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Abstract. In this paper, we present a class of continuous hybrid linear multistep
methods (CHLMM) for stiff initial value problems (IVPs) in ordinary differential equa-
tions (ODEs). The constuction of these methods are based on the approach of collocation
and interpolation. The interval of absolute stability of the method is investigated, using
the root locus method. Numerical results of the methods solving stiff IVPs in ODEs are
compared with that from the state-of-the-art Ode15s Matlab ODEs code.
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1. Introduction

Consider the numerical solution of stiff IVPs

(1) y′ = f(x, y), y(x0) = y0, a ≤ x ≤ b

by a class of continuous hybrid LMM (CHLMM)

y(xn+(t+ 1)h)=
k−1∑
j=0

αj(t)yn+j+αv(t)yn+v+hβv(t)f(xn+v, yn+v),(2)

t ∈ [−1, k − 1], 0 ≤ v ≤ k

y(xn + vh) =
k∑

j=0

α∗
j (t

∗)yn+j + hβ∗
k(t

∗)fn+k, v = t∗ + 1, t∗ = k − 3

2
,(3)
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where yn+j is the numerical approximation to the exact solution y(xn+j),
fn+j = f(xn+j , yn+j), {αj(t), j = 0(1)k − 1}, αv(t), {α∗

j (t
∗), j = 0(1)k},

βv(t), and β∗
k(t), are continuous coefficients in t presumed to be real and

satisfying the normalization condition αk(t) = 1, α∗
v(t

∗) = 1, x = xn+1+ th,
t ∈ [a, b] and h = xn+1 − xn is a fixed mesh size.

The problem of stiffness in most ordinary differential equations (ODEs)
has posed a lot of computational difficulties in many practical application
modeled by ODEs. Stiffness affects the efficiency of numerical methods.
Here, we present a class of continuous Hybrid linear multistep methods for
stiff IVPs in ODEs. Hybrid LMM was first proposed by [11]. Other authors
are, [1, 2, 3, 4, 6, 9, 10, 12, 13, 14, 16, 19, 20, 21, 22]. In fact, the numerical
solution of (1) by (2) through collocation and interpolation methods have
been well studied in the literature, see for example [23], [25], [5], [7, 8], [26],
[16], [24], and [17, 18]. The interval of absolute stability of the CHLMM
is investigated using the root locus method discussed in [20, 21] and [3],
whose application can be found in [16] and [24] instead of the equivalent
boundary locus plot in [7] and [9]. The local truncation error for (2) and
(3) are nicely given as

L.T.E = [y(xn + (t+ 1)h)−
k−1∑
j=0

αj(t)y(xn + jh)− αv(t)y(n+vh)(4)

− hβv(t)y
′(xn + vh)] and

L.T.E = [y(xn + vh)−
k∑

j=0

α∗
j (t

∗)y(xn + jh)− hβ∗
k(t

∗)y′(xn + kh)].(5)

The order for (2) and the expression for yn+v in the function fn+v in (2) are
p = k+1 and p = k+1 respectively. Effective implementation of (2) demand

the use of the Newton iterative scheme y
[s+1]
n+k = y

[s]
n+k−F ′(y

[s]
n+k)

−1F (y
[s]
n+k),

s = 0, 1, 2, . . ., where, F ′(y
[s]
n+k)

−1 is the Jacobian matrix of the vector sys-
tems of the method. In particular, for k − step the nonlinear equation

F (y
[s]
n+k) = 0. The parameter v is incorporated to provide off step colloca-

tion point xn+v in an open interval (xn+k−1, xn+k) and v = k− 1
2 , where k is

the step number of the scheme. Formula (2) is zero stable for fixed step size,
h case for k ≤ 7. For k ≥ 8, no stable process appear to exist. See the root
locus plots of the methods in section 4. The motivation to derive the hybrid
method (2) is the fact that, it offers the means to by pass the Dahlquist
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order barrier for A-stable conventional LMM and the fact that continuous
solution of the IVPs in ODEs can be obtained. The proposed continuous hy-
brid LMM in (2) consists of the addition of terms αv(t)yn+v to the left hand
side of the One-leg hybrid LMM in [9]

∑k
j=0 αjyn+j = hβvf(xn+v, yn+v).

Implementation of (2) required us to compute first yn+v in (3) so that the
terms yn+v and fn+v in (2) could be evaluated. Considerations as to how
this might be done appear in section 5 in this paper.

The Outline of this paper is as follows. We start with the construction
of the continuous hybrid LMM in (2) of k + 1 in section 2. Section 3 deals
with the derivations of the continuous hybrid predictor yn+v in the function
fn+v of the method in (3). In section 4, we determined the stiff stability of
the methods, using the root locus. Finally, in section 5, result of numerical
experiments on some stiff test systems are presented and compared with
Ode15s code from MATLAB ODE suite in [15].

2. Derivation of the continuous hybrid linear multistep me-
thods

The solution of the IVPs in (1) is assumed to be the polynomial

(6) y(x) =

k+1∑
j=0

ajx
j

where {aj}k+1
j=0 are the real parameter constants to be determined. From

(8) we have

(7) y′(x) = f(x, y) =

k+1∑
j=1

jajx
j−1

Collocating (7) at x = xn+v and interpolating (9) at x = xn+j , j = 0(1)k−1
and x = xn+v, we obtain the linear system of equations

(8)



1 xn x2n . . . xk+1
n

1 xn+1 x2n+1 . . . xk+1
n+1

...
...

... . . .
...

1 xn+k−1 x2n+k−1 . . . xk+1
n+k−1

1 xn+v x2n+v . . . xk+1
n+v

0 1 2xn+v . . . (k + 1)xkn+v





a0
a1
...

ak−1

ak
ak+1


=



yn
yn+1
...

yn+k−1

yn+v

fn+v


.
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Solving equation (8) for a′js and substituting the resulting values into
(6) with t = (x − xn+1)/h and setting x = xt+1 on the left hand side of
(6) yield the values of the continuous coefficients {αj}k−1

j=0(t), αv(t), βv(t)

respectively. Fixing t = k − 1 into the continuous coefficients {αj}k−1
j=0(t),

αv(t), βv(t) for a fixed k, give the values of the discrete coefficients of the
method in (2) for k ≤ 7. For example, see Table 1 in appendix A for the
continuous coefficients for method (2) for k ≤ 7. Table 2. in appendix A
shows explicitly the discrete coefficients for method (2) for k ≤ 7.

3. The derivation of the continuous hybrid predictor

Similarly, the corresponding hybrid predictor

(9) y(xn + vh) =

k∑
j=0

α∗
j (t)yn+j + hβ∗

k(t)fn+k, v = t+ 1, t = k − 3/2

for y(xn+v), and f(xn+v) in (2) are obtained from the polynomial inter-
polant

(10) y(xn+v) =
k+1∑
j=0

bjx
j .

where {b}k+1
j=0 are the real parameter constants to be determined. Follow-

ing the same procedure in section 2, the unknown continuous coefficients of
the hybrid predictors in (2) are obtained. After some simplifications, we ob-
tained a class of continuous hybrid predictors from (2). Table 3 in appendix
B below shows the continuous coefficients of the predictor (3) for k ≤ 7.
Table 4. in appendix B gives the discrete coefficients for the predictor (3)
for k ≤ 7.

4. Stability of the methods by plotting the root locus

In this section, we investigate the stability properties of the family of
the continuous hybrid linear multistep method (CHLMM) in (2) using the
root locus plot discussed in [20, 21]. On substituting the hybrid solution
(3) yn+v at point xn+v into the continuous hybrid LMM for a fixed k and
t, and applying the resultant method on the scalar test problem y′ = λy,
Re(λ) < 0, we obtain the continuous hybrid LMM stability polynomials to
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be

π(r, z) = rk −
k−1∑
j=0

αjr
j − αv(

k∑
j=0

α∗
jr

j + zβ∗
kr

k)− zβv(
k∑

j=0

α∗
jr

j + zβ∗
kr

k),

z = λh.(11)

Plotting |rj(z)| against z reveals the interval of absolute stability for the
methods. The general form of the stability plot is given below in figure
1. Method (2) is said to be stable respectively, if 0 ≤ |rj(z)| ≤ 1 where,
rj(z), j = 0(1)k are roots of the polynomial in (11) with root |rj(z)| = 1
been simple. Plotting the root locus of π(r, z) = 0, it is observed that the
methods in (2) are stiffly stable for k ≤ 7. The graphs in figures 2-9 below
show the loci and thus the interval of absolute/stiff stability of each method
for a fixed value of k ≤ 7. The case of k ≥ 8 are stiffly unstable, see figure
9 and Table 4.3 respectively.

- Z

0

Z

1

j
r

Region of Absolute Instability

Region of Absolute Instability Region of Absolute Instability

Region of Absolute Instability

Region of Absolute Instability

Region of Absolute stability

Figure 1: The root locus form of the region of absolute stability/stiff sta-
bility. See [20]
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Root Locus Plots for the Continuous Hybrid
Multistep Methods in (2)
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Figure 2: Root Locus Plot for k = 1 Figure 3: Root Locus Plot for k = 2
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Figure 4: Root Locus Plot for k = 3 Figure 5: Root Locus Plot for k = 4
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Figure 6: Root Locus Plot for k = 5 Figure 7: Root Locus Plot for k = 6
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Figure 8: Root Locus Plot for k = 7 Figure 9*: Root Locus Plot for k = 8
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5. Numerical experiments

In this section the implementation of the CHLMM in (2) discussed in
sections 2 and 3 of this paper on the stiff initial value problems will be
considered.

Problem 1: Linear problem in [7]

y′ =


−0.1 0 0 0
0 −10 0 0
0 0 −100 0
0 0 0 −1000

 y, y(0) =


1
1
1
1

 , y(x) =


e−0.1x

e−10x

e−100x

e−1000x


Problem 2: Nonlinear chemical problem in [7] and [15]

y′1 = −0.04y1 + 104y2y3,

y′2 = −400y1 + 104y2y3 − 3× 107y22,

y′3 = 3× 107y22,

y(0) =

1
0
0


with x being the range [0,10] for problem [1] and h = 0.0001 for problem
[2], x ∈ 0(0.0001)3. In solving the initial value problems above, set up the
continuous form of the methods from the continuous coefficients table of
interest, CHLMM in (2) for k = 1 is

(12) y(xn+(t+1)h) = (1+4t+4t2)yn+(−4t−4t2)yn+ 1
2
+h(1+3t+2t2)fn+ 1

2

from table (1) in Appendix A. The local truncation error and the order for
(14) is

(13) C3(t) =
(1 + t)(1 + 2t)2h3y(3)(x)

24
, p = 2.

Setting t = 0 in (14) gives the equivalent discrete form of the CHLMM in
(2) to be

(14) yn+1 = yn + hfn+ 1
2
, p = 2
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Similarly, from table (3) in Appendix B, we obtained the equivalent
discrete form of the continuous hybrid predictor in (3) for k = 1 and t = −1

2
respectively to be

(15) yn+ 1
2
=

1

4
yn +

3

4
yn+1 −

h

4
fn+1, p = 2

It has been noted by [7], [9], [12, 13], and [20], that linear multistep methods
suitable for stiff ODEs must be implicit and must therefore require a scheme
to resolve the implicitness of the methods. Applying discrete methods (2)
and (3) respectively to the initial value problem above leads to solving im-
plicit set of equations which demands the use of Newton Raphson iterative
scheme,

(16) y
[s+1]
n+k = y

[s]
n+k − F ′(y

[s]
n+k)

−1F (y
[s]
n+k), s = 0, 1, 2, ...

where F ′(y
[s]
n+k)

−1 is the Jacobian matrix of the vector systems of the

method. In particular, for k = 1 the nonlinear equation F (y
[s]
n+k) = 0,

where

(17) F (y
[s]
n+1) = y

[s]
n+1 − yn − hf(xn+ 1

2
, y

[s]

n+ 1
2

) = 0

(18) y
[s]

n+ 1
2

=
1

4
yn +

3

4
y(x

[s]
n+1)−

h

4
f(xn+1, y

[s]
n+1).

In this regard y
[0]
n+1 is given from the trapezoidal rule

(19) y
[0]
n+1 = yn +

h

2
(fn+1 + fn), s = 0, 1, 2, ...

as an initial guess for yn+1 in (19). Let L be the Lispschitz constant of
f(x, y) with respect to y. For non-stiff problems, where L is small, the
step size is usually determined by accuracy conditions. However, for stiff
problems where L is large, the step size is severely restricted by stability
constraint. Terminations of the iteration (16) occur whenever we observe

that |y[s+1]
n+1 − y

[s]
n+1| 6 TOL, where TOL is the order of the unit round off

error of the computer, which may be assumed by the user. However figure
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Figure 10: The plot of numerical solutions of Problem 1 and Ode15s in

[15].
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Figure 11: The plot of numerical solutions of y2(x) of Problem 2.

10 and figure 11 below show the plot of the numerical results of the methods
when applied to the linear problem 1 and nonlinear problem 2.

Finally, in this paper, we have derived a class of continuous hybrid linear
multistep methods (2) which is of order p = k+1, and stiffly stable for k 6 7
using collocation and interpolation process. The root locus plot in figure
9 revealed that the instability of the methods in (2) set in when k > 8.
The numerical solution graphs in figure 10 and figure 11, of the methods in
(14) and (15) coincide and show that the methods in (2) is compared with
the state-of the-art of MATLAB ode15s code in [15], on Problem 1 and
Problem 2 respectively.
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