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Abstract. In this paper the biharmonic hypersurfaces of Lorentzian para-Sasakian
manifolds are studied. We firstly find the biharmonic equation for a hypersurface which
admits the characteristic vector field of the Lorentzian para-Sasakian as the normal vector
field. We show that a biharmonic spacelike hypersurface of a Lorentzian para-Sasakian
manifold with constant mean curvature is minimal. The biharmonicity condition for a
hypersurface of a Lorentzian para-Sasakian manifold is investigated when the character-
istic vector field belongs to the tangent hyperplane of the hypersurface. We find some ne-
cessary and sufficient conditions for a timelike hypersurface of a Lorentzian para-Sasakian
manifold to be proper biharmonic. The nonexistence of proper biharmonic timelike hyper-
surfaces with constant mean curvature in a Ricci flat Lorentzian para-Sasakian manifold
is proved.
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1. Introduction

A smooth map Ψ : (M, g) → (N,h) between two Riemannian manifolds
is called harmonic if it is a critical point of the energy functional

E : C∞(M,N) → R,E(Ψ) =
1

2

∫
M

|dΨ|2vg

and characterized by the vanishing of the tension field τ(Ψ) = trace∇dΨ,
where C∞(M,N) denotes the space of smooth maps, ∇ is a connection in-
duced from the Levi-Civita connection ∇M of M and the pull-back connec-
tion ∇Ψ. As a natural extension of harmonic maps, biharmonic maps
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between Riemannian manifolds were introduced by Eells and Sampson
in [14]. Biharmonic maps are the critical points of the bienergy functional

E2(Ψ) =
1

2

∫
M

|τ(Ψ)|2vg.

Jiang [20, 21] derived the first variation formula for the bienergy and
this formula shows that the Euler-Lagrange equation for the bienergy is
τ2(Ψ) = −J(τ(Ψ)) = −∆τ(Ψ) − traceRN (dΨ, τ(Ψ))dΨ = 0, where ∆ =
− trace(∇Ψ∇Ψ − ∇Ψ

∇) is the rough Laplacian on the sections of Ψ−1TN
and RN (X,Y ) = [∇X ,∇Y ]−∇[X,Y ] is the curvature operator on N . From
the expression of the bitension field τ2, it is clear that a harmonic map is
automatically a biharmonic map. So non-harmonic biharmonic maps which
are called proper biharmonic maps are more interesting.

Biharmonic submanifolds are special cases of biharmonic maps. In gen-
eral, if the inclusion map i : (M, i∗h) → (N,h) is a biharmonic isometric
immersion then the submanifold M of (N,h) is said to be a biharmonic
submanifold. By a different point of view, Chen [9] defined biharmonic
submanifolds M ⊂ En of the Euclidean space as those with harmonic mean
curvature vector field, that is ∆H = 0, where ∆ is the rough Laplacian, and
proposed to classify all biharmonic submanifolds. If the definition of bihar-
monic maps is applied to Riemannian immersions into Euclidean space, the
notion of Chen’s biharmonic submanifold is obtained, so the two definitions
agree.

Concerning the proper biharmonic map, there are several non-existence
results for non-positive sectional curvature codomains [39]. These non-
existence theorems and the generalized Chen’s conjecture: Biharmonic sub-
manifolds of a manifold N with RiemN ≤ 0 are minimal, encouraged the
study of proper biharmonic submanifolds in non-negatively curved spaces,
especially in spheres (see [6, 7, 15, 18, 28, 30]).

Despite non-existence of proper biharmonic submanifolds in Euclidean
spaces ([20], [10], [9], [17], [13]), Chen and Ishikawa in [10] gave many
examples of proper biharmonic spacelike surfaces with constant mean curva-
ture in the pseudo-Euclidean spaces E4

t , (t = 1, 2) (see also [19]). But bihar-
monicity may still imply minimality in some specific cases of semi-Euclidean
spaces. For example, the authors in [10] proved that any biharmonic surface
in E3

t , (t = 1, 2), is also minimal. In [12] it is shown that a nondegenerate
biharmonic hypersurface of 4-dimensional pseudo-Euclidean space with di-
agonalizable shape operator must be minimal.



3 BIHARMONIC HYPERSURFACES OF LP-SASAKIAN MANIFOLDS 389

Biharmonic submanifolds in the 3-sphere S3 are classified by Caddeo,
Montaldo and Oniciuc [6]. The authors in [4] studied biharmonic sub-
manifolds of the Euclidean sphere that satisfy certain geometric proper-
ties. It is shown in [5] that a constant mean curvature surface is proper-
biharmonic in the unit Euclidean sphere S4 if and only if it is minimal in
a hypersphere S3( 1√

2
). A full classification of proper biharmonic hypersur-

faces in 4-dimensional space forms was obtained in [8]. In [31], the author
studied the biharmonic hypersurfaces in a generic Riemannian manifold and
showed that Chen’s conjecture is true for totally umbilical hypersurfaces in
an Einstein space. Also, for conformal biharmonic submanifolds see [32].

In contact geometry, there is a well known analog of real space form,
namely a Sasakian space form. In particular, a simply connected three-
dimensional Sasakian space form of constant holomorphic sectional curva-
ture 1 is isometric to S3. So this motivated the authors to study biharmonic
submanifolds in Sasakian space forms ([18], [16], [34], [1], [2]).

Pseudo-Riemannian spaces especially the constant curvature ones, name-
ly de Sitter, Minkowski, anti de Sitter space, play important roles in the
general relativity. Ouyang [33] and Sun [36] studied the spacelike bihar-
monic submanifolds in the pseudo-Riemannian spaces. In [40] Zhang con-
structed examples of proper biharmonic hypersurfaces in the anti de Sitter
space.

The study of Lorentzian almost paracontact manifolds was initiated by
Matsumoto in 1989 [24]. Also he introduced the notion of Lorentzian para-
Sasakian (for short LP-Sasakian) manifold. Mihai and Roşca [26] defined
the same notion independently and thereafter many authors [25, 27, 37, 38]
studied Lorentzian para-Sasakian manifolds and their submanifolds. Espe-
cially, in [22] the authors studied biharmonic curves in LP-Sasakian ma-
nifolds and investigated proper biharmonic curves in the Lorentzian sphere
S1
4 .

In the present paper we study the biharmonic timelike and spacelike
hypersurfaces of Lorentzian para-Sasakian manifolds. The first section is
devoted to preliminaries. In section 2, we find the biharmonic equation for
a hypersurface which admits the characteristic vector field of the Lorentzian
para-Sasakian as the normal vector field. We show that a biharmonic space-
like hypersurface of a Lorentzian para-Sasakian manifold with constant
mean curvature is minimal. In section 3, the biharmonicity condition for a
hypersurface of a Lorentzian para-Sasakian manifold is investigated when
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the characteristic vector field belongs to the tangent hyperplane of the hy-
persurface. We find some necessary and sufficient conditions for a timelike
hypersurface of a Lorentzian para-Sasakian manifold to be proper bihar-
monic. The nonexistence of proper biharmonic timelike hypersurfaces with
constant mean curvature in a Ricci flat Lorentzian para-Sasakian manifold
is proved.

2. Preliminaries

2.1. Biharmonic maps

Let Ψ : (M, g) → (M, g) be a smooth map between Riemannian manifolds
(M, g) and (M, g). The tension field of Ψ is given by τ(Ψ) = trace∇dΨ,
where ∇dΨ is the second fundamental form of Ψ defined by

(2.1.1) ∇dΨ(X,Y ) = ∇Ψ
XdΨ(Y )− dΨ(∇M

X Y ),

for all X, Y ∈ Γ(TM). The tension field τ(Ψ) is a section of the pull-back
bundle Ψ−1TM. Then a smooth map Ψ is said to be a harmonic map if its
tension field vanishes. Also, it is well-known that Ψ is harmonic if and only
if it is a critical point of the energy (integral) which is defined by

E(Ψ) =
1

2

∫
Ω
|dΨ|2vg,

for all compact domains Ω ⊆ M . Here |dΨ| denotes the Hilbert-Schmidt
norm of dΨ and vg is the volume form of g (see [14]).

For any compact domain Ω ⊆ M , the bienergy is defined by

E2(Ψ) =
1

2

∫
Ω
|τ(Ψ)|2vg.

Then a smooth map Ψ is called biharmonic if it is a critical point of the
bienergy functional for any compact domain Ω ⊆ M. The first variation
formula for the bienergy is ([20], [21])

d

dt
E2(Ψt; Ω)|t=0 =

∫
Ω
g(τ2(Ψ), w)vg,

where vg is the volume element, w is the variational vector field associated
to the variation {Ψt} of Ψ and

(2.1.2) τ2(Ψ) = −J(τ2(Ψ)) = −∆Ψτ(Ψ)− traceR(dΨ, τ(Ψ))dΨ.
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τ2(Ψ) is called bitension field of Ψ. Here ∆Ψ is the rough Laplacian on the
sections of the pull-back bundle Ψ−1TN which is defined by

(2.1.3) ∆ΨV = − trace{∇Ψ∇ΨV −∇Ψ
∇V }, V ∈ Γ(Ψ−1TN),

where ∇Ψ is the pull-back connection on the pull-back bundle Ψ−1TN and
R is the Riemannian curvature operator of M. It is obvious from (2.1.2)
that any harmonic map is biharmonic. Non-harmonic biharmonic maps
are called proper biharmonic maps. When the target manifold is semi-
Riemannian manifold, the bienergy and bitension field can be defined in
the same way.

A submanifold M of (M, g) is called a biharmonic submanifold if the
inclusion map Ψ : (M, g) → (M, g) is a biharmonic isometric immersion
where g = Ψ∗g.

Let Ψ : M → M be an isometric immersion. Then the pull-back bundle
can be written by Ψ−1TM = σM ⊕ νM, as an orthogonal decomposition
of vector bundles. Here σM and νM denotes the tangent and normal
bundles, respectively. dΨ can be used to identify TM with its image σM
in the pull back bundle. Then we have ∇Ψ

X(dΨ(Y )) = ∇XY, for all vector
fields X, Y ∈ Γ(TM). By using (2.1.1), we get dΨ(∇XY ) +∇dΨ(X,Y ) =
∇XY. Hence ∇dΨ(X,Y ) equals to the normal component of ∇XY. This is
the second fundamental form B(X,Y ) of the immersed submanifold Ψ(M)
in M. Therefore the second fundamental form of an isometric immersion
Ψ : M → M is equal to the second fundamental form of the immersed
submanifold Ψ(M) in M (see [3]). An isometric immersion is minimal if
and only if it is harmonic. Hence, minimal submanifolds are automatically
biharmonic. Then non-minimal biharmonic submanifolds are called proper
biharmonic submanifolds.

2.2. Lorentzian Para-Sasakian manifolds

Let M be an (m + 1)-dimensional differentiable manifold equipped with
a triple (ϕ, ξ, η), where ϕ is a (1, 1) tensor field, ξ is a vector field, η is a
1-form on M such that [24]

η(ξ) = −1,(2.2.1)

ϕ2 = I + η ⊗ ξ,(2.2.2)
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where I denotes the identity map of TpM and ⊗ is the tensor product. The
equations (2.2.1) and (2.2.2) imply that

(2.2.3) η ◦ ϕ = 0, ϕξ = 0, rank(ϕ) = m.

Then M admits a Lorentzian metric g, i.e., g is a smooth symmetric tensor
field of type (0, 2) such that at every point p ∈ M , the tensor gp : TpM ×
TpM → R is a non-degenerate inner product of index 1, where TpM is the
tangent space of M at the point p, such that

(2.2.4) g(ϕX, ϕY ) = g(X,Y ) + η(X)η(Y ),

andM is said to admit a Lorentzian almost paracontact structure (ϕ, ξ, η, g).
Then we get

g(X, ξ) = η(X),

Φ(X,Y ) = g(X,ϕY ) = g(ϕX, Y ) = Φ(Y,X),(2.2.5)

(∇XΦ)(Y, Z) = g(Y, (∇Xϕ)Z) = (∇XΦ)(Z, Y ),

where ∇ is the covariant differentiation with respect to g. A non-zero vector
Xp ∈ TpM is called spacelike, null or timelike, if it satisfies gp(Xp, Xp) > 0,
gp(Xp, Xp) = 0 (Xp ̸= 0) or gp(Xp, Xp) < 0, respectively. It is clear that the
Lorentzian metric g makes ξ a timelike unit vector field, i.e, g(ξ, ξ) = −1.
The manifold M equipped with a Lorentzian almost paracontact structure
(ϕ, ξ, η, g) is called a Lorentzian almost paracontact manifold (for short
LAP-manifold) [23], [24].

In equations (2.2.1) and (2.2.2) if we replace ξ by −ξ, we obtain an
almost paracontact structure on M defined by Satō [35].

A Lorentzian almost paracontact manifold M endowed with the struc-
ture (ϕ, ξ, η, g) is called a Lorentzian paracontact manifold (for short LP-
manifold) [24] if

(2.2.6) Φ(X,Y ) =
1

2
((∇Xη)Y + (∇Y η)X).

A Lorentzian almost paracontact manifold M endowed with the struc-
ture (ϕ, ξ, η, g) is called a Lorentzian para-Sasakian manifold (for short LP-
Sasakian) [24] if

(2.2.7) (∇Xϕ)Y = η(Y )X + g(X,Y )ξ + 2η(X)η(Y )ξ.
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In an LP-Sasakian manifold the 1-form η is closed and

(2.2.8) ∇Xξ = ϕX.

Also, an LP-Sasakian manifold M is said to be η-Einstein if its Ricci
tensor S satisfies

(2.2.9) S(X,Y ) = ag(X,Y ) + bη(X)η(Y ),

for any vector fields X, Y where a, b are functions on M. The Ricci tensor
of an (m+1)-dimensional η-Einstein LP-Sasakian manifold is given by [27]

(2.2.10) S(X,Y ) = (
r

m
− 1)g(X,Y ) + (

r

m
− (m+ 1))η(X)η(Y ),

where r is the scalar curvature of the manifold.
In an (m+ 1)-dimensional LP-Sasakian manifold M with the structure

(ϕ, ξ, η, g), the following relations hold [11], [24]:

g(R(X,Y )Z, ξ) = η(R(X,Y )Z) = g(Y,Z)η(X)− g(X,Z)η(Y ),(2.2.11)

R(ξ,X)Y = g(X,Y )ξ − η(Y )X(2.2.12)

R(X,Y )ξ = η(Y )X − η(X)Y,(2.2.13)

R(ξ,X)ξ = X + η(X)ξ,(2.2.14)

S(X, ξ) = mη(X),(2.2.15)

S(ϕX, ϕY ) = S(X,Y ) +mη(X)η(Y )(2.2.16)

for any vector fields X,Y, Z in M where R and S are the Riemannian
curvature and the Ricci tensors of M , respectively.

A semi-Riemannian hypersurface of a semi-Riemannian manifold is just
a semi-Riemannian submanifold of codimension 1. It is well known that
a Lorentzian manifold is a semi-Riemannian manifold with a symmetric
nondegenerate (0, 2) tensor field, namely metric tensor, of index 1. Let
M be a hypersurface of a Lorentzian manifold M . If the normal vector
field of M is timelike (respectively, spacelike) then M is called a spacelike
(respectively, timelike) hypersurface of M (see [29]).

Let M be a hypersurface of an (m+ 1)-dimensional LP-Sasakian mani-
fold M . The Gauss and Weingarten formula formulae are given by

∇XY = ∇XY +B(X,Y ),(2.2.17)

∇XN = −ANX +∇⊥
XN,(2.2.18)
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for each X, Y ∈ Γ(TM) and N ∈ Γ(T⊥M), where ∇ is the Levi-Civita
connection on M , ∇⊥ is the normal connection on the normal bundle T⊥M ,
B is the second fundamental form of M and AN is the shape operator
with respect to the normal section N. We can write B(X,Y ) = b(X,Y )N ,
where b is the function-valued second fundamental form of M. Then the
second fundamental form B and the shape operator of the hypersurface
with respect to the unit normal vector field N are related by

(2.2.19) B(X,Y ) = εg(∇XY,N)N = −εg(Y,∇XN)N = εg(ANX,Y )N

and

(2.2.20) g(ANX,Y ) = g(B(X,Y ), N) = g(b(X,Y )N,N) = εb(X,Y ),

where X, Y ∈ Γ(TM), N ∈ Γ(T⊥M) and ε = g(N,N).

3. Biharmonic spacelike hypersurfaces in LP-Sasakian mani-
folds

In this section we consider that the characteristic vector field of the LP-
Sasakian manifold is the unit normal vector field of the hypersurface. Hence,
we characterize the spacelike biharmonic hypersurfaces in a Lorentzian para-
Sasakian (LP-Sasakian) manifold.

Theorem 3.1. Let (M,ϕ, ξ, η, g) be an (m+1)-dimensional LP-Sasakian
manifold and Ψ : M → M be an isometric immersion with dimM = m.
Assume that the characteristic vector field ξ is the unit normal vector field
of the hypersurface M. Then the spacelike hypersurface M is biharmonic if
and only if

(3.1) ∆H − 2mH = 0, 2A(gradH)− m

2
(gradH2) = 0,

where A is the shape operator of the hypersurface with respect to the unit
normal vector field ξ and µ = Hξ is the mean curvature vector.

Proof. Let M be a hypersurface of the LP-Sasakian manifold M with
the unit normal vector field ξ and Ψ : M → M be an isometric immer-
sion. Assume that {ei}mi=1 is a local orthonormal frame of M such that
{dΨ(e1), dΨ(e2), ..., dΨ(em), ξ} is an adapted orthonormal frame of the LP-
Sasakian manifold M. We identify dΨ(X) by X and ∇Ψ

XW by ∇XW for
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all X ∈ Γ(TM), W ∈ Γ(Ψ−1TM). Note that the tension field of Ψ is
τ(Ψ) = mHξ. Then the bitension field of Ψ : M → M is as follows:

τ2(Ψ) =

m∑
i=1

{∇Ψ
ei∇

Ψ
eiτ(Ψ)−∇Ψ

∇eiei
τ(Ψ)−R(dΨ(ei), τ(Ψ))dΨ(ei)}

=
m∑
i=1

{∇Ψ
ei∇

Ψ
ei (mHξ)−∇Ψ

∇eiei
(mHξ)−R(dΨ(ei),mHξ)dΨ(ei)}

=

m∑
i=1

{∇ei∇ei (mHξ)−∇∇eiei
(mHξ)−R(dΨ(ei),mHξ)dΨ(ei)}

= m

m∑
i=1

{∇ei

(
ei(H)ξ +H∇eiξ

)
− (∇eiei) (H)ξ −H∇∇eiei

ξ

−HR(dΨ(ei), ξ)dΨ(ei)}(3.2)

= m

m∑
i=1

{eiei(H)ξ + 2ei(H)∇eiξ +H∇ei∇eiξ

− (∇eiei) (H)ξ −H∇∇eiei
ξ −HR(dΨ(ei), ξ)dΨ(ei)}

= −m(∆H)ξ −mH∆Ψξ − 2mA(gradH)

+mH

m∑
i=1

R(ξ, dΨ(ei))dΨ(ei).

Since M is a LP-Sasakian manifold then from (2.2.12), we have

(3.3)

m∑
i=1

R(ξ, dΨ(ei))dΨ(ei) = mξ.

By writing (3.3) in (3.2), we get

(3.4) τ2(Ψ) = −m(∆H)ξ −mH∆Ψξ − 2mA(gradH) +m2Hξ.

Now, to compute the tangential and normal parts of the bitenson field, it
suffices to find only the normal and tangential parts of ∆Ψξ :

From (2.2.8) we have

g(∆Ψξ, ξ) = −
m∑
i=1

g(∇ei∇eiξ −∇∇eiei
ξ, ξ) = −

m∑
i=1

g(∇ei∇eiξ, ξ)

=

m∑
i=1

g(∇eiξ,∇eiξ) =

m∑
i=1

g(ϕei, ϕei).(3.5)
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By using (2.2.4) in (3.5), then the normal part of ∆Ψξ is

(3.6)
(
∆Ψξ

)⊥
= −g(∆Ψξ, ξ)ξ = −

m∑
i=1

g(∇eiξ,∇eiξ)ξ = −mξ.

The tangential part of ∆Ψξ can be calculated by(
∆Ψξ

)⊤
= −

m∑
i,k=1

g(∇ei∇eiξ −∇∇eiei
ξ, ek)ek

=

m∑
i,k=1

g(∇eiAei −A(∇eiei), ek)ek

=

m∑
i,k=1

{eig(Aei, ek)− g(Aei,∇eiek)− g(A(∇eiei), ek)}ek(3.7)

=
m∑

i,k=1

{−eib(ei, ek) + b(ei,∇eiek) + b(∇eiei, ek)}ek

= −
m∑

i,k=1

{∇eib(ek, ei)}ek.

By Codazzi-Mainardi equation, we have

m∑
i=1

(∇eib(ek, ei)−∇ekb(ei, ei)) = −
m∑
i=1

g (R(ei, ek)ei, ξ)

= S(ξ, ek).(3.8)

Since S(ξ, ek) = 0, (3.8) implies that

(3.9)

m∑
i=1

(∇eib(ek, ei)−∇ekb(ei, ei)) = 0.

If we write (3.9) in (3.7), we get
(
∆Ψξ

)⊤
= −m gradH. Finally by consi-

dering all these parts, we have the tangential and normal components of
the bitension field as follows:

(τ2(Ψ))⊤ = −2mA(gradH) +
m2

2
(gradH2),

(τ2(Ψ))⊥ = (−m(∆H) + 2m2H)ξ.

This completes the proof. �
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Example 3.1. Let M = R3 be the 3-dimensional real number space
with a coordinate system (x, y, z). We define

η = dz , ξ = − ∂

∂z
, ϕ

(
∂

∂x

)
=

∂

∂x
,

ϕ

(
∂

∂y

)
= − ∂

∂y
, ϕ

(
∂

∂z

)
= 0, g = e−2z (dx)2 + e2z (dy)2 − (dz)2 .

Then M is an LP-Sasakian manifold with an LP-Sasakian structure
(ϕ, ξ, η, g).

Let M be a surface of M defined by z = c where c > 0 is a constant
and Ψ : M → M be the isometric immersion with Ψ(x, y) = (x, y, c). We
can easily check that the induced metric is given by

g11 = g

(
∂

∂x
,
∂

∂x

)
= g

(
dΨ

(
∂

∂x

)
, dΨ

(
∂

∂x

))
◦Ψ = e−2z,

g12 = g

(
∂

∂x
,
∂

∂y

)
= g

(
dΨ

(
∂

∂x

)
, dΨ

(
∂

∂y

))
◦Ψ = 0,

g22 = g

(
∂

∂y
,
∂

∂y

)
= g

(
dΨ

(
∂

∂y

)
, dΨ

(
∂

∂y

))
◦Ψ = e2z.

One can also see that

f1 = ez
∂

∂x
, f2 = e−z ∂

∂y
, f3 =

∂

∂z

constitute an orthonormal frame on M adapted to the surface M with
ξ = −f3 being unit normal vector field. Thus M becomes a spacelike
surface of the LP-Sasakian manifold M. By a further computation we have
the following Lie brackets

[f1, f2] = 0, [f1, f3] = −ezf1, [f2, f3] = −e−zf2,

and the coefficients of Levi-Civita connection

∇f1f1 = −f3, ∇f1f2 = 0, ∇f1f3 = −f1
∇f2f1 = 0, ∇f2f2 = f3, ∇f2f3 = −f2
∇f3f1 = 0, ∇f3f2 = 0, ∇f3f3 = 0.
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Since ξ = −f3 is the unit normal vector field we can compute the compo-
nents of the second fundamental form as

b(f1, f1) = −g(∇f1f1, ξ) = −1,

b(f1, f2) = −g(∇f1f2, ξ) = 0,(3.10)

b(f2, f2) = −g(∇f2f2, ξ) = 1.

From (3.10) we obtainH = 1
2 [b(f1, f1) + b(f2, f2)] = 0, whereH is the mean

curvature of the isometric immersion Ψ. Hence, the upper half space with
the LP-Sasakian structure (ϕ, ξ, η, g) is foliated by minimal so biharmonic
planes z = c.

Corollary 3.1. A spacelike hypersurface of an LP-Sasakian manifold
with a harmonic mean curvature is biharmonic if and only if it is minimal.

From Corollary 3.1. it is obvious that biharmonic spacelike hypersur-
faces of LP-Sasakian manifolds with a constant mean curvature are minimal.

Corollary 3.2. Let M be a spacelike hypersurface of an (m + 1) di-
mensional LP-Sasakian manifold with satisfying ∆H = 2mH. Then M is
a biharmonic spacelike hypersurface if and only if

(3.11) A(gradH) =
m

4
(gradH2).

Theorem 3.2. Let M be a totally umbilic biharmonic spacelike hyper-
surface of an LP-Sasakian manifold M with dimension (m + 1). Then M
is minimal.

Proof. Assume that {ei}mi=1 is a local orthonormal frame of M such
that {dΨ(e1), dΨ(e2), ..., dΨ(em), ξ} is an adapted orthonormal frame of the
LP-Sasakian manifold M where Ψ : M → M is an isometric immersion.
By identifying dΨ(X) by X, for all X in TM, we have an orthonormal
basis{e1, e2, ..., em, ξ} for the ambient manifold M such that Aei = λiei,
where A is the shape operator of M and λi, (1 ≤ i ≤ m), is the principal
curvatures in the direction of ei. Since M is totally umbilical then all the
principal curvatures at any point p of M are equal to the same number
λ(p). Then by taking ξ instead of N in (2.2.19) we have

H = − 1

m

m∑
i=1

g(B(ei, ei), ξ) = − 1

m

m∑
i=1

g(Aei, ei)(3.12)
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= − 1

m

m∑
i=1

g(λei, ei) = −λ.

On the other hand by using (3.12), we get

(3.13) A(gradH) = −1

2
gradλ2.

Since M is a biharmonic spacelike hypersurface of M, from (3.1), (3.12)
and (3.13), we obtain ∆λ− 2mλ = 0, (2 +m)gradλ2 = 0, which completes
the proof. �

4. Biharmonic timelike hypersurfaces in LP-Sasakian mani-
folds

Let (M,ϕ, ξ, η, g) be an (m + 1)-dimensional LP-Sasakian manifold and
M be a hypersurface of M . Assume that the characteristic vector field of M
belongs to the tangent hyperplane of the hypersurface M and N is the unit
normal vector field of the manifold. Since N is spacelike then M becomes
timelike hypersurface of M.

We note that the tension field of the isometric immersion Ψ : M → M
is τ(Ψ) = mµ, where µ = HN is the mean curvature vector field with the
mean curvature function H.

Theorem 4.1. Let (M,ϕ, ξ, η, g) be an (m+1)-dimensional LP-Sasakian
manifold and M be its timelike hypersurface. Then M is a biharmonic hy-
persurface of M if and only if

(4.1)
m
2 (gradH

2) + 2A(gradH)− 2H(Q(N)) = 0,

∆H +H |A|2 −H(S(N,N)) = 0,

where S is the Ricci curvature of the LP-Sasakian manifold M , Q is the
Ricci operator of M defined by g(QX,Y ) = S(X,Y ) and A is the shape
operator of the hypersurface with respect to the unit normal vector field N .

Proof. Assume that M is a timelike hypersurface of the LP-Sasakian
manifold M with the unit normal vector field N and Ψ : M → M be an iso-
metric immersion. Consider {e1, e2, ..., em−1, em = ξ} is an local orthonor-
mal basis for the hypersurface. Since the tension field of Ψ is τ(Ψ) = mHN,
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we have

τ2(Ψ) =

m∑
i=1

εi{∇Ψ
ei∇

Ψ
eiτ(Ψ)−∇Ψ

∇eiei
τ(Ψ)−R(dΨ(ei), τ(Ψ))dΨ(ei)}

=

m∑
i=1

εi{∇Ψ
ei∇

Ψ
ei (mHN)−∇Ψ

∇eiei
(mHN)

−R(dΨ(ei),mHN)dΨ(ei)}

=

m∑
i=1

εi{∇ei∇ei (mHN)−∇∇eiei
(mHN)

−R(dΨ(ei),mHN)dΨ(ei)}

= m
m∑
i=1

εi{∇ei

(
ei(H)N +H∇eiN

)
− (∇eiei) (H)N(4.2)

−H∇∇eiei
N −HR(dΨ(ei), N)dΨ(ei)}

= m
m∑
i=1

εi{eiei(H)N + 2ei(H)∇eiN +H∇ei∇eiN

− (∇eiei) (H)N −H∇∇eiei
N −HR(dΨ(ei), N)dΨ(ei)}

= −m(∆H)N −mH∆ΨN − 2mA(gradH)

−mH

{
m−1∑
i=1

R(dΨ(ei), N)dΨ(ei)−R(dΨ(ξ), N)dΨ(ξ)

}
,

where ∇ denotes the Levi-Civita connection on M , R is the Riemannian
curvature tensor of M and ∇Ψ is the pull-back connection.

Now we shall compute the tangential and normal components of the
∆ΨN and the curvature term, respectively:

The tangential part of ∆ΨN can be calculated by(
∆ΨN

)⊤
= −

m∑
i,k=1

g(∇ei∇eiN −∇∇eiei
N, ek)ek

=
m∑

i,k=1

g(∇eiAei −A(∇eiei), ek)ek(4.3)

=

m∑
i,k=1

{eig(Aei, ek)− g(Aei,∇eiek)− g(A(∇eiei), ek)}ek
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=
m∑

i,k=1

{eib(ei, ek)− b(ei,ei ek)− b(∇eiei, ek)}ek

=
m∑

i,k=1

{∇eib(ek, ei)}ek,

where ∇ is the induced connection of the hypersurface and b : Γ(TM) ×
Γ(TM) → C∞(M,R) is the function valued second fundamental form such
that B(X,Y ) = b(X,Y )N , for all vector fields X, Y on M . By Codazzi-
Mainardi equation, we have

(4.4)
m∑
i=1

(∇eib(ek, ei)−∇ekb(ei, ei)) =
m∑
i=1

g (R(ei, ek)ei, N) = −S(N, ek).

which implies that

(4.5)

m∑
i=1

∇eib(ek, ei) =

m∑
i=1

∇ekb(ei, ei)− S(N, ek).

By using (4.5) in (4.3), we obtain

(4.6)
(
∆ΨN

)⊤
=

m∑
i,k=1

{∇ekb(ei, ei)− S(N, ek)}ek = m(gradH)− (Q(N)).

By straightforward computations, the normal part of the ∆ΨN is

(∆ΨN)⊥ = g(∆ΨN,N)N

= −
m∑
i=1

{εig(∇ei∇eiN −∇∇eiei
N,N)}N(4.7)

=
m∑
i=1

{εig(∇eiN,∇eiN)}N = |A|2N,

where εi = g(ei, ei), 1 ≤ i ≤ m.
On the other hand, since

−
m−1∑
k=1

S(N, ek)ek =
m−1∑
i,k=1

g(R(dΨ(ei), N)dΨ(ei), ek)ek

−
m−1∑
i=1

g(R(dΨ(ei), N)dΨ(ei), ξ)ξ = (Q(N))ξ(4.8)
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and

(4.9)
m−1∑
i=1

g(R(dΨ(ei), N)dΨ(ei), N) = −S(N,N) + 1

then the tangential and normal components of the first curvature term
in (4.2) are equal to (Q(N)) and −S(N,N) + 1, respectively. Also, from
(2.2.14) we have

(4.10) R(dΨ(ξ), N)dΨ(ξ) = N.

Finally, by reorganizing all the tangent and normal parts of the bitension
field, we get

(τ2(Ψ))⊤ = −m
[m
2
(gradH2) + 2A(gradH)− 2H(Q(N))

]
,

(τ2(Ψ))⊥ = −m
[
(∆H) +H |A|2 −HS(N,N)

]
N.

This completes the proof. �

Corollary 4.1. Let M be a timelike hypersurface of an LP-Sasakian
manifold M with constant mean curvature. Then M is a biharmonic time-
like hypersurface if and only if either it is minimal or

(4.11) (Q(N)) = 0 and S(N,N) = |A|2 .

In particular, if M has a nonpositive Ricci curvature, a timelike hyper-
surface of with constant mean curvature is biharmonic if and only if it is
minimal.

Example 4.1. Let M = R3 be the 3-dimensional real number space
with a coordinate system (x, y, z) and a LP-Sasakian structure (ϕ, ξ, η, g)
given in the Example 3.1. Assume that M is a surface of M defined by
x = f(y). We can easily see that{

f1 =

(
f ′√

e−2z(f ′)2 + e2z
,

1√
e−2z(f ′)2 + e2z

, 0

)
, f2 = (0, 0, 1)

}
constitute an orthonormal frame on M and

N =

(
e2z√

(f ′)2e−2z + e2z
,

−f ′e−2z√
(f ′)2e−2z + e2z

, 0

)
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is the unit normal vector field of M. Since f2 = −ξ then M becomes a
timelike surface of the LP-Sasakian manifold M. By further computations
we have

∇ ∂
∂x

∂

∂x
= −e−2z ∂

∂z
, ∇ ∂

∂x

∂

∂y
= 0, ∇ ∂

∂x

∂

∂z
= − ∂

∂x
,

∇ ∂
∂y

∂

∂x
= 0, ∇ ∂

∂y

∂

∂y
= e2z

∂

∂z
, ∇ ∂

∂y

∂

∂z
=

∂

∂y
,(4.12)

∇ ∂
∂z

∂

∂x
= − ∂

∂x
, ∇ ∂

∂z

∂

∂y
=

∂

∂y
, ∇ ∂

∂z

∂

∂z
= 0.

From (4.12) one can easily see that

∇f1f1 =
− (f ′)2 e−2z

(e−2z(f ′)2 + e2z)

∂

∂z

+
1√

e−2z(f ′)2 + e2z
∂

∂y

(
f ′√

e−2z(f ′)2 + e2z

)
∂

∂x

+
1√

e−2z(f ′)2 + e2z
∂

∂y
(

1√
e−2z(f ′)2 + e2z

)
∂

∂y

+
e2z

(e−2z(f ′)2 + e2z)

∂

∂z
.

Thus we have

∇f1f1 =
f ′′e2z

(e−2z(f ′)2 + e2z)2
∂

∂x

− f ′′f ′e−2z

(e−2z(f ′)2 + e2z)2
∂

∂y
+

e2z − (f ′)2 e−2z

(e−2z(f ′)2 + e2z)

∂

∂z
.

Also one can easily see that ∇f2f2 = 0. Since N is the unit normal vector
field of M we can compute the components of the second fundamental form
as

b(f1, f1) = g(∇f1f1, N) =
f ′′

(e−2z(f ′)2 + e2z)
3
2

,(4.13)

b(f2, f2) = g(∇f2f2, N) = 0.(4.14)

From (4.13) and (4.14) we obtain

(4.15) H =
f ′′

2 (e−2z(f ′)2 + e2z)
3
2
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where H is the mean curvature of the isometric immersion Ψ. Hence M
is minimal and so biharmonic if and only if f(y) = cy + d, where c, d are
nonzero constants.

Corollary 4.2. A timelike hypersurface of a Ricci flat LP-Sasakian
manifold with a constant mean curvature is biharmonic if and only if it is
minimal.

Theorem 4.2. Let M be an (m+1)-dimensional η-Einstein LP-Sasakian
manifold and M be a timelike hypersurface of M . Then M is biharmonic
if and only if

(4.16)
m

2
(gradH2)+2A(gradH) = 0, (∆H)+H |A|2−H(

r

m
−1) = 0,

where r is the scalar curvature of M. Particularly, if M is a timelike hy-
persurface with 0 ̸= H =constant, then M is a non-minimal biharmonic
timelike hypersurface if and only if

(4.17) |A|2 = r

m
− 1.

Proof. Assume that M be an (m + 1)-dimensional η-Einstein LP-
Sasakian manifold. Then by using 2.2.10, we have

(4.18) S(N,N) =
r

m
− 1.

On the other hand

(4.19) (Q(N)) = 0.

By using (4.18) and (4.19) in (4.1), we obtain the assertion of the theorem.�

Theorem 4.3. Let M be an (m + 1)-dimensional LP-Sasakian space
form and M be a timelike hypersurface of M. Then M is biharmonic if
and only if

(4.20)
m

2
(gradH2) + 2A(gradH) = 0, (∆H) +H |A|2 −mH = 0.

In particular, M is a hypersurface of M with a constant mean curvature,
then M is a non-minimal biharmonic timelike hypersurface if and only if
|A|2 = m.
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Proof. In an (m + 1)-dimensional LP-Sasakian space form M , since
S(X,Y ) = mg(X,Y ), for all vector fields X, Y , then M is an η-Einstein
manifold with

(4.21) r = m(m+ 1).

Therefore, the biharmonic equation (4.16) reduces to (4.20). �

Theorem 4.4. Let M be an (m + 1)-dimensional (dimM > 2) η-
Einstein LP-Sasakian manifold. A totally umbilical biharmonic timelike
hypersurface of M has constant mean curvature.

Proof. Let {e1, e2, ..., em−1, em = ξ,N} be a local orthonarmal basis of
η-Einstein LP-Sasakian manifold M such that {e1, e2, ..., em−1, em = ξ} is
an orthonormal frame for the hypersurface M . Since M is totally umbilical,
we have A = λI, where λ is a smooth function. Then

H =
1

m

m∑
i=1

εig(B(ei, ei), N) =
1

m

m−1∑
i=1

g(Aei, ei) =
1

m

m∑
i=1

g(λei, ei)

=
m− 1

m
λ.(4.22)

From (4.22), we can write

(4.23) A(gradH) =
m− 1

2m
gradλ2.

On the other hand, by straightforward calculations one can easily see that

(4.24) |A|2 = mλ2.

By using (4.22), (4.23) and (4.24) in (4.16), we obtain

(4.25)

(
m2 − 1

2m

)
gradλ2 = 0, ∆λ+mλ3 −

(
r

m
− 1

)
λ = 0.

From (4.25), we have either λ = 0 and thereforeH = 0, or λ = ± 1
m

√
r −m =

constant. �

Corollary 4.3. A totally umbilical timelike hypersurface of an η-Einstein
LP-Sasakian manifold M (dim M = m+ 1 > 2) with r < m is biharmonic
if and only if it is minimal.
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Theorem 4.5. A totally umbilical biharmonic timelike hypersurface of
a Ricci flat LP-Sasakian manifold is minimal.

Proof. Let M be an (m + 1)-dimensional (dim M > 2) Ricci flat
LP-Sasakian manifold and M be a totally umbilical biharmonic timelike
hypersurface of M. By using (4.22), (4.23) and (4.24) in (4.1), we have(

m2 − 1

2m

)
gradλ2 = 0, (m− 1)

(
1

m
∆λ+ λ3

)
= 0.(4.26)

Since M is biharmonic and m > 1 then by solving (4.26) we obtain λ = 0,
hence H = 0. �
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