕ T ′′M , where T ′M is a holomorphic vector
bundle over M and its conjugate T ′′M is the anti-holomorphic tangent
bundle.

The holomorphic bundle of k-th order jets differential was introduced
by Green and Griffiths in [6] as the sheaf of germs of holomorphic curves
{f : ∆r → M, f ∈ Hz0 , f(0) = z0} depending on a complex parameter θ.

By denoting f i = zi ◦ f , ∀i = 1, n, f ∈ Hz0 , according to [14], [15],

f, g ∈ Hz0 are said to be k-equivalent, f
k∼ g, iff f i(0) = gi(0) and dpf i

dθp (0) =
dpgi

dθp (0), ∀i = 1, n, p = 1, k. The class of f is [f ] k∼
and the set of all classes
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is J (k,0)M = ∪z0∈MHz0/ k∼
. By jkf(0) = (f(0), df

dθ (0), ...,
dpf
dθp (0)) we denote

the k−jet of f ∈ [f ] k∼
.

Let π(k,0) : J (k,0)M → M be the canonical projection. Then we check
immediately that (J (k,0)M,π(k,0),M) has a fibre bundle structure, named
in [15] the restricted k-jet bundle, and in [5] the parametrized k-jet bundle.
Further on we call it simply the J (k,0)M jets bundle. Note that J (k,0)M does
not have a vector bundle structure, aside from k = 1, when it is identified
with T ′M, the holomorphic tangent bundle.

J (k,0)M has a structure of complex differentiable manifold, whose geo-
metry was discussed in [16].

We note that the rank of the fibre bundle J (k,0)M is kn, while the
dimension of complex manifold structure is (k + 1)n.

More generally, a (p, q)-jet on M could be spanned by ∂f
∂θ (0),

∂f
∂θ̄
(0),

∂2f
∂θ2

(0), ∂2f
∂θ∂θ̄

(0), ∂
2f

∂θ̄2
(0), ..., where f ∈ F(M), not necessarily holomorphic

in z0 = f(0). In this position J (p,q)M is not always holomorphic ([7]).
Certainly, if f is in Hz0 then ∂f

∂θ̄
(0) = 0, and it shows that J (p,0)M is a

subbundle (holomorphic) of J (p,q)M.
Further on in this paper we will resume our study to the second or-

der jets manifold J (2,0)(M). We have the decomposition of J (2,2)(M) =
J (2,0)(M) ⊕ J (1,1)(M) ⊕ J (0,2)(M), where the terms are fiber bundles over
the complex manifold M , the first being a holomorphic bundle which con-
tains the holomorphic second order jets on M .

In the previous paper [16], the first author studied the geometric struc-
ture of the holomorphic bundle J (k,0)M over the complex manifold M ,
such as complex distributions, nonlinear and N -linear connections. Subse-
quently, we resume in brief the framework for the complex manifold J (2,0)M .
In a local chart, the coordinates are denoted by Z = (zi, ηi, ζi), i = 1, n,
and at changes of local charts on M will transform as follow:

z′i = z′i(z);(1.1)

η′i =
∂z′i

∂zj
ηj ;

2ζ ′i =
∂η′i

∂zj
ηj + 2

∂η′i

∂ηj
ζj

and that ∂z′i

∂zj
= ∂η′i

∂ηj
= ∂ζ′i

∂ζj
; ∂η′i

∂zj
= ∂ζ′i

∂ηj
. A local base in the holomorphic

bundle T ′(J (2,0)M) is { ∂
∂zi

, ∂
∂ηi

, ∂
∂ζi

} and in T ′′(J (2,0)M) it is obtained by
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conjugation. The changes of the local basis are made according to the
following rules:

∂

∂zj
=

∂z′i

∂zj
∂

∂z′i
+

∂η′i

∂zj
∂

∂η′i
+

∂ζ ′i

∂zj
∂

∂ζ ′i
;(1.2)

∂

∂ηj
=

∂η′i

∂ηj
∂

∂η′i
+

∂ζ ′i

∂ηj
∂

∂ζ ′i
;

∂

∂ζj
=

∂ζ ′i

∂ζj
∂

∂ζ ′i

and similarly for the conjugate basis that corresponds in T
′′
z (J

(2,0)M).

Two structures play a special role in defining the linear and nonlinear
connection on J (2,0)M : the natural complex structure J and the almost
second order tangent structure F , see [11], [16].

A complex nonlinear connection, (c.n.c.) in brief, is given byH(J (2,0)M)
which is supplementary to W (J (2,0)M) in T ′(J (2,0)M), where Wz(J

(2,0)M)
is spanned by { ∂

∂ηj
, ∂
∂ζj

} in a local chart. With V (J (2,0)M) we denote the

vertical bundle spanned by { ∂
∂ζj

}. By conjugation, we obtain the decom-

position for TC(J
(2,0)M). A local base in Hz(J

(2,0)M) is called adapted

base of the (c.n.c.), and it is written as δ
δzj

= ∂
∂zj

−
(1)

N i
j

∂
∂ηi

−
(2)

N i
j

∂
∂ζi

, iff

δ
δzj

= ∂z′i

∂zj
δ

δz′i
. Then F ( δ

δzj
) =: δ

δηj
= ∂

∂ηj
−

(1)

N i
j

∂
∂ζi

span a local adapted

base in Wz(J
(2,0)M). The changes (1.1) of coordinates on J (2,0)M produce

the changes of the coefficients
(1)

N i
j and

(2)

N i
j of the (c.n.c.) in the form:

(1)

N ′ i
k

∂z
′k

∂zj
=

∂z
′i

∂zk

(1)

Nk
j −∂η

′i

∂zj
;(1.3)

(2)

N ′ i
k

∂z
′k

∂zj
=

∂z
′i

∂zk

(2)

Nk
j +

∂η
′i

∂zk

(1)

Nk
j −∂ζ

′i

∂zj
.

The adapted basis will change as follows: δ
δzj

= ∂z′i

∂zj
δ

δz′i
and δ

δηj
=

∂z′i

∂zj
δ

δη′i
. Obviously, δ

δζj
= ∂z′i

∂zj
δ

δζ′i
and so these fields are changing as those

on the base manifold M . Generally, the geometrical objects which are
changed by ∂z′i

∂zj
or by their conjugates ∂z′i

∂zj
, are called d -tensor fields. The

corresponding adapted basis on T ′′(J (2,0)M) are obtained by conjugation



282 VIOLETA ZALUTCHI and GHEORGHE MUNTEANU 4

everywhere. The relation between the dual cobasis {dzi, δηi = dηi+
(1)

M i
j

dzj , δζi = dζi+
(1)

M i
j dηj+

(2)

M i
j dzj} and the adapted basis is given by the

rules:
(1)

M i
j=

(1)

N i
j ;

(2)

M i
j=

(2)

N i
j +

(1)

N i
k

(1)

Nk
j

where
(1)

M i
j and

(2)

M i
j are changing by the following rules (see [16]):

∂z
′i

∂zk

(1)

Mk
j =

(1)

M ′ i
k

∂z
′k

∂zj
+

∂η
′i

∂zj
;(1.4)

∂z
′i

∂zk

(2)

Mk
j =

(2)

M ′ i
k

∂z
′k

∂zj
+

(1)

M ′ i
k

∂η
′k

∂zj
+

∂ζ
′i

∂zj

The formulas which make the connection between
(1)

N i
j ,

(2)

N i
j and

(1)

M i
j ,

(2)

M i
j are:

(1)

M i
j=

(1)

N i
j and

(2)

M i
j=

(2)

N i
j +

(1)

N i
k

(1)

Nk
j . The notion of complex nonlinear connection

is connected with the complex spray notion, which is defined as a field

S ∈ T ′(J (2,0)M) with property F ◦ S =
(2)

L , where
(2)

L= ηi ∂
∂ηi

+ 2ζi ∂
∂ζi

is

the Liouville field. The spray S has the coefficients Gi, thus S = ηi ∂
∂zi

+

2ζi ∂
∂ηi

− 3Gi(z, η, ζ) ∂
∂ζi

, and they are transformed by the rule:

(1.5) 3G
′i = 3

∂z
′i

∂zj
Gj −

(
ηj

∂ζ
′i

∂zj
+ 2ζj

∂ζ
′i

∂ηj

)
.

In short, a normal complex nonlinear connection, N-(c.l.c.), is a deriva-
tive law which acts on TC(J

(2,0)M) with respect to adapted frames, pre-
serves the distributions and is well defined by the set of coefficients DΓ =
(Li

jk, L
i
jk
, F i

jk, F
i
jk
, Ci

jk, C
i
jk
) which are changing as follows:

(1.6) L
′i
jk =

∂z
′i

∂zr
∂zp

∂z′j

∂zq

∂z′k
Lr
pq +

∂z
′i

∂zp
∂2zp

∂z′j∂z′k

and the others are d -tensors. For details see [16].
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2. The complex Chern-Lagrange connection

In this section we will highlight two (c.n.c.) on TC(J
(2,0)M) which will

be very important in the geometry of the J (2,0)- holomorphic bundle.

Proposition 2.1. If
(1)

M i
j and

(2)

M i
j are the dual coefficients of a (c.n.c.)

on J (2,0)M , then a complex spray is given by:

(2.1) 3Gi =
(2)

M i
j η

j + 2
(1)

M i
j ζ

j .

Proof. We have to verify the changes (1.6), using (1.2) and (1.5).

∂z
′i

∂zk
(
(2)

Mk
j ηj + 2

(1)

Mk
j ζj)−

(
ηj

∂ζ
′i

∂zj
+ 2ζj

∂ζ
′i

∂ηj

)

=
(2)

M ′ i
k

∂z
′k

∂zj
ηj+

(1)

M ′ i
k

∂η
′k

∂zj
ηj +

∂ζ
′i

∂zj
ηj

+ 2
(1)

M ′ i
k

∂z
′k

∂zj
ζj + 2

∂η
′i

∂zj
ζj − ∂ζ

′i

∂zj
ηj − 2

∂ζ
′i

∂ηj
ζj =

(2)

M ′ i
k η

′k + 2
(1)

M ′ i
k ζk,

which is just (1.6).

We used here ∂ζ
′i

∂ηj
= ∂η

′i

∂zj
and ∂η

′k

∂zj
ηj = ∂η

′k

∂zj
∂zj

∂z
′h η

′h = ∂η
′k

∂z
′h η

′h = 0. �
Conversely, any complex spray determines a (c.n.c):

Proposition 2.2. If S is a complex spray with coefficients Gi which
are changing by the rule (1.5), then

(2.2)
(1)

M i
j=

∂Gi

∂ζj
,

(2)

M i
j=

∂Gi

∂ηj

determine a (c.n.c) with the dual coefficients
(1)

M i
j and

(2)

M i
j .

Proof. By differentiating (1.6) with respect to ∂
∂ζj

= ∂z
′k

∂zj
∂

∂ζ′k
we ob-

tain 3∂G
′i

∂ζ
′k

∂z
′k

∂zj
= 3∂z

′i

∂zj
∂Gk

∂ζj
− ηk ∂2ζ

′i

∂zk∂ζj
− 2∂ζ

′i

∂ηj
− 2ζk ∂2z

′i

∂ηkζj
. If we take into

account relations (1.2) and relations ηk ∂2ζ
′i

∂ζj∂zk
= ηk ∂2z

′i

∂zj∂zk
, ∂ζ

′i

∂ηk
= ∂η

′i

∂zk
, it
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follows that ∂2ζ
′i

∂ηk∂ζj
= ∂

∂ηk
(∂z

′i

∂zj
) = 0. Hence, the first (1.5) rule is ful-

filled. Similarly, by differentiating (1.6) with respect to ∂
∂ηj

= ∂η
′l

∂ηj
∂

∂η
′l +

∂ζ
′l

∂ηj
∂

∂ζ′l
we obtain the second rule from formulas (1.5), taking into account

that 2ζk ∂2ζ
′i

∂ηk∂ηj
= 2ζk ∂

∂ηk
(∂η

′i

∂zj
) = 2ζk ∂

∂zj
(∂η

′i

∂ηk
) = 2 ∂

∂zj
(ζk ∂z

′i

∂zk
) = 2∂ζ

′i

∂zj
and

ηk ∂2ζ
′i

∂zk∂ηj
= ∂zk

∂z′h
η
′h ∂2ζ

′i

∂zk∂ηj
= η

′h ∂
∂z′h

(∂ζ
′i

∂ηj
) = η

′h ∂
∂ηj

( ∂ζ
′i

∂z′h
) = 0. �

Therefore, the problem of determining a (c.n.c.) on J (2,0)M is closely
related with the problem of determining a complex spray. In the real case,
[3], [4], [8], [9], [12], and in the complex Lagrange space (of first order), [10],
one method to determine a spray to use a variational problem. A similar
technique will be followed in this paper.

Definition 2.3. A complex second order Lagrange space is a pair
(M,L), where L : J (2,0)M → R is a smooth function of order at least
two, with the Hermitian matrix

(2.3) gij =
∂2L

∂ζi∂ζ
j

non-degenerated.

Let c(t) be a differentiable curve of class C∞ on M and c̃(t) its extension

at J (2,0)M defined by t ∈ R → (zi(t), ηi(t) = dzi

dt , ζ
i(t) = 1

2
d2zi

dt2
). Because t

is a real parameter, the variational problem for the complex second order
Lagrangian L leads us to very similar calculations as in the real case, i.e.
to Euler-Lagrange equation:

(2.4)
∂L

∂zi
− d

dt

∂L

∂ηi
+

1

2

d2

dt2

(
∂L

∂ζi

)
= 0.

Actually, L(z, η, ζ) depends implicitly on the conjugates of these variable.
In this way, along the curve c̃ we have

d

dt
=

dzj

dt

∂

∂zj
+

dzj

dt

∂

∂zj
+

dηj

dt

∂

∂ηj
+

dηj

dt

∂

∂ηj
+

dζj

dt

∂

∂ζj
+

dζ
j

dt

∂

∂ζ
j

or, taking into account that ηj = dzj

dt and 2ζj = d2zj

dt2
= dηj

dt , using (as in

the real case) the operator Γ = ηj ∂
∂zj

+ 2ζj ∂
∂ηj

along the curve c̃, we have:
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d
dt = Γ+Γ+3d3zj

dt3
∂

∂ζj
+3d3zj

dt3
∂

∂ζ
j . As a result, the Euler-Lagrange equation

(2.4) is rewritten:

(2.5)
∂L

∂zi
− d

dt

{
∂L

∂ηi
− Γ(

∂L

∂ζi
)− Γ(

∂L

∂ζi
)− 3gij

d3zj

dt3
− 3gij

d3zj

dt3

}
= 0

where gij := ∂2L
∂ζi∂ζj

. As we will see below, the vanishing of the bracket in

(2.5), named as in the real case, the complex Craig-Synge covector:

(2.6) Ei(L) = − ∂L

∂ηi
+

d

dt

(
∂L

∂ζi

)
will play a fundamental role in determining the (c.n.c.). If we ignore the
general expression of the d

dt along the c̃, the equations Ei(L) = 0 are a
consequence of the first order variational problem for the curve restriction
c̃ at the distributions W (J (2,0)M). In the complex Finsler spaces ([13]),
Royden studied the problem of complex geodesics which are holomorphic
curves c : ∆r → M with the property that γ(t) = c(eiθt) is tangent at
all lines from z, ∀θ ∈ R. This leads to simultaneous cancellation of the
Hermitian and nonhermitian terms in the Euler-Lagrange equation. If we
use the same reasoning for the equations Ei(L) = 0 from (2.5), then we
have the system of equations:

3gij
d3zj

dt3
+ Γ

(
∂L

∂ζi

)
− ∂L

∂ηi
= 0;(2.7)

3gij̄
d3zj

dt3
+ Γ

(
∂L

∂ζi

)
= 0.(2.8)

For the moment, we leave the equations (2.7) as an algebraic require-
ment. In a complex Finsler space, an analogous condition to the first re-
quirement from the formulas (2.7) is equivalent with the weakly Kahler
metrics, [1], [2], [10], [17]. By conjugation, the second condition from the
formulas (2.8) gives:

(2.9)
d2ηi

dt2
+ 2Gi(z(t), η(t), ζ(t)) = 0 , where 3Gi = gmiΓ

(
∂L

∂ζ
m

)
that is 3Gi = gmi ∂2L

∂zj∂ζ
m ηj + 2gmi ∂2L

∂ηj∂ζ
m ζj .
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Theorem 2.4. The pair
(1)

M i
j ,

(2)

M i
j determines the dual coefficients of a

(c.n.c.), named Chern-Lagrange connection, where

(2.10)
(1)

M i
j= gmi ∂2L

∂ηj∂ζ
m ;

(2)

M i
j= gmi ∂2L

∂zj∂ζ
m .

Proof. By using (1.2) and direct calculus, we verify the (1.5) rules of
transformation for the coefficients of the (c.n.c.). We have:

∂z
′i

∂zk

(1)

Mk
j =

∂z
′i

∂zk
gmk ∂2L

∂ζ
m
∂ηj

=
∂z

′i

∂zk
∂z

′p

∂zm
gmk ∂

∂ζ
′p

(
∂η

′h

∂ηj
∂L

∂η′h
+

∂ζ
′h

∂ηj
∂L

∂ζ ′h

)

= g
′pi∂η

′h

∂ηj
∂2L

∂η′h∂ζ
′p

+ g
′pi∂ζ

′h

∂ηj
g
′
hp =

(1)

M ′ i
h

∂η
′h

∂ηj
+

∂ζ
′i

∂ηj

which is the first condition from (1.5). Analogously we have:

∂z
′i

∂zk

(2)

Mk
j =

∂z
′i

∂zk
gmk ∂2L

∂ζ
m
∂zj

= g
′pi ∂

∂ζ
′p

(
∂z

′h

∂zj
∂L

∂z′h
+

∂η
′h

∂zj
∂L

∂η′h
+

∂ζ
′h

∂zj
∂L

∂ζ ′h

)

=
(2)

M ′i
h

∂z
′h

∂zj
+

(1)

M ′i
h

∂η
′h

∂zj
+ g

′pi∂ζ
′h

∂zj
g
′
hp

i.e. the second condition from (1.5). �
From Proposition 2.1 and the previous Theorem, we deduce that:

Corollary 2.5. The functions Gi given by (2.10) define a complex spray

on J (2,0)M , called the canonical spray and denoted by
c

Gi. Following the

Proposition 2.2, we can obtain a sequence of (c.n.c.). The functions
(1)c

M i
j=

∂
c
G

i

∂ζj
and

(2)c

M i
j=

∂
c
G

i

∂ηj
will be called the coefficients of the canonical (c.n.c.).

The terminology of the complex Chern-Lagrange nonlinear connection
and the canonical one, used here, is purely formal and it was introduced by
analogy with that from complex Lagrange spaces (of first order), [10].
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Proposition 2.6. If δ
δηj

= ∂
∂ηj

−
(1)

N i
j

∂
∂ζi

is the adapted base of the
complex Chern-Lagrange nonlinear connection, then

(2.11)

[
δ

δηj
,

δ

δηk

]
= 0.

Proof. We have

[
δ

δηj
,

δ

δζk

]
=

(
δ

(1)

M i
j

δηk
−

δ
(1)

M i
k

δηj

)
δ

δζi
=:

(1)

B

i

(jk)

∂

∂ζi
.

By direct calculus, using the relations (2.9), we find after the reduction

of the terms, that:
(1)

B

i

(jk)= gmi(
(1)

Nh
k

(1)

N l
j −

(1)

Nh
j

(1)

N l
k)

∂glm
∂ζh

. Because ∂glm
∂ζh

is
symmetric in indices l and h and the bracket is anti-symmetric, changing l

with h, we obtain that
(1)

B

i

(jk)= −
(1)

B

i

(jk), so it cancels. �
For other brackets of the adapted frames, the computations are quite

complicated.
Further on, we want to determine a derivation law which we wish to be

a complex N -linear connection, with respect to the adapted frames of the
Chern-Lagrange (c.n.c.). Let (M,L) be a complex second order Lagrange

space with the metric tensor gij(z, η, ζ) and (
(1)

N i
j=

(1)

M i
j ,

(2)

N i
j=

(2)

M i
j −

(1)

M i
k

(1)

Mk
j ) the

Chern-Lagrange (c.n.c.) given by (2.10). We set δ0i :=
δ
δzi

, δ1i :=
δ
δηi

, δ2i :=
δ
δζi

, and
{
dzi, δηi, δζi

}
the dual basis adapted to the (c.n.c.) C-L. Then

(2.12) G = gijdz
i ⊗ dzj + gijδη

i ⊗ δηj + gijδζ
i ⊗ δζ

j

defines a metric structure on TC(J
(2,0)M).

Theorem 2.7. The set of the coefficients:

(2.13) Li
jk = gmi δgjm

δzk
; F i

jk = gmi δgjm
δηk

; Ci
jk = gmi δgjm

δζk

and Li
jk

= F i
jk

= Ci
jk

= 0, define a N -(c.l.c.) on J (2,0)M , which is a

metric one by extension at TC(J
(2,0)M) and it is of (1, 0)-type, named the

Chern-Lagrange connection.
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Proof. Let D be a derivation law on J (2,0)M which acts on the adapted
fields from TC(J

(2,0)M). D is metric ifDG = 0, i.e. XG(Y, Z) = G(DXY, Z)
+G(Y,DXZ), ∀X,Y, Z ∈ ΓTC(J

(2,0)M). If we consider D of (1,0)-type, i.e.

Li
jk

= F i
jk

= Ci
jk

= 0, and if we take in turns X = δ0k, Y = δ0j , Z = δ0m,

then X = δ0k, Y = δ1j , Z = δ1m and X = δ0k, Y = δ2j , Z = δ2m, res-

pectively, it results that
(0)

L

i

jk=
(1)

L

i

jk=
(2)

L

i

jk= gmi δgjm
δzk

. Analogously, for the

choice X = δ1k, Y = δ1j , Z = δ1m we find
(0)

F

i

jk=
(1)

F

i

jk=
(2)

F

i

jk= gmi δgjm
δηk

. Res-

pectively, for the choice X = δ2k, Y = δ2j , Z = δ2m (and other choices) we

obtain
(0)

C

i

jk=
(1)

C

i

jk=
(2)

C

i

jk= gmi δgjm
δζk

. To achieve the rules of a N -(c.l.c.), we

must check that (2.12) satisfies (1.7) and the other components are complex
d-tensors. This is a direct computation. For example:

L
′i
jk = g

′mi
δg

′
jm

δz′k
=

∂z
′m

∂zp
∂z

′i

∂zq
gpq

∂zl

∂z′k

δ

δzl

(
∂zh

∂z′j

∂zr

∂z
′m

ghr

)
=

∂z
′i

∂zq
∂zl

∂z′k

∂zh

∂z′j
Lq
hl +

∂zl

∂z′k

δ

δzl

(
∂zh

∂z′j

)
∂zr

∂z
′m

ghr
∂z

′m

∂zp
∂z

′i

∂zq
gpq

=
∂z

′i

∂zq
∂zl

∂z′k

∂zh

∂z′j
Lq
hl +

∂zl

∂z′k

δ

δzl

(
∂zh

∂z′j

)
∂z

′i

∂zh
.

But ∂z
′i

∂zh
∂zl

∂z
′k

δ
δzl

( ∂z
h

∂z
′j ) =

∂z
′i

∂zh
∂2zh

∂z
′k∂z′j

, knowing that δ
δzl

= ∂
∂zl

−
(1)

N i
l

∂
∂ηi

−
(2)

N i
l

∂
∂ζi

. In this way, we verify (1.7). Analogously it is proved that all the others

entities are complex d -tensors, i.e. F
′i
jk = ∂z

′i

∂zq
∂zl

∂z
′j

∂zh

∂z
′kF

q
lh, e.t.c. �

Proposition 2.8. We have F i
jk =

(1)

M i
k

∂ζj
and Li

jk =

(2)

M i
k

∂ζj
−

(1)

M l
k F i

jl−
(2)

M l
k Ci

jl.

Proof. First, we have

(1)

M i
k

∂ζj
=

∂

∂ζj

(
gmi ∂2L

∂ηk∂ζ
m

)
= gmi∂gjm

∂ηk
− gmpgqi

∂gpq
∂ζj

∂2L

∂ηk∂ζ
m

= gmi∂gjm
∂ηk

− gqi
∂gjq
∂ζp

(1)

Np
k= gmi

(
∂gjm
∂ηk

−
(1)

Np
k

∂gjm
∂ζp

)
= gmi

(
δgjm
δηk

)
= F i

jk.
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For the second formula the steps are similar as above and use the fact that

gmi

(
∂gjm
∂ηp

)
= gmi ∂

∂ζj

(
∂2L

∂ηp∂ζ
m

)
=

∂

∂ζj

(1)

N i
p −gmlgqi

(
∂glq
∂ζj

∂2L

∂ηp∂ζ
m

)
= F i

jp+
(1)

N l
p C

i
lj .

�
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