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Abstract. This paper concerns the solution of initial value problems (IVPs) in
ordinary differential equations (ODEs) of orders higher than unity. The Chebyshev poly-
nomials is hereby adopted as basis function in a multi-step collocation technique for the
derivation of continuous integration schemes for direct solution of these ODEs without
recourse to the conventional approach of first reducing such to their equivalent first order
differential systems.
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1. Introduction

We shall consider the class of IVPs in the m-th order ODE:

y(m)(x) = f(x, y(x), y(1)(x), y(2)(x), y(3)(x), · · · , y(m−1)(x))(1)

y(r)(a) = ηr, r = 0(1)m− 1,(2)

for a ≤ x ≤ b < +∞ and where a, b, ηr, r = 0(1)m − 1, are given real
constants. The solution of the IVP (1)-(2) will be sought over the discetized
interval [a, b]:

(3) a = x0 < x1 < x2 < x3 < · · · < xn−2 < xn−1 < xn = b

with uniform steplength h = (b− a)/n.
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Techniques for the integration of the IVP (1)-(2) exist in the litera-
ture (see Adeniyi [1], Lambert [9], Onumanyi et al [10], Fatunla [5],
Awoyemi et al [4]), some of which involve the reduction into a system
of first order problems. However, in this work, we propose direct integra-
tion of the IVP (1)-(2) by employing the Chebyshev polynomial (see Fox
[6], Gerald [8], Sastry [11]) as basic function in a multi-step collocation
procedure, to derive continuous schemes for the class.

In what follows in the next section, we briefly review an antecedent of
the procedures as reported by Adeniyi et al [2,3]. Section 3 addresses
the central concern of this paper, the derivation of continuous schemes for
the IVP (1)-(2), based on Chebyshev polynomials, section 4 presents some
numerical examples for illustration and authentication while section 5 finally
closes the paper with some concluding remarks.

2. Chebyshev-collocation techniques for first order ODEs

In Adeniyi et al [2,3], we reported that the class of IVPs in first order
ODE:

y′(x) = f(x, y(x)), a ≤ x ≤ b < +∞(4)

y(a) = y0(5)

may be solved by seeking an approximant:

(6) Y (x) =

M∑
r=0

arTr(x), 0 < M < +∞

of y(x) which satisfies the equivalent problem:

Y ′(x) = f(x, Y (x)), xk ≤ x ≤ xk+p(7)

Y (xk) = Yk(8)

over each sub-interval (3) of [a,b], and where M and p are determined by
the class and the step number of the method to be derived. The polynomial
Tr(x) in (6) is r-th degree Chebyshev polynomial valid in the interval and
it is defined by (see Adeniyi [1])

(9) Tr(x) = cos[n cos−1 (2x− b− a)/(b− a)− 1] ≡
r∑

k=0

Cr
kx

r
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and it satisfies in [a,b], the recurrence relation:

Tr+1(x) = 2(2x− b− a)/(b− a)Tr(x)− Tr−1(x)(10)

T0(x) = 1(11)

T1(x) = (2x− b− a)/(b− a).(12)

The polynomial Tr(x) performs much better in function approximation
problems than the Taylor’s polynomial (see Fox and Parker [7]) whose
accuracy diminishes as one moves away from the origin. By interpolating
(6) and collocating (7) at some appropriately chosen points, a wide range
of classes of methods were successfully derived. They included continuous
optimal order methods (see Adeniyi and Alabi [2]), predictor-corrector
methods, backward differentiation formulae and hybrid schemes. An exten-
sion of this collocation method to the class (1)-(2) will now considered in
the next section.

3. A Chebyshev-collocation method for higher order ODEs

We consider here the solution of the class of IVP (1)-(2) by seeking the
approximant of y(x) of the form (6), that is:

(13) Y (x) =
M∑
r=0

arTr(x), 0 < M < +∞

over each of the sub-inerval [xk, xk+p] of [a,b] and where,in this case,M = 2n
and p = n. So then, the problem we are concerned with is:

Y (m)(x) = f(x, Y (x), Y (1)(x), Y (2)(x), Y (3)(x), · · · , Y (m−1)(x))(14)

Y (xk) = Yk(15)

Y (x) =
2n∑
r=0

arTr(x) =
2n∑
r=0

arTr

(
2x

nh
− 2k

n
− 1

)
(16)

over the sub-interval xk ≤ x ≤ xk+n. Our points of collocation for (14)
are xk+r, r = 0(1)k + n and the points of interpolation for (16) are xk+r,
r = 0(1)k + n − 1. We now proceed from here to consider some specific
cases of (14)-(16).



314 R.B. ADENIYI and M.O. ALABI 4

3.1. A two-step method

For an integration scheme of two-step number, we set n = 2 in (14)-(16) to
have:

Y (2)(x) = f(x, Y (x), Y (1)(x)), xk ≤ x ≤ xk+2(17)

Y (xk) = Yk(18)

Y (x) =

2n∑
r=0

arTr(x) =

4∑
r=0

arTr(
x

h
− k − 1).(19)

We collocate (17) at xk+r, r = 0(1)2 and interpolate (19) at xk+r, r = 0, 1
to obtain the linear system:

1 −1 1 −1 1
1 0 −1 0 1
0 0 4 −24 80
0 0 4 0 −16
0 0 4 24 80



a0
a1
a2
a3
a4

 =


Yk
Yk+1

h2fk
h2fk+1

h2fk+2

 .(20)

We solve (20) for ar, r = 0(1)4, and insert the resulting values in (19) to
obtain our proposed continuous integration scheme:

Y (x) =
h2

192

{
[12

(x− xk)

h
− 2

(x− xk)
3

h3
+

(x− xk)
4

2h4
]fk

+ [40
(x− xk)

h
+ 24

(x− xk)
3

h3
− (x− xk)

4

h4
]fk+1(21)

+ [−4
(x− xk)

h
+ 2

(x− xk)
3

h3
+

(x− xk)
4

2h4
]fk+2

}
−

{
1

2

(x− xk)

2
Yk − [2 +

x− xk
h

]Yk+1

}
.

At the grid point xk+2, this reproduces the well-known Numerov’s scheme:

(22) Yk − 2Yk+1 + Yk+2 =
h2

12
(fk + 10fk+1 + fk+2)

which is an optimal fourth order method. From (22) we obtain fk+2 for our
proposed continuous scheme (21).
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3.2. A three-step method

By letting n = 3 in (14)-(16), we have

Y (3)(x) = f(x, Y (x), Y (1)(x), Y (2)(x)), xk ≤ x ≤ xk+3(23)

Y (xk) = Yk(24)

Y (x) =

2n∑
r=0

arTr(x) =

6∑
r=0

arTr(
2x

3h
− 2k

3
− 1).(25)

We collocate (23) at xk+r, r = 0(1)3 and interpolate (25) at xk+r, r = 0, 1, 2
to obtain the linear system:

1 −1 1 −1 1 −1 1
729 −243 −567 621 153 −723 329
729 243 −567 −621 153 723 329
0 0 0 192 −1536 6720 −24576
0 0 0 5184 −13824 −2880 24576
0 0 0 5184 13824 −2880 −24576
0 0 0 192 1536 6720 24576





a0
a1
a2
a3
a4
a5
a6


=



Yk

729Yk+1

729Yk+2

27h3fk
729h3fk+1

729h3fk+2

729h3fk+3


.

By solving this matrix equation for ar, r = 0(1)6, and inserting the resulting
values in (25) we obtain our proposed continuous integration scheme:

Y (x) =
h3

163840
{[110− 1024

(x− xk)

3h
− 2432

(x− xk)
2

9h2

+ 640
(x− xk)

3

27h3
+ 2736

(x− xk)
4

81h4
+ 64

(x− xk)
5

243h5
+ 2592

(x− xk)
6

729h6
]fk

+ [−9187− 4096
(x− xk)

3h
+ 76657

(x− xk)
2

9h2
+ 45440

(x− xk)
3

27h3

+ 42768
(x− xk)

4

81h4
− 64

(x− xk)
5

243h5
+ 7776

(x− xk)
6

729h6
]fk+1

+ [−1328− 4096
(x− xk)

3h
16044

(x− xk)
2

9h2
+ 45440

(x− xk)
3

27h3

+ 42768
(x− xk)

4

81h4
− 64

(x− xk)
5

243h5
− 7776

(x− xk)
6

729h6
]fk+2(26)

+ [16− 1024
(x− xk)

3h
− 2788

(x− xk)
2

9h2
+ 640

(x− xk)
3

27h3

− 2736
(x− xk)

4

81h4
+ 64

(x− xk)
5

243h5
+ 2592

(x− xk)
6

729h6
]fk+3}
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+
1

163840
{[−20480 + 18430

(x− xk)

9h2
]Yk

+ [122880− 245760
(x− xk)

3h
+ 184320

(x− xk)
2

9h2
]Yk+1

+ [61440 + 245760
(x− xk)

3h
+ 184320

(x− xk)
2

9h2
]Yk+2}.

This gives, at the grid point xk+3, the finite difference scheme:

(27) 3Yk+1 − 3Yk+2 + Yk+3 =
h3

2
(fk+1 + fk+2).

3.3. A four-step method

By setting n = 4 in (14)-(16), we have the following problem to consider:

Y (4)(x) = f(x, Y (x), Y (1)(x), Y (2)(x), Y (3)(x)), xk ≤ x ≤ xk+4(28)

Y (xk) = Yk(29)

Y (x) =

2n∑
r=0

arTr(x) =

8∑
r=0

arTr(
x

2h
− k

2
− 1).(30)

We collocate (28) at xk+r, r = 0(1) and interpolate (30) at xk+r, r = 0(1)3
to obtain the linear system:

1 −1 1 −1 1 −1 1 −1 1
2 −1 −2 2 −1 −1 2 −1 −1
1 0 −1 0 1 0 −1 0 1
2 1 −1 −2 −1 1 2 1 −1
0 0 0 0 12 −120 648 −2520 7920
0 0 0 0 12 −60 108 0 −360
0 0 0 0 12 0 −72 0 240
0 0 0 0 12 60 108 0 −360
0 0 0 0 12 120 648 2520 7920





a0
a1
a2
a3
a4
a5
a6
a7
a8


=



Yk
2Yk+1

Yk+2

2Yk+3

h4fk
h4fk+1

h4fk+2

h4fk+3

h4fk+4


.

By solving this system for ar, r = 0(1)8, and substituting the resulting
values in (30) we obtain our proposed continuous integration scheme:

Y (x) =
h4fk
60480

{55(x− xk)

2h
+ 11

(x− xk)
2

8h2
+ 77

(x− xk)
3

8h3
− 21

(x− xk)
5

16h5

− 7
(x− xk)

6

64h6
+ 3

(x− xk)
7

64h7
+−6

(x− xk)
8

1024h8
}+ h4fk+1

15120
{−493

(x− xk)

2h
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− 53
(x− xk)

2

8h2
+ 287

(x− xk)
3

8h3
− 42

(x− xk)
5

16h5
+ 7

(x− xk)
6

64h6

+ 6
(x− xk)

7

256h7
− 6

(x− xk)
8

1024h8
}+ h4fk+2

10080
{553(x− xk)

2h

− 1546
(x− xk)

2

16h2
+ 1106

(x− xk)
3

16h3
+ 420

(x− xk)
5

16h5

+ 35
(x− xk)

6

64h6
+ 6

(x− xk)
7

64h7
+ 6

(x− xk)
8

1024h8
}

+
h4fk+3

15120
{59(x− xk)

2h
− 106

(x− xk)
2

16h2
− 280

(x− xk)
3

16h3
(31)

+ 168
(x− xk)

5

64h5
+ 7

(x− xk)
6

16h6
+ 6

(x− xk)
7

256h7

− 6
(x− xk)

8

1024h8
}+ h4fk+4

60480
{−82

(x− xk)

4h
+ 11

(x− xk)
2

8h2

+ 77
(x− xk)

3

8h3
− 21

(x− xk)
5

16h5
− 7

(x− xk)
6

64h6
+ 3

(x− xk)
7

64h7

+ 6
(x− xk)

8

1024h8
}+ Yk

3
{(x− xk)

4h
− (x− xk)

3

16h3
} − Yk+1

4
{2(x− xk)

h

− (x− xk)
2

2h2
− (x− xk)

3

4h3
}+ Yk+2{1 +

(x− xk)

4h

− (x− xk)
2

2h2
− 4h2 +

(x− xk)
3

16h3
}.

The corresponding finite difference scheme, at the grid point xk+4, is there-
fore:

Yk − 4Yk+1 + 6Yk+2 − 4Yk+3 + Yk+4

= − h4

720
(fk − 124fk+1 − 474fk+2 − 124fk+3 + fk+4)

which is of sixth order with error constant 1
3024 .

3.4. A six-step method

For a six-step method, the steps which led to the results of the prece-
ding subsection yielded, at the grid point xk+6, the discrete/finite difference
scheme:

49483Yk+6 + 785862Yk+5 + 790965Yk+4 − 3252620Yk+3

+ 790965Yk+2 + 785862Yk+1 + 49483Yk = h2(1857fk+6
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+ 110322fk+5 + 989739fk+4 + 2175924fk+3 + 989739fk+2

+ 110322fk+1 + 1857fk)(32)

In a similar vein, Awoyemi et al [4] engaged the monomials xr to obtain,
for a six-step method, the discrete numerical integration scheme:

539Yk+6 − 4374Yk+5 + 32805Yk+4 − 57940Yk+3 + 32805Yk+2

− 4374Yk+1 + 539Yk = h2(60fk+6 + 20040fk+3 + 60fk).(33)

Remark. We remark here that, for want of available space, the
corresponding continuous schemes for the last two methods, that is, method
(32) and method (33) are not included here.

3.5. An analysis of the methods

We provide here an analysis, by way of determining the error and error
constants, of our schemes. For illustration, we shall consider this analysis
for the method (32).

The linear multi-step method (LMM):

(34)

k∑
r=0

αryn+r = h2
k∑

r=0

βrfn+r

is said to be of order p if Cr = 0 for r = 0(1)p+ 1 but Cp+2 ̸= 0, where

C0 =
k∑

r=0

αr

C1 =

k∑
r=0

rαr(35)

C2 =
1

2!

k∑
r=0

r2αr −
k∑

r=0

βr

Cq =
1

q!

k∑
r=0

rqαr −
1

(q − 1)!

k∑
r=0

rq−2βr.

The quantities Cp+1 and Cp+2h
p+2yp+2(xn) are respectively the error con-

stant and principal truncation error of (34).
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Now, for the scheme (32), we have

α0 = 49483, α1 = 785862, α2 = 790965, α3 = −3252620, α4 = 790965,

α5 = 785862, α6 = 49483, β0 = 1857, β1 = 110322,

β2 = 989739, β3 = 217592, β4 = 989739, β5 = 110322, β6 = 1857.

By employing (35), we obtain Cr = 0 for r = 0(1)9, and C10 = −0.00048.
Thus the scheme (32) is of order 8 and with an error constant C10 =
−0.00048.

4. Numerical example

We consider here an example for implementation of the algorithm of the
schemes (32) and (33), and their corresponding continuous schemes.

Table 1: Errors of Methods for Example 4.1 with h = 0.1
x Cont.scheme Cont. scheme for (32) Scheme (32) Scheme (33)

f or (33) for (32)
0.0 0.0 0.0 0.0 0.0
0.1 0.1329867326D-09 0.1708719055D-09
0.2 0.5872691257D-08 0.6836010114D-08
0.3 0.1327845616D-07 0.1555757709D-07
0.4 0.2317829012D-07 0.2880198295D-07
0.5 0.3218793564D-07 0.4802328029D-07
0.6 0.6871246012D-07 0.7628531256D-07
0.7 0.1012728156D-06 0.1157914170D-06
0.8 0.1231093271D-06 0.1727046080D-06
0.9 0.2019286712D-06 0.2561456831D-06
1.0 0.2990871645D-06 0.3815695118D-06 0.2990871645D-06 0.3815695118D-06

Example 4.1.

y(2)(x) = x(y(2))2, 0 ≤ x ≤ 1

y(0) = 1

y(1)(0) =
1

2
.

The analytical solution is

y(x) = 1 +
1

2
ln

(
2 + x

2− x

)
.

See Table 1 for some computed results.
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5. Conclusion

A continuous formulation of some finite difference numerical schemes for
direct integration of initial value problems in ODEs of higher order than
unity and for which the Chebyshev polynomials was employed as the basis
function in a multi-step collocation approach has been presented.

The circumvention of the usual first step of reducing the ODEs to sys-
tems of first order equations before the actual process of solution makes the
derived schemes desirable. The efficiency of these schemes, derived from
their ability to yield several output of solutions at the off-grid points with-
out requiring additional interpolation and at no extra cost, renders them
attractive for application for higher order ODEs.

We also note that our derived scheme, when tested on a problem per-
formed better than the scheme (33) in terms of accuracy, thus supporting
the theoretical smaller error constant.
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