UNIQUENESS OF ENTIRE FUNCTIONS*

\mathbf{BY}

YI ZHANG and WEI-LING XIONG

Abstract. In this paper, we study the uniqueness problems on meromorphic functions sharing a finite set. The results extend and improve some theorems obtained earlier by FANG (2002) and ZHANG-LIN (2008).

Mathematics Subject Classification 2000: 30D35.

Key words: uniqueness, meromorphic function, entire function, share value.

1. Introduction and results

In this paper, we will use the standard notations of Nevanlinna's value distribution theory (cf. [2], [5]).

Let f be a nonconstant meromorphic function in the whole complex plane \mathbb{C} , we set $E(a,f)=\{z|f(z)-a=0,\text{counting multiplicties}\}$. In general, put $E(S,f)=\bigcup_{a\in S}E(a,f)$, where S denotes a set of complex numbers. Let k be a positive integer. Set

$$E_k(S, f) = \bigcup_{a \in S} \{ z | f(z) - a = 0, \exists i, 0 < i \le k, \text{ s.t. } f^{(i)}(z) \ne 0 \},$$

where each zero of f(z) - a with multiplicity m counted m times when $m \le k$ in E(S, f).

Let f and g be two nonconstant entire functions, n, m, l, t and p be positive integers, we set

(1.1)
$$F = [f^n(f^l - 1)^t]^{(p)}, G = [g^n(g^l - 1)^t]^{(p)},$$

^{*}Supported by NSF of Guangxi China (0728041).

(1.2)
$$H_m = \frac{(F^m)''}{(F^m)'} - 2\frac{(F^m)'}{F^m - 1} - \frac{(G^m)''}{(G^m)'} + 2\frac{(G^m)'}{G^m - 1}$$

and $S_m = \{1, \omega, \omega^2, \cdots, \omega^{m-1}\}$, where $\omega^{=}e^{\frac{2\pi}{m}i}$. In 2002, FANG proved the following result.

Theorem A ([1]). Let f and g be two nonconstant entire functions, and let n, k be tow positive integers with n > 2k + 8. If $[f^n(z)(f(z) - 1)]^{(k)}$ and $[g^n(z)(g(z) - 1)]^{(k)}$ share 1 CM, then $f(z) \equiv g(z)$.

In a latter paper, Zhang and Lin improved Theorem A and obtained the following result.

Theorem B ([4]). Let f and g be two nonconstant entire functions, and let n, m and k be three positive integer with n > 2k + m + 4. If $[f^n(z)(f(z) - 1)^m]^{(k)}$ and $[g^n(z)(g(z) - 1)^m]^{(k)}$ share 1 CM, then $f(z) \equiv g(z)$ or f and g satisfy the algebraic equation $R(f,g) \equiv 0$, where $R(\omega_1,\omega_2) = \omega_1^n(\omega_1 - 1)^m - \omega_2^n(\omega_2 - 1)^m$.

In this article, we prove

Theorem 1. Let f and g be two transcendental entire functions, n, m, t, l, p be positive integers. If $E_1(S_m, [f^n(f^l-1)^t]^{(p)}) = E_1(S_m, [g^n(g^l-1)^t]^{(p)})$ and $n > \frac{6}{m} + 3tl + 4p$, then $f(z) \equiv bg(z)$, where $b^l = 1$.

2. Lemmas

To prove the theorem, we need the following lemmas.

Lemma 1 ([3]). Let f(z) be a nonconstant meromorphic function, k be a positive integer, if $f^{(k)} \not\equiv 0$, then $N(r, \frac{1}{f^{(k)}}) \leq N(r, \frac{1}{f}) + k\overline{N}(r, f) + S(r, f)$.

Lemma 2. Let F, G be defined as (1.1) and (1.2). If $E_1(S_m, F) = E_1(S_m, G)$, and $n > \frac{6}{m} + 3tl + 4p$, then $H_m \equiv 0$.

Proof. If $H_m \not\equiv 0$, then $E_1(1, F^m) = E_1(1, G^m)$, since $E_1(S_m, F) = E_1(S_m, G)$. Suppose that z_0 is a common simple zero point of $F^m - 1$ and $G^m - 1$, then it follows from (1.2) that z_0 is a zero point of H_m , and zero point of F^m or G^m with multiplicity 1 also are not poles of H_m . Thus, we

have

$$N_{1}\left(r, \frac{1}{F^{m}-1}\right) = N_{1}\left(r, \frac{1}{G^{m}-1}\right) \le N\left(r, \frac{1}{H_{m}}\right) \le T(r, H_{m}) + O(1)$$

$$\le N(r, H_{m}) + S(r).$$

By the definition of H_m , we have poles of H_m with multiplicity 1. Thus

$$N_{1}\left(r, \frac{1}{F^{m}-1}\right) = N_{1}\left(r, \frac{1}{G^{m}-1}\right) \leq \overline{N}_{(2}\left(r, \frac{1}{F^{m}}\right) + \overline{N}_{(2}\left(r, \frac{1}{G^{m}}\right) + \overline{N}_{(2}\left(r, \frac{1}{G^{m}}\right) + \overline{N}_{(2}\left(r, \frac{1}{F^{m}-1}\right) + \overline{N}_{(2}\left(r, \frac{1}{F^{m}-1}\right) + \overline{N}_{(2}\left(r, \frac{1}{G^{m}-1}\right) + S(r).$$

Where $S(r) = \max\{S(r, f), S(r, g)\}.$

By the second fundamental theorem, we have

$$T(r, F^{m}) + T(r, G^{m}) \leq \overline{N}\left(r, \frac{1}{F^{m}}\right) + \overline{N}\left(r, \frac{1}{F^{m} - 1}\right) + \overline{N}\left(r, \frac{1}{G^{m}}\right)$$

$$(2.2) \qquad + \overline{N}\left(r, \frac{1}{G^{m} - 1}\right) - \left[N_{0}\left(r, \frac{1}{(F^{m})'}\right) + N_{0}\left(r, \frac{1}{(G^{m})'}\right)\right] + S(r).$$

By Lemma 1, we get $N(r, \frac{1}{(G^m)'}) \leq N(r, \frac{1}{G^m}) + S(r)$. Thus

$$\overline{N}_{0}\left(r, \frac{1}{(G^{m})'}\right) + \overline{N}_{(2}\left(r, \frac{1}{G^{m} - 1}\right) + N_{(2}\left(r, \frac{1}{G^{m}}\right) - \overline{N}_{(2}\left(r, \frac{1}{G^{m}}\right) \\
\leq N\left(r, \frac{1}{(G^{m})'}\right) \leq N\left(r, \frac{1}{G^{m}}\right) + S(r).$$

It follows that

$$(2.3) \overline{N}_0\left(r, \frac{1}{(G^m)'}\right) + \overline{N}_{(2)}\left(r, \frac{1}{G^m - 1}\right) \le \overline{N}\left(r, \frac{1}{G^m}\right) + S(r).$$

Similarly, we have

$$(2.4) \overline{N}_0\left(r, \frac{1}{(F^m)'}\right) + \overline{N}_{(2)}\left(r, \frac{1}{F^m - 1}\right) \le \overline{N}\left(r, \frac{1}{F^m}\right) + S(r, f).$$

From (2.1)-(2.4) we have

$$m(T(r,F) + T(r,G)) \leq \overline{N}\left(r, \frac{1}{F^m}\right) + \overline{N}_{1}\left(r, \frac{1}{F^m - 1}\right)$$

$$+ \overline{N}_{(2}\left(r, \frac{1}{F^m - 1}\right) + \overline{N}\left(r, \frac{1}{G^m}\right) + \overline{N}_{1}\left(r, \frac{1}{G^m - 1}\right)$$

$$+ \overline{N}_{(2}\left(r, \frac{1}{G^m - 1}\right) - \left[N_0\left(r, \frac{1}{(F^m)'}\right) + N_0\left(r, \frac{1}{(G^m)'}\right)\right]$$

$$+ S(r) \leq 4\overline{N}\left(r, \frac{1}{F^m}\right) + 4\overline{N}\left(r, \frac{1}{G^m}\right) + 2\overline{N}_{(2}\left(r, \frac{1}{F^m}\right)$$

$$+ 2\overline{N}_{(2}\left(r, \frac{1}{G^m}\right) + S(r).$$

Since

$$\begin{split} & \overline{N} \left(r, \frac{1}{F^m} \right) + \overline{N}_{(2} \left(r, \frac{1}{F^m} \right) \leq N \left(r, \frac{1}{F^m} \right) \\ & - \left[N_{(3} \left(r, \frac{1}{F^m} \right) - 2 \overline{N}_{(3} \left(r, \frac{1}{F^m} \right) \right], \end{split}$$

and

$$N_{(3}\left(r,\frac{1}{F^m}\right) - 2\overline{N}_{(3}\left(r,\frac{1}{F^m}\right) \ge [m(n-p) - 2]N\left(r,\frac{1}{f}\right),$$

we have

(2.6)
$$\overline{N}\left(r, \frac{1}{F^m}\right) + \overline{N}_{(2}\left(r, \frac{1}{F^m}\right) \\ \leq N\left(r, \frac{1}{F^m}\right) - [m(n-p) - 2]N\left(r, \frac{1}{f}\right).$$

Similarly,

(2.7)
$$\overline{N}\left(r, \frac{1}{G^m}\right) + \overline{N}_{(2}\left(r, \frac{1}{G^m}\right) \\ \leq N\left(r, \frac{1}{G^m}\right) - [m(n-p) - 2]N\left(r, \frac{1}{g}\right).$$

Combining (2.5)-(2.7), we have

$$\begin{split} &m[T(r,F)+T(r,G)]\leq 2\overline{N}\left(r,\frac{1}{F^m}\right)+2\overline{N}\left(r,\frac{1}{G^m}\right)\\ &+2\left[N\left(r,\frac{1}{F^m}\right)-(m(n-p)-2)N\left(r,\frac{1}{f}\right)\right]\\ &+2\left[N\left(r,\frac{1}{G^m}\right)-(m(n-p)-2)N\left(r,\frac{1}{g}\right)\right]+S(r)\\ &\leq 2\overline{N}\left(r,\frac{1}{F^m}\right)+2\overline{N}\left(r,\frac{1}{G^m}\right)+2N\left(r,\frac{1}{F^m}\right)+2N\left(r,\frac{1}{G^m}\right)\\ &-2(m(n-p)-2)\left[N\left(r,\frac{1}{f}\right)+N\left(r,\frac{1}{g}\right)\right]+S(r)=4N\left(r,\frac{1}{F^m}\right)\\ &+4N\left(r,\frac{1}{G^m}\right)-[4m(n-p)-6)\left[N\left(r,\frac{1}{f}\right)+N\left(r,\frac{1}{g}\right)\right]+S(r). \end{split}$$

By Lemma 1, we have

$$\begin{split} & m\left(m\left(r,\frac{1}{F_1}\right) + m\left(r,\frac{1}{G_1}\right)\right) \leq m\left(m\left(r,\frac{1}{F}\right) + m\left(r,\frac{1}{G}\right)\right) + S(r) \\ & \leq 3m\left[N\left(r,\frac{1}{F}\right) + N\left(r,\frac{1}{G}\right)\right] - \left[4m(n-p) - 6\right)\left[N\left(r,\frac{1}{f}\right) + N\left(r,\frac{1}{g}\right)\right] \\ & + S(r) \leq 3m\left[N\left(r,\frac{1}{F_1}\right) + N\left(r,\frac{1}{G_1}\right)\right] \\ & - \left[4m(n-p) - 6\right)\left[N\left(r,\frac{1}{f}\right) + N\left(r,\frac{1}{g}\right)\right] + S(r), \end{split}$$

where $F_1 = f^n(f^l - 1)^t$, $G_1 = g^n(g^l - 1)^t$. It follows that

$$m[T(r, F_1) + T(r, G_1)] \le 4m \left[N\left(r, \frac{1}{F_1}\right) + N\left(r, \frac{1}{G_1}\right) \right]$$
$$- \left[4m(n-p) - 6 \right) \left[N\left(r, \frac{1}{f}\right) + N\left(r, \frac{1}{g}\right) \right] + S(r).$$

We get $[m(n+tl)-4mtl-4mp-6][T(r,f)+T(r,g)] \leq S(r)$, which contradicts the assumption that $n>\frac{6}{m}+3tl+4p$. Therefore $H_m\equiv 0$, which completes the proof of Lemma 2.

Lemma 3. Let f be a transcendental meromorphic functions, a_1 and a_2 be two meromorphic functions such that $T(r, a_j) = S(r, f)(j = 1, 2)$ and

 $a_1 \not\equiv a_2$, then

$$T(r,f) \leq \overline{N}(r,f) + \overline{N}\left(r,\frac{1}{f-a_1}\right) + \overline{N}\left(r,\frac{1}{f-a_2}\right) + S(r,f).$$

Lemma 4. Let f be a transcendental entire function, k be a positive integer, and c be a nonzero finite complex number. Then

$$T(r,f) \leq N\left(r,\frac{1}{f}\right) + N\left(r,\frac{1}{f^{(k)}-c}\right) - N\left(r,\frac{1}{f^{(k+1)}}\right) + S(r,f)$$

$$\leq N_{k+1}\left(r,\frac{1}{f}\right) + \overline{N}\left(r,\frac{1}{f^{(k)}-c}\right) - N_0\left(r,\frac{1}{f^{(k+1)}}\right) + S(r,f),$$

where $N_0(r, 1/f^{(k+1)})$ is the counting function which only counts those points such that $f^{(k+1)} = 0$ but $f(f^k - c) \neq 0$.

3. Proof of Theorem 1

Let F, G and defined as (1.1) and (1.2).

By Lemma 2, we have $H_m \equiv 0$, that is

$$\frac{(F^m)''}{(F^m)'} - 2\frac{(F^m)'}{F^m - 1} \equiv \frac{(G^m)''}{(G^m)'} - 2\frac{(G^m)'}{G^m - 1}.$$

Thus

(3.1)
$$\frac{1}{G^m - 1} \equiv \frac{A}{F^m - 1} + B,$$

where $A \neq 0$ and B are two constants. Hence $E(1, F^m) = E(1, G^m)$, T(r, F) = T(r, G).

(I) Now we claim that

(3.2)
$$f^{n}(f^{l}-1)^{t} \equiv ag^{n}(g^{l}-1)^{t}.$$

Next we consider the following two cases.

Case 1. When B=0, by (3.1), we have

(3.3)
$$F^m = AG^m + (1 - A).$$

(a) If A = 1, then by (3.3), we have $F^m = G^m$, and hence $f^n(f^l - 1)^t \equiv aq^n(q^l - 1)^t$.

(b) If $A \neq 1$, then by (3.3), we have

$$(3.4) F^{m-1}F' = AG^{m-1}G'.$$

From (3.3) and (3.4) we get: when $F=0, G^m \neq 0, 1$ and G'=0, when $G=0, F^m \neq 0, 1$ and F'=0. Thus

(3.5)
$$N\left(r, \frac{1}{F}\right) - N_0\left(r, \frac{1}{(G^m)'}\right) = S(r, F),$$
$$N\left(r, \frac{1}{G}\right) - N_0\left(r, \frac{1}{(F^m)'}\right) = S(r, F).$$

By the second fundamental theorem, we have

$$T(r, F^{m}) \leq \overline{N}\left(r, \frac{1}{F^{m}}\right) + \overline{N}\left(r, \frac{1}{F^{m} - (1 - A)}\right) - N_{0}\left(r, \frac{1}{(F^{m})'}\right) + S(r, F)$$

$$(3.6) \qquad \leq \overline{N}\left(r, \frac{1}{F}\right) + \overline{N}\left(r, \frac{1}{G}\right) - N_{0}\left(r, \frac{1}{(F^{m})'}\right) + S(r, F).$$

Similarly, we have

$$(3.7) T(r,G^m) \leq \overline{N}\left(r,\frac{1}{G}\right) + \overline{N}\left(r,\frac{1}{F}\right) - N_0\left(r,\frac{1}{(G^m)'}\right) + S(r,G).$$

From (3.5)-(3.7), we have

$$2mT(r,F) \le \left[\overline{N}\left(r,\frac{1}{G}\right) + \overline{N}\left(r,\frac{1}{F}\right)\right] + S(r,F) \le 2T(r,F) + S(r,F).$$

Hence m = 1. By (3.3) we get

(3.8)
$$f^{n}(f^{l}-1)^{t} \equiv ag^{n}(g^{l}-1)^{t} + P(z),$$

where P(z) is a polynomial of degree at most p-1.

If $P(z) \not\equiv 0$, by (3.8) and Lemma 3, we have

$$T(r, f^{n}(f^{l}-1)^{t}) \leq \overline{N}(r, f^{n}(f^{l}-1)^{t}) + \overline{N}\left(r, \frac{1}{f^{n}(f^{l}-1)^{t}}\right)$$
$$+ \overline{N}\left(r, \frac{1}{f^{n}(f^{l}-1)^{t}-P}\right) + S(r, f) \leq \overline{N}\left(r, \frac{1}{f}\right) + \overline{N}(r, \frac{1}{f^{l}-1}\right)$$
$$+ \overline{N}\left(r, \frac{1}{g}\right) + \overline{N}\left(r, \frac{1}{g^{l}-1}\right) + S(r, f) \leq 2(1+l)T(r, f) + S(r, f).$$

Thus, $n+tl \leq 2(1+l)$, which contradicts the assumption that $n > \frac{6}{m} + 3tl + 4p$.

Case 2. When $B \neq 0$, by (3.1), we have

(3.9)
$$\frac{1}{G^m - 1} = B \frac{F^m + (\frac{A}{B} - 1)}{F^m - 1}, \quad \frac{A}{F^m - 1} = -B \frac{G^m - (\frac{1}{B} + 1)}{G^m - 1},$$

and

$$\frac{G^{m-1}G'}{(G^m-1)^2} = A\frac{F^{m-1}F'}{(F^m-1)^2}.$$

Thus

(3.10)
$$F^m + \left(\frac{A}{B} - 1\right) \neq 0, \quad G^m - \left(\frac{1}{B} + 1\right) \neq 0.$$

(a) If A = B.

By (3.9), we have $F \neq 0$. Since $F = (f^n(f^l - 1)^t)^{(p)}$ and n > p, thus $f \neq 0$. Let $f = e^{\alpha}$, where α is a nonconstant entire function. Thus

$$f^{n}(f^{l}-1)^{t} = e^{n\alpha} \sum_{j=0}^{t} (-1)^{t-j} C_{t}^{j} e^{lj\alpha} = \sum_{j=0}^{t} (-1)^{t-j} C_{t}^{j} e^{(n+lj)\alpha}.$$

Let

$$((-1)^{t-j}C_t^j e^{(n+lj)\alpha})^{(p)} = P_j(\alpha', \alpha'', \cdots, \alpha^{(p)})e^{(n+lj)\alpha},$$

where $P_j(\alpha', \alpha'', \dots, \alpha^{(p)})(j = 0, 1, 2, \dots, t)$ are differential polynomials.

$$F = \sum_{j=0}^{t} P_j(\alpha', \alpha'', \dots, \alpha^{(p)}) e^{(n+lj)\alpha} = e^{n\alpha} \sum_{j=0}^{t} P_j(\alpha', \alpha'', \dots, \alpha^{(p)}) e^{lj\alpha}$$
$$= e^{n\alpha} F_0,$$

where $F_0 = \sum_{i=0}^t P_j(\alpha', \alpha'', \cdots, \alpha^{(p)}) e^{lj\alpha}$.

Obviously, there exists $j(0 \le j \le t)$, such that $P_j(\alpha', \alpha'', \dots, \alpha^{(p)}) \ne 0$. Suppose $P_0(\alpha', \alpha'', \dots, \alpha^{(p)}) \ne 0$. Since $F \ne 0$, thus $F_0 \ne 0$. Since f is a nonconstant entire function we use Lemma 3 to obtain

$$ltT(r, e^{\alpha}) = T(r, F_0) \leq \overline{N} \left(r, \frac{1}{F_0} \right)$$

$$+ \overline{N} \left(r, \frac{1}{F_0 - P_0(\alpha', \alpha'', \dots, \alpha^{(p)})} \right) + \overline{N} \left(r, F_0 \right) + S(r, e^{\alpha})$$

$$= \overline{N} \left(r, \frac{1}{\sum_{j=1}^t P_j(\alpha', \alpha'', \dots, \alpha^{(p)}) e^{lj\alpha}} \right) + S(r, e^{\alpha})$$

$$= \overline{N} \left(r, \frac{1}{\sum_{j=1}^t P_j(\alpha', \alpha'', \dots, \alpha^{(p)}) e^{l(j-1)\alpha}} \right) + S(r, e^{\alpha})$$

$$\leq l(t-1)T(r, e^{\alpha}) + S(r, e^{\alpha}),$$

which is a contradiction.

(b) If $A \neq B$ and B = -1.

By (3.9), we have $G \neq 0$. Since $G = (g^n(g^l - 1)^t)^{(p)}$ and n > p, thus $g \neq 0$. Let $g = e^{\beta}$, where β is a nonconstant entire function. Similarly, we have $ltT(r, e^{\beta}) \leq l(t-1)T(r, e^{\beta}) + S(r, e^{\beta})$, which is a contradiction.

(c) If $A \neq B$ and $B \neq -1$.

When m > 1, by (3.10) and the second fundamental theorem, we have

$$T(r, G^m) \le \overline{N}(r, \frac{1}{G^m}) + \overline{N}(r, \frac{1}{G^m - (\frac{1}{B} + 1)}) + \overline{N}(r, G^m) + S(r, G)$$
$$\le \overline{N}(r, \frac{1}{G}) + S(r, G) \le T(r, G) + S(r),$$

thus G is constant, hence g is constant, which is a contradiction.

When m = 1, by (3.10), we have $F + (\frac{A}{B} - 1) \neq 0$, thus $(f^n(f^l - 1)^t)^{(p)} + (\frac{A}{B} - 1) \neq 0$, by Lemma 4, we have

$$(n+lt)T(r,f) = T(r,f^{n}(f^{l}-1)^{t}) + S(r,f) \leq N_{p+1}\left(r,\frac{1}{f^{n}(f^{l}-1)^{t}}\right) + \overline{N}\left(r,\frac{1}{(f^{n}(f^{l}-1)^{t})^{(p)} + (\frac{A}{B}-1)}\right) - N_{0}(r,\frac{1}{(f^{n}(f^{l}-1)^{t})^{(p+1)}}\right) + S(r,f)$$

$$\leq N_{p+1}\left(r,\frac{1}{f^{n}(f^{l}-1)^{t}}\right) + S(r,f) \leq (p+1)\overline{N}\left(r,\frac{1}{f}\right) + N_{p+1}\left(r,\frac{1}{(f^{l}-1)^{t}}\right) + S(r,f) \leq (p+1+lt)T(r,f) + S(r,f),$$

thus $n \leq p+1,$ which contradicts the assumption that $n > \frac{6}{m} + 3tl + 4p$. By case 1 and case 2, we get (3.2).

By (3.2), we have

(3.11)
$$f^{n-1}(f^l-1)^{t-1}\left(f^l-\frac{n}{n+tl}\right)f'$$
$$=ag^{n-1}(g^l-1)^{t-1}\left(g^l-\frac{n}{n+tl}\right)g'.$$

From (3.2) and (3.11), we get

(i) When f = 0, have g = 0 or $g^{l} = 1$.

(ii) When $f^l=1$, have $g^l=1$ or g=0. (iii) When $f^l=\frac{n}{n+tl}$, have $g^l=\frac{n}{n+tl}$ or g'=0 (such that $g^l\neq\frac{n}{n+tl}$, $g \neq 0, g^l \neq 1$).

By (3.2), (i) and (ii), we have

$$(3.12) \qquad \overline{N}\left(r,\frac{1}{f^l-1}\right) - \overline{N}\left(r,\frac{1}{f^l-1},\frac{1}{g^l-1}\right) \leq \frac{t}{n}N\left(r,\frac{1}{f^l-1}\right),$$

and

$$(3.13) \qquad \overline{N}\left(r,\frac{1}{f}\right) - \overline{N}\left(r,\frac{1}{f},\frac{1}{q}\right) \le \frac{t}{n}N\left(r,\frac{1}{q^l-1}\right).$$

Using the fact that f and g are nonconstant entire functions and the second fundamental theorem, we have

$$2lT(r,f) \leq \overline{N}\left(r,\frac{1}{f}\right) + \overline{N}\left(r,\frac{1}{f^{l}-1}\right) + \overline{N}\left(r,\frac{1}{f^{l}-\frac{n}{n+tl}}\right)$$

$$(3.14) \qquad -N_{0}\left(r,\frac{1}{f'}\right) + S(r,f)$$

and

$$2lT(r,g) \leq \overline{N}\left(r,\frac{1}{g}\right) + \overline{N}\left(r,\frac{1}{g^l-1}\right) + \overline{N}\left(r,\frac{1}{g^l-\frac{n}{n+tl}}\right)$$

$$(3.15) \qquad -N_0\left(r,\frac{1}{g'}\right) + S(r,g).$$

If $f^l \equiv g^l$, then there exists constant b, such that $f \equiv bg$, where $b^l = 1$.

If $f^l \not\equiv g^l$, by (3.12)-(3.15),(i)-(iii), we have

$$\begin{split} 4lT(r,f) &= 2l[T(r,f) + T(r,g)] \leq 2\overline{N}\left(r,\frac{1}{f},\frac{1}{g}\right) \\ &+ 2\overline{N}\left(r,\frac{1}{f^l-1},\frac{1}{g^l-1}\right) + 2\overline{N}\left(r,\frac{1}{f^l-\frac{n}{n+tl}},\frac{1}{g^l-\frac{n}{n+tl}}\right) \\ &+ \frac{2t}{n}N\left(r,\frac{1}{f^l-1}\right) + \frac{2t}{n}N\left(r,\frac{1}{g^l-1}\right) + S(r,f) \\ &\leq 2N\left(r,\frac{1}{f^l-V^l}\right) + \frac{2t}{n}N\left(r,\frac{1}{f^l-1}\right) \\ &+ \frac{2t}{n}N\left(r,\frac{1}{g^l-1}\right) + S(r,g) \leq \left(2l + \frac{4tl}{n}\right)T(r,f) + S(r,f). \end{split}$$

Thus $2l \leq \frac{4tl}{n}$, which contradicts the assumption that $n > \frac{6}{m} + 3tl + 4p$. Summarizing the above discussion we obtain Theorem 1.

REFERENCES

- FANG, M.-L. Uniqueness and value-sharing of entire functions, Comput. Math. Appl., 44 (2002), 823–831.
- 2. Hayman, W.K. *Meromorphic Functions*, Oxford Mathematical Monographs Clarendon Press, Oxford, 1964.
- 3. Jiangtao, LLi; Chunghong, Li Uniqueness of meromorphic or entire functions and their differential polyomials, Acta Math.Scientia, 26A (2006), 1166–1178.
- 4. Zhang, X.-Y.; Lin, W.-C. *Uniqueness and value-sharing of entire functions*, J. Math. Anal. Appl., 343 (2008), 938–950.
- 5. Yang, Lo Value Distribution Theory, Springer-Verlag, Berlin, Science Press Beijing, Beijing, 1993.

Received: 16.III.2010 Revised: 2.VI.2010 Liuzhou City Vocational College, Liuzhou Guangxi, 545001, P.R. CHINA cnzy2006@163.com

Department of Information and Computing Science of Guangxi University of
Technology,
Liuzhou Guangxi, 545006,
P.R. CHINA