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CONNECTIONS IN THE HOLOMORPHIC JETS BUNDLE
OF ORDER TWO
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Abstract. In a previous paper, the first author made a general study of the geometry
of JZ9 M jets bundle, which has a holomorphic structure.

In the present paper we define the complex second order Lagrange space (M, L) and
we prove the existence of a special complex nonlinear connection, provided by a complex
spray deduced from the variational problem. With respect to adapted frames of this
(c.n.c.) we emphasize the existence of a N-linear connection, named the Chern-Lagrange
connection on (M, L), which is of (1, 0)-type and will play a fundamental role in the study
of the complex second order Lagrange spaces.
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1. Introduction

Let M be a complex manifold, dimcM = n, (z%) be complex coordinates
in a local chart. The complexified tangent bundle Tc M admits the classical
decomposition TcM = T'M & T" M, where T'M is a holomorphic vector
bundle over M and its conjugate T” M is the anti-holomorphic tangent
bundle.

The holomorphic bundle of k-th order jets differential was introduced
by GREEN and GRIFFITHS in [6] as the sheaf of germs of holomorphic curves
{f: A, = M, feH,, f(0)=2} depending on a complex parameter 6.

By denoting f' = 2o f, Vi = 1,n, f € H.,, according to [14], [15],
f,g € H.,, are said to be k-equivalent, f LJ g, iff f1(0) = ¢%(0) and ?QJ: (0) =
‘59%1 (0), Vi = 1,n, p = 1,k. The class of f is [f] 5 and the set of all classes
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is JEOM = U.yenrMay/ - By 55£(0) = (£(0), 35(0), ..., F5(0)) we denote
the k—jet of f € [f]x .

Let 780 . J®O)Af 5 M be the canonical projection. Then we check
immediately that (J(k’O)M,W(kvo),M) has a fibre bundle structure, named
in [15] the restricted k-jet bundle, and in [5] the parametrized k-jet bundle.
Further on we call it simply the J*9 M jets bundle. Note that J*9 M does
not have a vector bundle structure, aside from k& = 1, when it is identified
with 7"M, the holomorphic tangent bundle.

JEO M has a structure of complex differentiable manifold, whose geo-
metry was discussed in [16].

We note that the rank of the fibre bundle J*®9DM is kn, while the
dimension of complex manifold structure is (k + 1)n.

More generally, a (p,q)-jet on M could be spanned by %(0), %(0),
%(0),%(0),%(0),..., where f € F(M), not necessarily holomorphic
in 2o = f(0). In this position J®P9M is not always holomorphic ([7]).
Certainly, if f is in H,, then %(O) = 0, and it shows that JPOM is a
subbundle (holomorphic) of .J®9) M.

Further on in this paper we will resume our study to the second or-
der jets manifold J(>9(M). We have the decomposition of J(2) (M) =
JEO (M) @ JED(M) @ JO2 (M), where the terms are fiber bundles over
the complex manifold M, the first being a holomorphic bundle which con-
tains the holomorphic second order jets on M.

In the previous paper [16], the first author studied the geometric struc-
ture of the holomorphic bundle J®*9M over the complex manifold M,
such as complex distributions, nonlinear and N-linear connections. Subse-
quently, we resume in brief the framework for the complex manifold J(2% M.
In a local chart, the coordinates are denoted by Z = (2%, 1%, (%), i = 1,n,
and at changes of local charts on M will transform as follow:

(1.1) 2t = Y 2);
. o't .
/1 _ J .

) an/i ) an/i )

2 " - n J 27 J

¢ 97" T 3n1<

92/t _ on't _ a¢t. on't ot
and that 97 — o — BT 8z — -

bundle T'(J®OM) is {5k 507, 55} and in T"(J®OM) it is obtained by

A local base in the holomorphic
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conjugation. The changes of the local basis are made according to the
following rules:

) 02 9 oyi & ac
(12) 9~ 0707 "oz o0 T 9s a0t

i B 8n/z‘ o +8C’i ‘

onJ ond on't ~ omi o'V’

o 8C/i

aci oot

and similarly for the conjugate basis that corresponds in TZH(J (2.0) pr ).

Two structures play a special role in defining the linear and nonlinear
connection on JZY M : the natural complex structure J and the almost
second order tangent structure F', see [11], [16].

A complex nonlinear connection, (c.n.c.) in brief, is given by H (J(0) M)
which is supplementary to W(JZOM) in T'(JZO M), where W, (JZ0 M)
is spanned by {anﬂ , 80} in a local chart. With V(JZ9 M) we denote the
vertical bundle spanned by {%} By conjugation, we obtain the decom-

position for To(JZOM). A local base in H,(JZOM) is called adapted

(1) (2)
) 0

base of the (cn.c.), and it is written as 355 = 55— NJ 5 N; gers it
6 92" 5 ) o
55 = o507~ Lhen F(éz]) = 57 = 8—77]— NJ’ gci sban a local adapted

base in W, (J29M). The changes (1.1) of coordinates on J% M produce
(1) (2)
the changes of the coefficients N and N7 of the (c.n.c.) in the form:

M 5 9,1 M o't
(1.3) N a = 37 NF - ek
202k 92" ](\?3%877” k"
0z 9zk T T 9k T 0z
The adapted basis will qhange as follows: % = ‘3‘2/; 6;5” and 57# =
‘gzj PR Obviously, 50 = %% and so these fields are changing as those
on the base mamfold M. Generally, the geometrical objects which are
changed by 2 o j or by their conjugates %, are called d-tensor fields. The

corresponding adapted basis on 17" (.J29 M) are obtained by conjugation
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. )
everywhere. The relation between the dual cobasis {dz’,dn' = dn'+ M;
o @
dz?,6¢" = d¢'+ M d’ + Mj; dz?} and the adapted basis is given by the
rules:

m @ 2), (2) (1) (1 )
(), (2),
where M; and M} are changing by the following rules (see [16]):

97t (l)k (1,)2- a2k 87]%
i (2) 2 g,k 1) g5 'k i
ozk 77 I 0zl 0%

(O] 1 @
The formulas which make the connection between N i N and M;, M; are:
1 @ 2 @ OQ
M;=N; and M;=N; + N N f. The notion of complex nonlinear connection
is connected with the complex spray notion, which is defined as a field

' 7(2,0) (2 2 )
S € T'(JZO M) with property F oS =., where £= 7' 8n + 2(280
the Liouville field. The spray S has the coefficients G?, thus S = 7’ az, +
2Cz 8(9
n

1 azli . acl 8<
(1.5) 3G :3azjaﬂ—<n 5 25 )

- — 3G (2,1, C)a%‘“ and they are transformed by the rule:

In short, a normal complex nonlinear connection, N-(c.l.c.), is a deriva-
tive law which acts on Tc(JZ9M) with respect to adapted frames, pre-
serves the distributions and is well defined by the set of coefficients DI" =
(ij, Lt F;k, F;k ko C’Z ) which are changing as follows:

/

' 2% 92P 924 021 §2%zP
1. L= 02 O e 02 T
(1.6) 3k 9 9277 9k P + 0zP 027107’

and the others are d-tensors. For details see [16].
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2. The complex Chern-Lagrange connection

In this section we will highlight two (c.n.c.) on Te(J39 M) which will
be very important in the geometry of the JZ0)- holomorphic bundle.

(1), (2).
Proposition 2.1. If M; and M; are the dual coefficients of a (c.n.c.)

on JZOM . then a complex spray is given by:

@ @
(2.1) 3G =M} +2 M (I

Proof. We have to verify the changes (1.6), using (1.2) and (1.5).

95 @ (O 9c" Ot
So(ME 2 MEG) (o C o

Dzk 027 onJ
(2 97k (1) on'k aC’i
VIR N ) VL Bl B )
k 8zﬂn+ K 8z3n+823n
M) g,k o't ac't oc't (2) (1)
i j n i ¢ i ¢ Jo_agli 'k 1i s~k
which is just (1.6).
8/i 6/i 8"“‘ 6/k8" 8/k/
We used here ;7 = 55 and Gl = G ajjhnh = E)Z—/hn h=o. O

Conversely, any complex spray determines a (c.n.c):

Proposition 2.2. If S is a complex spray with coefficients G* which
are changing by the rule (1.5), then

O i @ s
(2.2) mi= 29 = ¢
8<J J 677.7

(1), (2)

determine a (c.n.c) with the dual coefficients M; and M;.
Proof. By differentiating (1.6) with respect to % = %’sz 8?,k
oG 02"k _ q0:iogk g 9% o’ k%2
S 5 = 3% - — 255 — 2" 55a
_ ko2 ot o
= W 550F> agfF = 9k

we ob-

tain 3 If we take into

921 oci 1 5Fac anJ

it

account relations (1.2) and relations 7" a@j R
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follows that aai%éj = %(%’ZZ ].i) = 0. Hence, the first (1.5) rule is ful-
filled. Similarly, by differentiating (1.6) with respect to 3—777 = ginjl 8?;’1 +
g%j 8?’1 we obtain the second rule from formulas (1.5), taking into account
k k9 (on° ko (on' 9 (ke 9
that 2% 57 kanJ =2 wa’lf) = 2527 (5 )— 252 (C" o) = 29 and
k02 ok h 02 o_(oy _ th o oty _
dzkomd azz’h ko — 77 az’h(anj )=n 617] (az/h) =0. 0

Therefore, the problem of determining a (c.n.c.) on JZYM is closely
related with the problem of determining a complex spray. In the real case,
3], [4], [8], [9], [12], and in the complex Lagrange space (of first order), [10],
one method to determine a spray to use a variational problem. A similar
technique will be followed in this paper.

Definition 2.3. A complex second order Lagrange space is a pair
(M, L), where L : JZ9M — R is a smooth function of order at least
two, with the Hermitian matrix

9L
a¢ioc’

non-degenerated.

Let c(t) be a differentiable curve of class C'°°° on M and c( ) its extension
at JZOM defined by t € R — (2°(t), n'(t) = dt = (i) =12 dt‘é ). Because t
is a real parameter, the variational problem for the complex second order
Lagrangian L leads us to very similar calculations as in the real case, i.e.

to Euler-Lagrange equation:

oL dor 1 (on\
0z¢  dtomt  2dt2\o¢t)

(2.4)

Actually, L(z,n,() depends implicitly on the conjugates of these variable.
In this way, along the curve ¢ we have

d dJ 9 dF 9 _dy 9 _dip &  dF 9 _dT 9

dt " dt 02 dt 0@ | dt ow | dt gip | dt 00 | dt o

dz

or, taking into account that 7/ = % and 2{3 — 2 _ o)

g = g7 using (as in
the real case) the operator I' = 77] 557 + 2¢7 2 el along the curve ¢, we have:
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dt =T +T+324% g 30 + degg ek As a result, the Euler-Lagrange equation

(2.4) is rewritten:

oL d (0L oL, =, 0L d327 d>z

2.5 - — — - —T'(=—)-T 3gij—= —39:——= ¢ =0
(25) 55 dt{(%f (ocr) T (Gq) =390 — 395 d#‘}
where g;; = %. As we will see below, the vanishing of the bracket in
(2.5), named as in the real case, the complex Craig-Synge covector:

oL d (0L
2.6 E(L)=——+— .
(2:6) =55+ % (56)

will play a fundamental role in determining the (c.n.c.). If we ignore the
general expression of the % along the ¢, the equations F;(L) = 0 are a
consequence of the first order variational problem for the curve restriction
¢ at the distributions W (J2%M). In the complex Finsler spaces ([13]),
ROYDEN studied the problem of complex geodesics which are holomorphic
curves ¢ : A, — M with the property that v(t) = c(e?t) is tangent at
all lines from z, V6 € R. This leads to simultaneous cancellation of the
Hermitian and nonhermitian terms in the Euler-Lagrange equation. If we
use the same reasoning for the equations E;(L) = 0 from (2.5), then we
have the system of equations:

d32 oL oL
7z — (0L

For the moment, we leave the equations (2.7) as an algebraic require-
ment. In a complex Finsler space, an analogous condition to the first re-
quirement from the formulas (2.7) is equivalent with the weakly Kahler
metrics, [1], [2], [10], [17]. By conjugation, the second condition from the
formulas (2.8) gives:
d2ni
dt?

(2.9) +m%wﬂmdDJ)WM3g_wT@?>

that is 3G* = g™

J
9z Jac ) aag’”c
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1 (@
Theorem 2.4. The pair M}, M} determines the dual coefficients of a
(c.n.c.), named Chern-Lagrange connection, where

(1)‘ . 8L (2) _. H%L
(2.10) MJZ': 9" ——== ; MJZ: 9" ——=m.
onioc¢ 0210¢
Proof. By using (1.2) and direct calculus, we verify the (1.5) rules of
transformation for the coefficients of the (c.n.c.). We have:

021 ]&)k 04 L 0L

92k 9 T gk oC" i
L 02709zP . 0 (ot oL N ¢t oL
“ oo Gev \ o o T o g™

o L och 0ot o
o’ gyraC” oni TR g o
which is the first condition from (1.5). Analogously we have:

921 B 9t . 2L

_ m

Mk = -
o7k 1 T kY 9" 9z
9 <az’h oL an oL ¢t 8L>

Ipi

=9 927 02" Dz o T 97 aC'h

ac”
(2 9 1) on'h oc'
st 1 O i ¢ -
A My 927 T97 5 n
i.e. the second condition from (1.5). O

From Proposition 2.1 and the previous Theorem, we deduce that:

Corollary 2.5. The functions G* given by (2.10) define a complex spray
(&

on JEON | called the canonical spray and denoted by G'. Following the
(1)e
Proposition 2.2, we can obtain a sequence of (c.n.c.). The functions M=
ct (2)0 ct
%?j and Mj= ggj will be called the coefficients of the canonical (c.n.c.).
The terminology of the complex Chern-Lagrange nonlinear connection
and the canonical one, used here, is purely formal and it was introduced by

analogy with that from complex Lagrange spaces (of first order), [10].
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1)
Proposition 2.6. If % = W_ N]’ B¢t is the adapted base of the

complex Chern-Lagrange nonlinear connection, then

)
2.11 B
(211) [W’én’“] !

Proof. We have

(1) (1)
[5 5]_<5M}_6M,§)6 SO L

s ok |~ \ ok T e Jag TBum pa

By direct calculus, using the relations (2.9), we find after the reduction
(1) (1) (1) (1) (1)
of the terms, that: B ;)= gm’(Nth - Nth)aagéZL. Because %qéhﬁ is
symmetric in indices [ and h and the bracket is anti-symmetric, changing [
(1) e

with h, we obtain that B ;= — Bjy), so it cancels. U
For other brackets of the adapted frames, the computations are quite
complicated.

Further on, we want to determine a derivation law which we wish to be

a complex N-linear connection, with respect to the adapted frames of the

Chern-Lagrange (c.n.c.). Let (M, L) be a complex second order Lagrange
o o @ @ @O0

space with the metric tensor g,5(2,7, ¢) and (N;=M;, N;=M; — M’Mk) the

521)612 . 517175 =

and {dz',6n",0("} the dual basis adapted to the (c.n.c.) C-L. Then

Chern Lagrange (c.n.c.) given by (2.10). We set dg; :=

6<17
(212) G = giEdZ’L ®dz? + ggéT]l & 577‘7 + gﬁ&l & (SC
defines a metric structure on Ta(J 29 M).

Theorem 2.7. The set of the coefficients:

@13) L =95k =0T G =9

and L%k = F;k = C’;k = 0, define a N -(c.l.c.) on JEOM, which is a

metric one by extension at TC(J(Q’O)M) and it is of (1,0)-type, named the
Chern-Lagrange connection.
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Proof. Let D be a derivation law on J(2% M which acts on the adapted
fields from Te(J 20 M). D is metricif DG = 0,i.e. XG(Y,Z) = G(DxY, Z)
+G(Y,DxZ2),VX,Y,Z € I'Tc(JZYM). If we consider D of (1,0)-type, i.e.

Lik = Fz = Cl = 0, and if we take in turns X = do,Y = do;, Z = dom,

then X = (Sok,Y = 51],2 = 0177 and X = 6o, Y = 52],Z = o, TES-
) : o @ 5m
pectively, it results that L =L =L ;= ¢ g 5%". Analogously, for the

. (NN C) S
choice X = 014,Y = 015, Z = d1m we find Fj,=F j;)=F j= g™ 5% Res-

pectively, for the choice X = 6oy, Y = 825, Z = dom (and other choices) we

O K GO L) L '
obtain C'j,=C;p,=C ;= gm”ﬁ. To achieve the rules of a N-(c.l.c.), we

must check that (2.12) satisfies (1.7) and the other components are complex
d-tensors. This is a direct computation. For example:

i i Om _ 0Fm 02t o 92l 5 (9:h oz
kTS T gz 0249 97k 524 \ 92 gz m I
8 92t 9zt [ 92! i o2\ oz 9z™ 9t _
= 90k 01 T 975\ 577 ) o7 o 9 ¥
02 921 9z ) 92"\ 07
= L4 4+ — : )
029 92’k 923 T 9k 520 \ 925 ) 9z

. (1) (2)
But 92" 92l 5 (8zh) _ 92 9%k Ni ;
0zh 927k 821\ 9,73/ T 8zh 9,/k95 5 8zl l 87]

8 i In this way, we verify (1.7). Analogously it is proved that all the others

knowing that 55

entities are complex d -tensors, i.e. FJ}~C %zq (;')Zzlj gzlk Fi, et.c. O
(1) (2) (1) 2)
Proposition 2.8. We have Fl A/é and L;k 80 Mk FZ M,f; C;:l.

Proof. First, we have

1)
Mg 0 < i L > _ mi0gjm _mp m‘@gpﬁ L
onrac” o~ 908 anpac

i OYjm 709 ) i [ 095m v 99 mi [ 09jm i
=g~ g M= 9T G M a | =9 () = Bk

aCi ~ aci
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For the second formula the steps are similar as above and use the fact that

10.

mz’<agjm>_ mi6< 0L >
g onp g 9¢7 \ onrac™

o 1 o (Ogiz 92L ) O
_ i ml g q . Ui,
aci N, —g™yg <8(j anpaCm) F;,+ N, Cj;.
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