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Abstract. Kinyon’s conjecture that ’every CC-quasigroup is isotopic to an Osborn
loop’ is shown to be true for universal (left and right universal) Osborn loops if and only
if every CC-quasigroup obeys any of two gotten identities. An Osborn loop is proved to
be universal if and only if some of its principal isotopes are isomorphic to some other
principal isotopes of the loop, left universal if and only if some of its principal isotopes
are isomorphic to some left principal isotopes of the loop and right universal if and only
if any of its right principal isotopes is isomorphic to some principal isotopes of the loop.
The existence of a bi-mapping in the Bryant-Schneider group (BSG) of a right universal
Osborn loop is shown and the consequences of this is discussed for extra loops using
some existing results in literature. It is established that there is no non-trivial: universal
Osborn loop that can form a special class of left G-loop (e.g extra loops, CC-loops or
VD-loops) under a tri-mapping, left universal Osborn loop that can form a special class
of left G-loop under a bi-mapping. Also, it is established that there is no non-trivial:
universal Osborn loop with this tri-mapping in its BSG, left universal Osborn loop with
this bi-mapping in its left BSG and right universal Osborn loop with a bi-mapping in its
right BSG.
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1. Introduction and preliminaries

A loop is called an Osborn loop if it obeys any of the two identities below.

OS3 : (x · yz)x = xy · [(xλ · xz) · x],(1)

OS5 : (x · yz)x = xy · [(x · xρz) · x].(2)
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For a comprehensive introduction to Osborn loops and its universality,
and a detailed literature review on it, readers should check Jaiyéo. lá and
Adéńıran [7]. In Kinyon [8], the author made the following conjecture:
”Every CC-quasigroup is isotopic to an Osborn”. And he mentioned that
CC-quasigroups include CC-loops, quasigroups that are isotopic to groups
and trimedial quasigroups. Trimedial quasigroups have been shown to be
isotopic to commutative Moufang loops.

In this study, Kinyon’s conjecture that ’every CC-quasigroup is isotopic
to an Osborn loop’ is shown to be true for universal(left and right universal)
Osborn loops if and only if every CC-quasigroup obeys any of two gotten
identities. An Osborn loop is proved to be universal if and only if some of
its principal isotopes are isomorphic to some other principal isotopes of the
loop, left universal if and only if some of its principal isotopes are isomorphic
to some left principal isotopes of the loop and right universal if and only if
any of its right principal isotopes is isomorphic to some principal isotopes
of the loop. The existence of a bi-mapping in the Bryant-Schneider group
(BSG) of a right universal Osborn loop is shown and the consequences of
this is discussed for extra loops using some existing results in literature. It
is established that there is no non-trivial: universal Osborn loop that can
form a special class of left G-loop (e.g extra loops, CC-loops or VD-loops)
under a tri-mapping, left universal Osborn loop that can form a special
class of left G-loop under a bi-mapping. Also, it is established that there
is no non-trivial: universal Osborn loop with this tri-mapping in its BSG,
left universal Osborn loop with this bi-mapping in its left BSG and right
universal Osborn loop with a bi-mapping in its right BSG.

In this present paper, we shall follow the style and notations used
in Jaiyéo. lá and Adéńıran [7]. The only concepts and notions which
will be introduced here are those that were not defined in Jaiyéo. lá and
Adéńıran [7].

A conjugacy closed quasigroup(CC-quasigroup) is a quasigroup that
obeys the identities x · (yz) = {[x · (y · (x\x))]/x} · (xz) and (zy) · x =
(zx) · {x\[((x/x) · y) · x]}. A loop is called a right G-loop(Gρ-loop) if and
only if it is isomorphic to all its right loop isotopes. A loop is called a left
G-loop (Gλ-loop) if and only if it is isomorphic to all its left loop isotopes.
A loop is a G-loop if and only if it is a Gρ-loop and a Gλ-loop. Kunen [12]
demonstrated the use of Gρ-loops and Gλ-loops. We shall treat the G-loops
and Gρ-loops of some universal and right universal Osborn loops (respec-
tively) in the following manner.
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Definition 1.1. Let (L, ·, \, /) be an Osborn loop with a mapping Θ ∈
SYM(L, ·). Suppose Θ is an element of the multiplication groupMult(L) of
L such that Θ(x, y, z), i.e Θ is the product of right, left translation mappings
Rα(x,y,z), Lβ(x,y,z) and their inverses Rα(x,y,z),Lβ(x,y,z) such that α(x, y, z)
and β(x, y, z) are words in L in terms of arbitrary elements x, y, z ∈ L with
a minimum of length one. Then Θ is called a tri-mapping of L.

1. L is called a G(Θ3)-loop if it is a G-loop such that there exists a
tri-mapping Θ which is the isomorphism from L to all its principal
isotopes.

2. L is called a Gλ(Θ2)-loop if it is a Gρ-loop such that there exists a
bi-mapping Θ which is the isomorphism from L to all its principal
isotopes.

Remark 1.1. Some popular examples of bi-mappings are the right and
left inner mappings R(x, y) and L(x, y) respectively. The middle inner
mapping T (x) is a familiar mono-mapping. Tri-mappings, tetra-mappings
e.t.c can be obtained by multiplying bi-mappings and mono-mappings. A
demonstration of this can be seen in Bruck and Paige [2] and Kinyon et.
al. [10]. In fact, according to Kinyon et. al. [9], in a CC-loop, R(x, y)
and L(u, v) all commute with each other. So, it is sensible to consider
tetra-mappings in some universal Osborn loops.

Theorem 1.1 (Chiboka and Solarin [5], Kunen [11]). Let (G, ·) be
a loop.

1. G is called a Gρ-loop if and only if there exists θ ∈ SYM(G, ·) such
that (θ, θL−1

y , θ) ∈ AUT (G, ·),∀ y ∈ G.

2. G is called a Gλ-loop if and only if there exists θ ∈ SYM(G, ·) such
that (θR−1

x , θ, θ) ∈ AUT (G, ·),∀ x ∈ G.

3. G is called a G-loop if and only if there exists θ ∈ SYM(G, ·) such
that (θR−1

x , θL−1
y , θ) ∈ AUT (G, ·),∀ x, y ∈ G.

Definition 1.2 (Robinson [13]). Let (G, ·) be a loop.

1. A mapping θ ∈ SYM(G, ·) is a right special map for G means that
there exist f ∈ G so that (θ, θL−1

f , θ) ∈ AUT (G, ·).
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2. A mapping θ ∈ SYM(G, ·) is a left special map for G means that
there exist g ∈ G so that (θR−1

g , θ, θ) ∈ AUT (G, ·).

3. A mapping θ ∈ SYM(G, ·) is a special map for G means that there
exist f, g ∈ G so that (θR−1

g , θL−1
f , θ) ∈ AUT (G, ·).

From Definition 1.2, it can be observed that θ is a left or right special
map for a loop (G, ·) with identity element e if and only if θ is an iso-
morphism of (G, ·) onto some e, g- or f, e- principal isotope (G, ◦) of (G, ·).
Moreso, θ is a special map for a loop (G, ·) if and only if θ is an isomorphism
of (G, ·) onto some f, g-principal isotope (G, ◦) of (G, ·).

Robinson [13] went further to show that ifBS(G, ·) = {θ ∈ SYM(G, ·) :
∃f, g ∈ G ∋ (θR−1

g , θL−1
f , θ) ∈ AUT (G, ·)} i.e the set of all special maps

in a loop, then BS(G, ·) ≤ SYM(G, ·) called the Bryant-Schneider group
of the loop (G, ·) because its importance and motivation stem from the
work of Bryant and Schneider [3]. Since the advent of the Bryant-
Schneider group, some studies by Adeniran [1] and Chiboka [4] have
been done on it relative to CC-loops and extra loops. Let BSλ(G, ·) = {θ ∈
SYM(G, ·) : ∃ g ∈ G ∋ (θR−1

g , θ, θ) ∈ AUT (G, ·)} i.e the set of all left
special maps in a loop, then BSλ(G, ·) ≤ BS(G, ·) called the left Bryant-
Schneider group of the loop (G, ·) and BSρ(G, ·) = {θ ∈ SYM(G, ·) : ∃ f ∈
G ∋ (θ, θL−1

f , θ) ∈ AUT (G, ·)} i.e the set of all right special maps in a
loop, then BSρ(G, ·) ≤ BS(G, ·) called the right Bryant-Schneider group
of the loop (G, ·). We shall make a judicious use of these three groups as
earlier predicted by Robinson [13].

Theorem 1.2 (Jaiyéo. lá and Adéńıran [7]). A loop (Q, ·, \, /) is a
universal Osborn loop if and only if it obeys the identity

x · u\{(yz)/v · [u\(xv)]}
= (x · u\{[y(u\([(uv)/(u\(xv))]v))] /v · [u\(xv)]})/v · u\[((uz)/v)(u\(xv))]︸ ︷︷ ︸

OS′
0

or

x · u\{(yz)/v · [u\(xv)]}
= {x · u\{[y(u\(xv))]/v · [x\(uv)]}}/v · u\[((uz)/v)(u\(xv))].︸ ︷︷ ︸

OS′
1
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2. Main results

2.1. Universality of Osborn loops

Theorem 2.1. A loop (Q, ·, \, /) is a universal Osborn loop if and only
if it obeys the identity

[x · u\(yz)]/v · [u\(xv)]
= [x · u\(yv)]/v · u\{{x · u\[(u[x\(uv)])/v · z]}/v · u\(xv)}︸ ︷︷ ︸

OS′
5

or

[x · u\(yz)]/v · u\(xv)
= [x · u\(yv)]/v · u\{{[(uv)/(u\(xv))] · u\(xz)}/v · u\(xv)}.︸ ︷︷ ︸

OS′
3

Proof. Let Q = (Q, ·, \, /) be an Osborn loop with any arbitrary
principal isotope Q = (Q,N,↖,↗) such that xNy = xR−1

v · yL−1
u =

(x/v) · (u\y) ∀ u, v ∈ Q. The proof of this theorem is achieved by using
identities OS5 and OS3 the way identities OS0 and OS1 were used to prove
Theorem 1.2. �

Lemma 2.1. A quasigroup is isotopic to a universal Osborn loop if and
only if it obeys the identity OS′3 or OS′5.

Proof. Let Q be a quasigroup that is isotopic to a universal Osborn
loop L i.e every isotope G of L is an Osborn loop. Then, the isotopisms
Q −→ L and L −→ G implies the isotopism Q −→ G. Let H be any isotope
of Q, then H −→ G is an isotopism and so H −→ L is an isotopism, hence,
H is an Osborn loop. Let H = (Q,N) be a principal isotope of (Q, ·) such
that xNy = xR−1

v · yL−1
u = (x/v) · (u\y) ∀ u, v ∈ Q. Then, thinking in line

with the proof of Theorem 2.1, H obeys identity OS3 or OS5 if and only if
Q obeys identity OS′3 or OS′5.

The proof of the conversely is as follows. If Q obeys identity OS′3 or OS′5,
then every principal isotope of Q is an Osborn loop, hence, all isotopes of
Q are Osborn loops. Let L be an isotope of Q with arbitrary loop isotope
L′. So L′ is an isotope of Q, hence L′ is an Osborn loop. Therefore, Q is
isotopic to a universal Osborn loop. �
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Corollary 2.1. A quasigroup is isotopic to a Moufang loop or CC-loop
or VD-loop or universal WIPL if and only if it obeys the identity OS′3 or
OS′5.

Remark 2.1. Not all CC-quasigroups are isotopic to groups or Moufang
loops or VD-loops.

Lemma 2.2. Let Q be a loop with multiplication group Mult(Q). Q
is a universal Osborn loop if and only if the triple (α1(x, u, v), β1(x, u, v),
γ1(x, u, v)) ∈ AUT (Q) or the triple

(α1(x, u, v), LxLuL[(uv)/(u\(xv))]LxLuγ1(x, u, v)Lu, γ1(x, u, v)) ∈ AUT (Q),

for all x, u, v ∈ Q, where

α1(x, u, v) = RvLuLxRv, β1(x, u, v) = L
[(u[x\(uv)])/v]LuLxRvR[u\(xv)]Lu

and γ1(x, u, v) = LuLxRvR[u\(xv)] are elements of Mult(Q).

Proof. This is gotten from Theorem 2.1 by just writing identity OS′5
or OS′3 in autotopic form. �

Theorem 2.2. Let Q be a loop with multiplication group Mult(Q). If Q
is a universal Osborn loop, then the triple (α1(x, u, v), γ1(x, u, v)L[x·u\v]/v,
γ1(x, u, v)) ∈ AUT (Q), ∀x, u, v ∈ Q, where α1(x, u, v) = RvLuLxRv and
γ1(x, u, v) = LuLxRvR[u\(xv)] are elements of Mult(Q).

Proof. Theorem 2.1 will be employed. Let y = e in identity OS′5, then
[x · u\z]/v · [u\(xv)] = [x · u\v]/v · u\{{x · u\[(u[x\(uv)])/v · z]}/v · u\(xv)}.
So, identity OS′5 can now be written as

[x ·u\(yz)]/v · [u\(xv)] = [x ·u\(yv)]/v · {[x ·u\v]/v}\{[x ·u\z]/v · [u\(xv)]}.

Putting this in autotopic form, we have

(α1(x, u, v), γ1(x, u, v)L[x·u\v]/v, γ1(x, u, v)) ∈ AUT (Q).

�

Theorem 2.3. An Osborn loop is universal if and only if some of its
principal isotopes are isomorphic to some other principal isotopes.
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Proof. Let (Q, ·, \, /) be a universal Osborn loop. We shall use Lemma 2.2.
The triple

(α1(x, u, v), β1(x, u, v), γ1(x, u, v)) = (Rvγ1R[u\(xv)], L[(u[x\(uv)])/v]γ1Lu, γ1)

can be written as the following compositions

(Rv, L[(u[x\(uv)])/v] , I)(γ1, γ1, γ1)(R[u\(xv)],Lu, I).

Let (Q, ◦) be some principal isotopes of (Q, ·) and (Q, ∗) some other princi-
pal isotopes of (Q, ·). Let ϕ1(x, u, v) = [(u[x\(uv)])/v], then the composition
above can be expressed as:

(Q, ·)
(Rv ,Lϕ1(x,u,v)

,I)
−−−−−−−−−−−→
principal isotopism

(Q, ∗) (γ1,γ1,γ1)−−−−−−−→
isomorphism

(Q, ◦)
(R[u\(xv)],Lu,I)−−−−−−−−−−−→

principal isotopism
(Q, ·).

This means that some principal isotopes (Q, ◦) of (Q, ·) are isomorphic to
some other principal isotopes (Q, ∗) of (Q, ·). �

Theorem 2.4. An Osborn loop is universal if and only if the existence
of the principal autotopism (Rv, Lϕ1(x,u,v), I), ϕ1(x, u, v) = [(u[x\(uv)])/v]
in the loop implies the triple (γ1R[u\(xv)], γ1Lu, γ1), where γ1(x, u, v) =
LuLxRvR[u\(xv)] is an autotopism in the loop, and vice versa.

Proof. The proof is in line with Theorem 2.3 with a slight adjust-
ment to the composition of the triple (α1(x, u, v), β1(x, u, v), γ1(x, u, v)) =
(Rvγ1R[u\(xv)], L[(u[x\(uv)])/v]γ1Lu, γ1) which can be re-written as the follow-
ing compositions (Rv, L[(u[x\(uv)])/v] , I)(γ1R[u\(xv)], γ1Lu, γ1). Hence, the con-
clusion follows. �

Theorem 2.5. If an Osborn loop is universal then, any of its left prin-
cipal isotopes is isomorphic to some principal isotopes.

Proof. By Theorem 2.2, if Q is a universal Osborn loop, then

(α1(x, u, v), γ1(x, u, v)L[x·u\v]/v, γ1(x, u, v))

= (RvLuLxRv, γ1(x, u, v)L[x·u\v]/v, γ1(x, u, v))

= (Rvγ1(x, u, v)R[u\(xv)], γ1(x, u, v)L[x·u\v]/v, γ1(x, u, v)) ∈ AUT (Q),

for all x, u, v ∈ Q. Writing

(Rvγ1(x, u, v)R[u\(xv)], γ1(x, u, v)L[x·u\v]/v, γ1(x, u, v))

= (Rv, I, I)(γ1(x, u, v), γ1(x, u, v), γ1(x, u, v))

(R[u\(xv)],L[x·u\v]/v, I) ∈ AUT (Q)
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such that

(Q, ·) (Rv,I,I)−−−−−−−−−−−−−−→
left principal isotopism

(Q, ∗) (γ1,γ1,γ1)−−−−−−−→
isomorphism

(Q, ◦)
(R[u\(xv)],L[x·u\v]/v ,I)−−−−−−−−−−−−−−→
principal isotopism

(Q, ·)

where (Q, ∗) is an arbitrary left principal isotope of (Q, ·) and (Q, ◦) are
some principal isotopes of (Q, ·), the conclusion of the theorem follows. �

Theorem 2.6. If an Osborn loop is universal then, the existence of
the principal autotopism (R[u\(xv)], Lψ1(x,u,v), I), ψ1(x, u, v) = [x · u\v]/v
in the loop implies the triple (γ1(x, u, v)

−1Rv, γ1(x, u, v)−1, γ1(x, u, v)
−1),

where γ1(x, u, v) = LuLxRvR[u\(xv)] is an autotopism in the loop, and vice
versa.

Proof. The proof is in line with Theorem 2.5 with a slight adjust-
ment to the composition by simply considering the inverse composition and
reasoning like we did in Theorem 2.4. �

Theorem 2.7. Let Q = (Q, ·, \, /) be an Osborn loop such that the tri-
mapping γ1(x, u, v) = LuLxRvR[u\(xv)]. Q is a universal Osborn loop if and
only if γ1(x, u, v) ∈ BS(Q) implies Q obeys the identity

(3) yv · {(u[x\(uv)])/v}z = yz ∀ x, y, z, u, v ∈ Q

and vice versa.

Proof. The proof is based on Theorem 2.2 and is achieved by using the
compositions (Rv, L[(u[x\(uv)])/v] , I)(γ1R[u\(xv)], γ1Lu, γ1) of Theorem 2.4 and
hence following by the definition of BS(Q), γ1(x, u, v) ∈ BS(Q) implies Q
obeys identity (3) and vice versa. �

Theorem 2.8. Let (Q, ·, \, /) be an Osborn loop such that the tri-mapping
γ1(x, u, v) = LuLxRvR[u\(xv)]. If Q is a universal Osborn loop then, Q is a

Gλ((γ
−1
1 )3)-loop implies it obeys the identity

(4) y[u\(xv)] · {[x · u\v]/v}z = yz ∀ x, y, z, u, v ∈ Q

and vice versa.

Proof. The proof is based on the composition used in Theorem 2.6.
The reasoning used is similar to that in Theorem 2.7. �
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Corollary 2.2. Let γ1(x, u, v) = LuLxRvR[u\(xv)] be a tri-mapping.
There does not exist a non-trivial universal Osborn loop Q = (Q, ·, \, /)
that is a Gλ((γ

−1
1 )3)-loop or for which γ1(x, u, v) ∈ BS(Q).

Proof. Let Q = (Q, ·, \, /) be an arbitrary non-trivial universal Osborn
loop. According to Theorem 2.7 or Theorem 2.8, if γ1(x, u, v) ∈ BS(Q) orQ
is a Gλ((γ

−1
1 )3)-loop then it obeys identity (3) or (4). Put y = z = v = u = e

in identity (3), then x = e. Which is a contradiction. Put y = z = e and
u = x in identity (4), then v = e. Which is also a contradiction. �

Remark 2.2. There is no non-trivial group or Moufang loop or univer-
sal WIPL or VD-loop or CC-loop Q that is a Gλ((γ

−1
1 )3)-loop or for which

γ1(x, u, v) ∈ BS(Q) when γ1(x, u, v) = RvR[u\(xv)]LuLx.

2.2. Left universality of Osborn loops

Theorem 2.9. A loop (Q, ·, \, /) is a left universal Osborn loop if and
only if it obeys the identity

[x · yz]/v · (xv) = [x · yv]/v · {{x · [(x\v)/v · z]}/v · (xv)}︸ ︷︷ ︸
OSλ

5

or

[x · (yz)]/v · (xv) = [x · (yv)]/v · {{[v/(xv)] · (xz)}/v · (xv)}.︸ ︷︷ ︸
OSλ

3

Proof. The method of the proof of this theorem is similar to the method
used to prove Theorem 2.1 by just using the arbitrary left principal isotope
Q = (Q,N,↖,↗) such that xNy = xR−1

v · y = (x/v) · y ∀ v ∈ Q. �

Lemma 2.3. A quasigroup is left isotopic to a left universal Osborn
loop if and only if it obeys the identity OSλ5 or OSλ3 .

Proof. The method of the proof of this lemma is similar to the method
used to prove Lemma 2.1. �

Corollary 2.3. A quasigroup is left isotopic to a Moufang loop or CC-
loop or VD-loop or universal WIPL if and only if it obeys the identity OSλ5
or OSλ3 .

Remark 2.3. Not all CC-quasigroups are left isotopic to groups or
Moufang loops or VD-loops.
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Lemma 2.4. Let Q be a loop with multiplication group Mult(Q). Q is a
left universal Osborn loop if and only if the triple (α1(x, v), β1(x, v), γ1(x, v))
∈ AUT (Q) or (α1(x, v), LxL[v/(xv)]Lxγ1(x, v), γ1(x, v)) ∈ AUT (Q), for all
x, v ∈ Q where α1(x, v) = RvLxRv, β1(x, v) = L[(x\v)/v]LxRvR[xv] and
γ1(x, v) = LxRvR[xv] are elements of Mult(Q).

Proof. This is gotten from Theorem 2.9 by just writing identity OSλ5
or OSλ3 in autotopic form. �

Theorem 2.10. Let Q be a loop with multiplication group Mult(Q). If
Q is a left universal Osborn loop, then the triple (α1(x, v), γ1(x, v)L[x·v]/v,
γ1(x, v)) ∈ AUT (Q), for all x, v ∈ Q where α1(x, v) = RvLxRv and γ1(x, v) =
LxRvR[xv] are elements of Mult(Q).

Proof. This follows by using identity OSλ5 or OSλ3 of Theorem 2.9 the
way identity OS′5 or OS′3 of Theorem 2.1 was used to prove Theorem 2.2.�

Theorem 2.11. An Osborn loop is left universal if and only if some of
its principal isotopes are isomorphic to some left principal isotopes.

Proof. Let (Q, ·, \, /) be a left universal Osborn loop. We shall use
Lemma 2.4. The triple

(α1(x, v), β1(x, v), γ1(x, v)) = (Rvγ1R[xv], L[(x\v)/v]γ1, γ1)

can be written as the following compositions

(Rv, L[(x\v)/v], I)(γ1, γ1, γ1)(R[xv], I, I).

Let (Q, ∗) be some principal isotopes of (Q, ·) and (Q, ◦) be some left princi-
pal isotopes of (Q, ·). Let ϕ1(x, v) = [(x\v)/v], then the composition above
can be expressed as:

(Q, ·)
(Rv ,Lϕ1(x,v)

,I)
−−−−−−−−−−−→
principal isotopism

(Q, ∗) (γ1,γ1,γ1)−−−−−−−→
isomorphism

(Q, ◦)
(R(xv),I,I)−−−−−−−−−−−−−−→

left principal isotopism
(Q, ·).

This means that some principal isotopes (Q, ∗) of (Q, ·) are isomorphic to
some left principal isotopes (Q, ◦) of (Q, ·). �

Theorem 2.12. An Osborn loop is left universal if and only if the
existence of the principal autotopism (Rv, Lϕ1(x,v), I), ϕ1(x, v) = [(x\v)/v]
in the loop implies the triple (γ1R(xv), γ1, γ1), where γ1(x, v) = LxRvR(xv)

is an autotopism in the loop and vice versa.
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Proof. The proof is in line with Theorem 2.11 with a slight adjustment
to the composition of the triple

(α1(x, v), β1(x, v), γ1(x, v)) = (Rvγ1R(xv), L[(x\v)/v]γ1, γ1)

which can be re-written as the following compositions

(Rv, L[(x\v)/v], I)(γ1R(xv), γ1, γ1).

Hence, the conclusion follows. �

Theorem 2.13. If an Osborn loop is left universal then, any arbitrary
left principal isotope of it is isomorphic to some principal isotopes of it.

Proof. By Theorem 2.10, if Q is a left universal Osborn loop, then
(α1(x, v), γ1(x, v)Lx, γ1(x, v)) = (Rvγ1(x, v)R(xv), γ1(x, v)Lx, γ1(x, v)) ∈
AUT (Q), for all x, u, v ∈ Q. Splitting this into composition of isotopism
like it was done in the proof of Theorem 2.5, we get

(Q, ·) (Rv ,I,I)−−−−−−−−−−−−−−→
left principal isotopism

(Q, ∗) (γ1,γ1,γ1)−−−−−−−→
isomorphism

(Q, ◦)
(R(xv),Lx,I)−−−−−−−−−−−→

principal isotopism
(Q, ·)

where (Q, ∗) is an arbitrary left principal isotope of (Q, ·) and (Q, ◦) are
some principal isotopes of (Q, ·). The conclusion of the theorem follows. �

Theorem 2.14. Let Q = (Q, ·, \, /) be an Osborn loop such that the
bi-mapping γ1(x, v) = LxRvR(xv). Q is a left universal Osborn loop if and
only if γ1(x, v) ∈ BSλ(Q) implies Q obeys the identity

(5) yv · [(x\v)/v]z = yz ∀ x, y, z, v ∈ Q

and vice versa.

Proof. The proof is based on Theorem 2.4 and is achieved by using the
compositions (Rv, L[(x\v)/v], I)(γ1R(xv), γ1, γ1) of Theorem 2.12. �

Theorem 2.15. Let (Q, ·, \, /) be an Osborn loop such that the bi-
mapping γ1(x, v) = LxRvR(xv). If Q is a universal Osborn loop then, Q

is a Gλ((γ
−1
1 )3)-loop implies it obeys the identity

(6) y(xv) · xz = yz ∀ x, y, z, v ∈ Q

and vice versa.
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Proof. The proof is based on the composition used in Theorem 2.6.
The reasoning used is similar to that in Theorem 2.7. �

Corollary 2.4. Let γ1(x, v) = LxRvR(xv) be a bi-mapping. There does

not exist a non-trivial left universal Osborn loop Q that is a Gλ((γ
−1
1 )3)-loop

or for which γ1(x, v) ∈ BSλ(Q).

Proof. Let (Q, ·, \, /) be an arbitrary non-trivial left universal Osborn
loop. According to Theorem 2.14, if in Q, γ1(x, v) ∈ BSλ(Q) then it obeys
identity (5). Put y = z = v = e in identity (5), then x = e. Which is a
contradiction.

Also, according to Theorem 2.15, if Q is a Gλ((γ
−1
1 )3)-loop, then it

obeys identity (6). Put x = y = z = e in identity (6), then v = e. Which is
a contradiction. �

Remark 2.4. There is no non-trivial group or Moufang loop or univer-
sal WIPL or VD-loop or CC-loop that is a Gλ((γ

−1
1 )3)-loop or for which

γ1(x, v) ∈ BSλ(Q) when γ1(x, v) = LxRvR(xv).

2.3. Right universality of Osborn loops

Theorem 2.16. A loop (Q, ·, \, /) is a right universal Osborn loop if
and only if it obeys the identity

[x · u\(yz)][u\x] = [x · u\y] · u\{{x · u\[(u[x\u])z]} · u\x}︸ ︷︷ ︸
OS5ρ

or

[x · u\(yz)][u\x] = [x · u\y] · u\{{[u/(u\x)] · u\(xz)} · u\x}.︸ ︷︷ ︸
OSρ

3

Proof. The method of the proof of this theorem is similar to the method
used to prove Theorem 2.1 by just using the arbitrary right principal isotope
Q = (Q,N,↖,↗) such that xNy = x · yL−1

u = x · (u\y) ∀ u ∈ Q. �

Lemma 2.5. A quasigroup is right isotopic to a right universal Osborn
loop if and only if it obeys the identity OSρ5 or OSρ3.

Proof. The method of the proof of this lemma is similar to the method
used to prove Lemma 2.1. �
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Corollary 2.5. A quasigroup is right isotopic to a Moufang loop or
CC-loop or VD-loop or universal WIPL if and only if it obeys the identity
OSρ5 or OSρ3.

Remark 2.5. Not all CC-quasigroups are right isotopic to groups or
Moufang loops or VD-loops.

Lemma 2.6. Let Q be a loop with multiplication group Mult(Q). Q is a
right universal Osborn loop if and only if the triple (α1(x, u), β1(x, u), γ1(x, u))
∈ AUT (Q) or the triple (α1(x, u), LxLuL[u/(u\x)]LxLuγ1(x, u)Lu, γ1(x, u)) ∈
AUT (Q), for all x, u ∈ Q where

α1(x, u) = LuLx, β1(x, u) = L[u(x\u)]LuLxR[u\x]Lu

and γ1(x, u) = LuLxR[u\x] are elements of Mult(Q).

Proof. This is gotten from Theorem 2.16 by just writing identity OSρ5
or OSρ3 in autotopic form. �

Theorem 2.17. Let Q be a loop with multiplication group Mult(Q). If
Q is a right universal Osborn loop, then the triple (α1(x, u), γ1(x, u)L[x·uρ],
γ1(x, u)) ∈ AUT (Q), for all x, u ∈ Q where α1(x, u) = LuLx and γ1(x, u) =
LuLxR[u\x] are elements of Mult(Q).

Proof. This follows by using identity OSρ5 or OSρ3 in Theorem 2.16 the
way identity OS′5 or OS′3 was used in Theorem 2.1. �

Theorem 2.18. An Osborn loop is right universal if and only if some
of its right principal isotopes are isomorphic to some principal isotopes.

Proof. Let (Q, ·, \, /) be a right universal Osborn loop. We shall use
Lemma 2.6. The triple

(α1(x, u), β1(x, u), γ1(x, u)) = (γ1R[u\x], L(u[x\u])γ1Lu, γ1)

can be written as the following compositions (I, L[u(x\u)], I)(γ1, γ1, γ1)(R[u\x],
Lu, I). Let (Q, ◦) be some right principal isotopes of (Q, ·) and (Q, ∗) some
principal isotopes of (Q, ·). Then, the composition above can be expressed
as:

(Q, ·)
(I,L[u(x\u)],I)−−−−−−−−−−−−−−−→

right principal isotopism
(Q, ∗) (γ1,γ1,γ1)−−−−−−−→

isomorphism
(Q, ◦)

(R[u\x],Lu,I)−−−−−−−−−−−→
principal isotopism

(Q, ·).

This means that some right principal isotopes (Q, ◦) of (Q, ·) are isomorphic
to some principal isotopes (Q, ∗) of (Q, ·). �
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Theorem 2.19. An Osborn loop is right universal if and only if the
existence of the principal autotopism (R[u\x], Lu, I), in the loop implies the

triple (γ−1
1 , γ−1

1 L[u(x\u)], γ
−1
1 ) where γ1(x, u) = LuLxR[u\x] is an autotopism

in the loop and vice versa.

Proof. The proof is in line with Theorem 2.18 with a slight adjustment
to the composition of the triple

(α1(x, u), β1(x, u), γ1(x, u)) = (γ1R[u\x], L(u[x\u])γ1Lu, γ1)

which can be re-written as the following compositions (R[u\x], Lu, I)(γ
−1
1 ,

γ−1
1 L[u(x\u)], γ

−1
1 ). Hence, the conclusion follows. �

Theorem 2.20. If an Osborn loop Q is right universal then, γ1(x, u) ∈
BS(Q) where γ1(x, u) = LuLxR[u\x] .

Proof. By Theorem 2.17, if Q is a right universal Osborn loop, then

(α1(x, u), γ1(x, u)L[xuρ], γ1(x, u))

= (γ1(x, u)R[u\x], γ1(x, u)L[xuρ], γ1(x, u)) ∈ AUT (Q),

for all x, u ∈ Q. Which means that γ1(x, v) ∈ BS(Q). �

Lemma 2.7. If an Osborn loop Q is right universal then, γ1(x, u) =
LuLxR[u\x] ∈ AUM(Q) if and only if Q obeys the identity y[u\x] · [xuρ]z =
yz, for all x, u, y, z ∈ Q. Hence, Q is an abelian group.

Proof. By Theorem 2.17, if Q is a right universal Osborn loop, then
(α1(x, u), γ1(x, u)L[x·uρ], γ1(x, u)) = (γ1(x, u)R[u\x], γ1(x, u)L[x·uρ], γ1(x, u))
∈ AUT (Q), for all x, u ∈ Q. By breaking this triple appropriately into two,
the claim follows. In the equation y[u\x] · [xuρ]z = yz, if u = y = z = e,
then x2 = e which means Q is an Osborn loop of exponent 2, thence, an
abelian group. �

Theorem 2.21. Let Q = (Q, ·, \, /) be an Osborn loop such that the
bi-mapping γ1(x, u) = LuLxR[u\x]. Q is a right universal Osborn loop if
and only if γ1(x, u) ∈ BSρ(Q) implies it obeys the identity

(7) y(u\x) · uz = yz ∀ x, y, z, u,∈ Q

and vice versa.
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Proof. The proof is based on Theorem 2.6 and is achieved by using the
compositions (R[u\x], Lu, I)(γ

−1
1 , γ−1

1 L[u(x\u)], γ
−1
1 ) of Theorem 2.19. And

hence, γ1(x, u) ∈ BSρ(Q) implies γ1(x, u)
−1 ∈ BS(Q) which implies it

obeys identity (7) and vice versa. �

Corollary 2.6. Let γ1(x, u) = LuLxR[u\x] be a bi-mapping. There does
not exist a non-trivial right universal Osborn loop Q for which γ1(x, u) ∈
BSρ(Q).

Proof. Let Q = (Q, ·, \, /) be an arbitrary non-trivial right universal
Osborn loop. According to Theorem 2.21, if in Q, γ1(x, u) ∈ BSρ(Q) then
it obeys identity (7). Put y = z = u = e in identity (7), then x = e. Which
is a contradiction. �

Remark 2.6. There is no non-trivial group or Moufang loop or uni-
versal WIPL or VD-loop or CC-loop Q for which γ1(x, u) ∈ BSρ(Q) where
γ1(x, u) = LuLxR[u\x].

3. Concluding remarks and future studies

Using the bi-mapping γ1(x, u) = LuLxR[u\x] of Theorem 2.20 in some
existing results of Adeniran [1] and Chiboka [4] on the Bryant Schnei-
der groups of right universal Osborn loops like CC-loops and extra loops
respectively, more equations and information can be deduced. For ex-
ample, Theorem 2.2 of Chiboka [4] claims that in an extra loop (L, ·),
corresponding to every mapping θ ∈ BS(L, ·) is a unique pair of right
pseudo-automorphisms. So for the bi-mapping γ1(x, u) = LuLxR[u\x], the
mappings ϑ1 = LuLxRu−1xLx−1u2x−1 and φ1 = LuLxRu−1xRx−1u2x−1 are
right pseudo-automorphisms with companions c1 = x−1uxu−2x and c2 =
xu−1x−1u2x−1 respectively. Also, in Chiboka [6], the author showed that
in an extra loop (L, ·), the middle inner mapping T (x) = RxL

−1
x ∈ BS(L, ·),

for all x ∈ L. T (x) is a mono-mapping but γ1(x, u) is a bi-mapping. Mul-
tiplying them, more elements of Bryant Schneider group of an extra loop
can be gotten.

We need to identify the subgroup(s) of the multiplications group to
which the bi-mappings and tri-mappings(which are not special mappings)
of Corollary 2.2 and Corollary 2.4 belong to.
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