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Abstract. Procesi and Rota introduced and studied in brief the prime hyperideals
of multiplicative hyperrings. Here we intend to investigate extensively the prime and pri-
mary hyperideals of multiplicative hyperrings with absorbing zero. Defining the radical
of a hyperideal I of a multiplicative hyperring with absorbing zero, as the intersection
of all prime ideals containing I, we obtain a generalized version of Krull’s theorem re-
garding the structure of the radical of a particular class of hyperideals, called C-ideals
of a multiplicative hyperring . In the last section of this paper, we describe the prime
hyperideals, primary hyperideals and C-ideals of a multiplicative hyperring ZA over the
ring of integers Z, induced by any A ∈ P ∗(Z).
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1. Introduction

Krasner’s hyperring [5] , introduced and studied by Krasner is a hy-
percompositional structure (S,+, ·) where (S,+) is a canonical hypergroup
[3], (S, ·) is a semigroup in which the zero element is absorbing and the
operation · is a two-sided distributive one over the hypercomposition +.
Chaopraknoi and Kemprasit introduced in 2005, the notion of semihy-
perring (S,+, ·) ([2]), where ( S,+) is a semihypergroup (i.e., a hypercom-
positional structure with single associative hyperoperation), (S, ·) is a semi-
group and the operation · is both left and right distributive across the hy-
peroperation +. Interchanging the modes of the operations involved in the
hyperstructure semihyperring, we define in [12] another class of hyperstruc-
ture called hypersemiring which is an (additive) commutative semigroup
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(S,+) endowed with a hyperoperation ◦ : S × S −→ P (S) such that for all
x, y, z ∈ S, (i) x◦(y◦z) = (x◦y)◦z; (ii) (x+y)◦z = x◦z+y◦z, x◦(y+z) =
x◦y+x◦z (where for any A,B ∈ P (S), A+B = {a+b : a ∈ A, b ∈ B}). In
contrary to Krasner’s hyperring, another kind of hyper-ring is introduced in
[12]. This hyper-ring is a hypersemiring (S,+, ◦), where (S,+) is a commu-
tative group whose identity element 0S is absorbing in the hypersemiring
(S,+, ◦) (in the sense that 0S ∈ 0S ◦ x = x ◦ 0S ,∀x ∈ S).

A generalized hyper-ring or simply a GH -ring [13] is an additive commu-
tative group (R,+) endowed with a hyperoperation ◦ such that (i) (R, ◦)
is semihypergroup, (ii) (x + y) ◦ z ⊆ x ◦ z + y ◦ z, and x ◦ (y + z) ⊆
x ◦ y + x ◦ z, ∀x, y, z ∈ R and (iii) 0R ◦ x = x ◦ 0R = {0R} (absorbing
property of 0R). A GH -ring (R,+, ◦) is called commutative if x ◦ y =
y ◦ x,∀x, y ∈ R. We proved in [13] that in case of a GH -ring(R, +, ◦),
(−x) ◦ y ∩ (−(x ◦ y)) ̸= ϕ and x ◦ (−y) ∩ (−(x ◦ y)) ̸= ϕ, for any x, y in R,
where for any A ∈ P ∗(R),−A = {−a : a ∈ A}. Unlike a ring, the equality
of the set-expressions (−x)◦y, x◦(−y) and −(x◦y) does not hold in general,
on a GH -ring(R, +, ◦), for any x, y ∈ R. We thus considered and studied
in [13] a particular class of GH -ring, called the GH -rings with condition (R)
(i.e.,(−x) ◦ y = x ◦ (−y) = −(x ◦ y)∀x, y ∈ R).

In 1982, Rota initiated the study of multiplicative hyperring [11] which
was subsequently investigated by Rota [10], Procesi and Rota [8, 9],
Olson and Ward [7], Namnak, Triphop and Kemprasit [6] and many
others. A multiplicative hyperring is an additive commutative group (R,+)
endowed with a hyperoperation ◦ which satisfies the first two axioms of GH -
ring along with the condition (R). It is thus clear from the definitions that
the class of GH -rings with condition (R) is precisely that of multiplicative
hyperrings with absorbing zero.

If (R,+, ·) is a ring, then corresponding to every subset A ∈ P ∗(R) =
P (R) \ {ϕ} (|A| ≥ 2), there exists a multiplicative hypering with absorbing
zero (RA,+, ◦), where RA = R and for any x, y ∈ RA, x ◦ y = {x · a · y : a ∈
A}. In the last section we study the multiplicative hypering ZA over the
ring of integers Z.

For the definitions of subhyperring, (left, right) hyperideal of a multi-
plicative hyperring and also that of (left, right) hyperideal (resp. ⟨A⟩)l, ⟨A⟩r)
⟨A⟩ generated by a subset A of a multiplicative hyperring, we refer to Chap-
ter 4 of the book [4] by Davvaz and Leoreanu-Fotea. A hyperideal
I( ̸= R) of a multiplicative hyperring R is maximal in R if for any hyper-
ideal J of R, I ( J ⊆ R ⇒ J = R.
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2. Prime hyperideals in multiplicative hyperrings

We begin this section with the definition of a typical hyperideal in mul-
tiplicative hyperring, called C-ideal which will have a pivotal role in our
study of prime and primary hyperideals of multiplicative hyperrings with
absorbing zero.

Definition 2.1. Let C be the class of all finite products of elements
of a multiplicative hyperring (R, +, ◦) i.e. C = {r1 ◦ r2 ◦ . . . ◦ rn : ri ∈ R,
n ∈ N} ⊆ P ∗(R). A hyperideal I of R is said to be a C-ideal of R if, for any
A ∈ C, A ∩ I ̸= ϕ ⇒ A ⊆ I.

Example 2.2. (a) Let I be an ideal of a ring (R,+, ·). Then (R, +, ◦)
[9], where for any a, b ∈ R, a ◦ b = a · b+ I, is a multiplicative hyperring in
which I is itself a C-ideal.

(b) Let (M,+) and (Γ,+) be respectively the commutative group of 2×3
matrices and that of 3×2 matrices over the ring of integers Z. Then, M is a
Γ-ring [1] with respect to usual matrix multiplication aαb for any a, b ∈ M
and α ∈ Γ. Corresponding to any Λ ∈ P ∗(Γ) with |Λ| ≥ 2, (M,+, ◦) is a
multiplicative hyperring with absorbing zero, where a ◦ b = {aαb : α ∈ Λ},
for any a, b ∈ M . Let this multiplicative hyperring be denoted by MΛ.

Then the set I =
{[

0 0 0
0 a 0

]
: a ∈ Z

}
is a C-ideal of the multiplicative

hyperring MΛ, where

Λ =
{0 0

0 x
0 0

 : x ∈ Z \ {0M}
}
.

(c) Let A be the set of all positive odd integers. Then the set E of all
even integers is a C-ideal of the multiplicative hyperring (ZA,+, ◦) over the
ring (Z,+, ·) of all integers, induced by A.

(d) The set 12Z = {12n : n ∈ Z} is a hyperideal, but not a C-ideal of
the multiplicative hyperring of integers ZA when A = {2, 4}.

Remark 2.3. Since the intersection of C-ideals of a multiplicative hy-
perring R is also a C-ideal of R and R is itself a C-ideal, so the smallest
C-ideal containing a hyperideal I of R, being called as the C-closure of I
and denoted by C(I), exists and is the intersection of all C-ideals containing
I. Clearly, C(C(I)) = C(I).
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Example 2.4. For the hyperideal 12Z of the multiplicative hyper-
ring ZA (A = {2, 4}), C(12 Z) = 3Z.

Definition 2.5. A non-empty finite subset El (resp. Er)={e1, e2, . . . , en}
of a multiplicative hyperring (R, +, ◦) is called a left (resp. right) identity
set (or i- set, in short) [13] of R if (i) ei ̸= 0R for at least one i = 1, 2, . . . , n,
and (ii) for any a ∈ R, a ∈

∑n
i=1 ei ◦a (resp. a ∈

∑n
i=1 a◦ei). A non-empty

finite subset E of a multiplicative hyperring (R, +, ◦) is called an i-set of R
if it is both a left i-set and a right i-set of R.

Example 2.6. The multiplicative hyperring ZA over the ring of integers
Z has an i-set E = {5,−3}, when A = {2, 3}. ZA does not have any i-set
when A = {6, 9}.

Definition 2.7. A non-empty subset A of a multiplicative hyper-
ring (R, +, ◦) is said to be a multiplicative set if a, b ∈ A ⇒ a ◦ b ∩A ̸= ϕ.

Example 2.8. Let ℑ(̸= ϕ) be the collection of all i-sets of a commuta-
tive multiplicative hyperring (R, +, ◦). Then, E =

∪
E∈ℑ E is a multiplica-

tive set in R. In fact, let a, b ∈ E. Then, there exist E and E ′ in ℑ such
that a ∈ E and b ∈ E ′. Let E = {e1, e2, . . . , en} and E ′ = {e′1, e′2, . . . , e′m}.
Then for some k, l(1 ≤ k ≤ n, 1 ≤ l ≤ m), a = ek and b = e′l. Now, for
any i(= 1, 2, . . . , n), ei ∈

∑m
j=1 ei ◦ e′j . So, for each i(= 1, 2, . . . , n) there

is eij ∈ ei ◦ e′j such that ei =
∑m

j=1 eij . Thus, for any x ∈ R and for
any i, x ◦ ei = x ◦ (

∑m
j=1 eij) ⊆

∑m
j=1 x ◦ eij . Hence, x ∈

∑n
i=1 x ◦ ei ⊆∑n

i=1

∑m
j=1 x ◦ eij . So, F = {eij : i = 1, 2, . . . , n, j = 1, 2, . . . ,m} ∈ ℑ.

Thus, ekl ∈ E and ekl ∈ ek ◦ e′l = a ◦ b. Hence, a ◦ b ∩E ̸= ϕ.

Procesi and Rota conceptualized in [9] the notion of primeness of
hyperideal in a multiplicative hyperring, which is formally defined as follows:

Definition 2.9. A hyperideal I (̸= R) of a multiplicative hyperring
(R, +, ◦) is called a prime hyperideal of R if, for any a, b ∈ R, a ◦ b ⊆ I ⇒
a ∈ I or b ∈ R.

Proposition 2.10. A hyperideal I (̸= R) of a multiplicative hyper-
ring (R, +, ◦) is prime if and only if R \ I is a multiplicative set.

Proof. Let I be a hyperideal of the multiplicative hyperring (R, +, ◦)
such that R \ I be a multiplicative set. Suppose that a ◦ b ⊆ I. Then
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(a ◦ b) ∩ (R \ I) = ϕ. Hence a /∈ R \ I or b /∈ R \ I (since R \ I is a
multiplicative set), i.e., a ∈ I or b ∈ I. Thus I is a prime hyperideal of R.

Conversely, let I be a prime hyperideal and a, b ∈ R\I. Then, a◦ b ̸⊆ I,
whence (a ◦ b) ∩ (R \ I) ̸= ϕ, i.e., R \ I is a multiplicative set. �

Lemma 2.11. For two hyperideals A and B of a multiplicative hyper-
ring (R, +, ◦) , AB = ∪{

∑n
i=1 ai ◦ bi : ai ∈ A, bi ∈ B and n ∈ N} is also a

hyperideal of R.

Proof. Straightforward. �

Proposition 2.12. If I is a prime hyperideal of a multiplicative hyper-
ring (R, +, ◦), then for any hyperideals A,B of R, AB ⊆ I ⇒ A ⊆ I or
B ⊆ I.

Proof. Straightforward. �

Proposition 2.13. Let (R,+, ◦) be a multiplicative hyperring. For
any A ∈ P ∗(R), suppose that LCA = {

∑n
i=1 xi ◦ ai : xi ∈ R, ai ∈ A and

n ∈ N}, RCA = {
∑n

i=1 ai ◦ xi : xi ∈ R, ai ∈ A and n ∈ N} and CA =

{
∑n

i=1 xi◦ai+
∑m

j=1 bj ◦yj+
∑l

k=1 rk◦ck◦sk : xi, yj , rk, sk ∈ R, ai, bj , ck ∈ A
and n,m, l ∈ N}. Then,

⟨A⟩l = (A) + ∪LCA, ⟨A⟩r = (A) + ∪RCA and ⟨A⟩ = (A) + ∪CA,

where (A) is the subgroup of the group (R,+), generated by the set A.

Proof. For any a, b ∈ ∪LCA, we have a ∈
∑n

i=1 xi◦ai and b ∈
∑m

j=1 yj ◦
bj for some xi, yj ∈ R and ai, bj ∈ A. Then, a− b ∈

∑n
i=1 xi ◦ai−

∑m
j=1 yj ◦

bj =
∑n

i=1 xi ◦ ai +
∑m

j=1(−yj) ◦ bj ⇒ a − b ∈ ∪LCA. Again, for any
r ∈ R, r ◦ a ⊆ r ◦ (

∑n
i=1 xi ◦ ai) ⊆

∑n
i=1 r ◦ (xi ◦ ai) ⊆

∑n
i=1(r ◦ xi) ◦ ai.

Hence, for any x ∈ r ◦ a there exist ri ∈ r ◦ xi(i = 1, 2, . . . , n) such that
x ∈

∑n
i=1 ri ◦ ai ⊆ ∪LCA. Thus, r ◦ a ⊆ ∪LCA, for any r ∈ R and

a ∈ ∪LCA, i.e., ∪LCA is a left hyperideal of R. Moreover, for any r ∈ R
and a =

∑n
i=1(miai) ∈ (A) (for some mi ∈ Z and ai ∈ A), r◦

∑n
i=1(miai) ⊆∑n

i=1mi(r ◦ ai)) ⊆ ∪LCA, i.e., r ◦ (A) ⊆ ∪LCA.
Hence, (A)+∪LCA is a left hyperideal of R. Since A ⊆ (A) and 0 ∈ LCA,

so A ⊆ (A) + ∪LCA. So clearly (A) + ∪LCA is the smallest left hyperideal
of R containing A i.e., ⟨A⟩l = (A) +∪LCA. The cases for ⟨A⟩r and ⟨A⟩ can
be proved similarly. �
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Remark 2.14. (i) Let (R, +, ◦) be a multiplicative hyperring. For any
a ∈ R, if we write C{a} simply as Ca, then the principal hyperideal of R
generated by a is given by

⟨a⟩ = (a) + ∪Ca = {pa : p ∈ Z}+
{ n∑

i=1

xi +
m∑
j=1

yj +
l∑

k=1

zk : ∀i, j, k,

∃ri, sj , tk, uk ∈ R such that xi ∈ ri ◦ a, yj ∈ a ◦ sj , zk ∈ tk ◦ a ◦ uk
}

(ii) If the multiplicative hyperring (R, +, ◦) has an i-set E = {e1, e2, . . . ,
eq} (for some q ∈ N), then for any a ∈ R

⟨a⟩ = ∪Ca =
{ n∑

i=1

xi +

m∑
j=1

yj +

l∑
k=1

zk : ∀i, j, k,

∃ri, sj , tk, uk ∈ R such that xi ∈ ri ◦ a, yj ∈ a ◦ sj , zk ∈ tk ◦ a ◦ uk
}
.

Indeed, a ∈
∑q

ı=1 eı ◦ a ∈ ∪Ca ⇒ (a) ⊆ ∪Ca.
(iii) This is stated in [4] that, in a multiplicative hyperring (R, +, ◦),

⟨0⟩ =
{∑

i

xi +
∑
j

yj +
∑
k

zk : each sum is finite and for each i, j, k,

there exist ri, sj , tk, uk ∈ R such that

xi ∈ ri ◦ 0, yj ∈ 0 ◦ sj , zk ∈ tk ◦ 0 ◦ uk
}
.

This is here only to point out that the above form of ⟨0⟩ follows straight
from (i), since (0) = {0} ⊆ ∪C0.

(iv) Let (R, +, ◦) be a multiplicative hyperring. Then, for any A ∈
P ∗(R) and for any positive integer n, we write nA = A+A+ . . .+A︸ ︷︷ ︸

n times

and

(−n)A = n(−A). With this notational convenience, we have for any a, b, r
in R, and for any k1, k2 ∈ Z, (k1a) ◦ (k2b) ⊆ k1k2(a ◦ b), (k1a) ◦ r ⊆ k1(a ◦ r)
and r ◦ (k2b) ⊆ k2(r ◦ b) .

Proposition 2.15. Let (R, +, ◦) be a commutative multiplicative hy-
perring. Then, for any a, b ∈ R, ⟨a⟩⟨b⟩ ⊆ ⟨a ◦ b⟩.

Proof. By proposition 2.13, for any a, b ∈ R we have that ⟨a⟩ =
(a)+∪Ca, ⟨b⟩ = (b)+∪Cb and ⟨a◦b⟩ = (a◦b)+∪Ca◦b. Since R is commutative,
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CA = LCA = RCA for any A ∈ P ∗(R). Then, d ∈ ⟨a⟩ ◦ ⟨b⟩ ⇒ d ∈ (k1a+ r) ◦
(k2b+s) ⊆ k1k2(a◦b)+k1(a◦s)+k2(b◦r)+r◦s (for some r ∈ ∪Ca, s ∈ ∪Cb
and k1, k2 ∈ Z) ⇒ d ∈ k1k2(a ◦ b) + k1(a ◦ (

∑m
j=1 b ◦ yj)) + k2(b ◦ (

∑n
i=1 a ◦

xi)) + (
∑n

i=1 a ◦ xi) ◦ (
∑m

j=1 b ◦ yj) ⊆ k1k2(a ◦ b) + k1(
∑m

j=1(a ◦ b) ◦ yj)) +
k2(

∑n
i=1(a ◦ b) ◦ xi)) +

∑n
i=1

∑m
j=1(xi ◦ yj) ◦ (a ◦ b) (for some xi, yj ∈ R)

⇒ d ∈ k1k2(a ◦ b) + k1
∑m

j=1 aj ◦ yj + k2
∑n

i=1 bi ◦ xi +
∑n

i=1

∑m
j=1 zij ◦ cij

(for some aj , bi, cij ∈ a ◦ b and zij ∈ xi ◦ yj) ⇒ d ∈ (a ◦ b) + Ca◦b = ⟨a ◦ b⟩.
Thus, ⟨a⟩ ◦ ⟨b⟩ ⊆ ⟨a ◦ b⟩. Consequently, ⟨a⟩⟨b⟩ ⊆ ⟨a ◦ b⟩. �

Proposition 2.16. Let (R, +, ◦) be a commutative multiplicative hy-
perring. If I (̸= R) is a hyperideal of R such that for any hyperideals A,B
of R, AB ⊆ I ⇒ A ⊆ I or B ⊆ I, then I is a prime hyperideal of R.

Proof. Let a, b ∈ R be such that a ◦ b ⊆ I. Then, ⟨a ◦ b⟩ ⊆ I. Hence,
by proposition 2.15, ⟨a⟩⟨b⟩ ⊆ I (since R is commutative), whence ⟨a⟩ ⊆ I
or ⟨b⟩ ⊆ I i.e., a ∈ I or b ∈ I. Hence, I is a prime hyperideal of R. �

Proposition 2.17. Let S be a multiplicative subset of a commutative
multiplicative hyperring (R, +, ◦) and I be a hyperideal of R disjoint from
S. Then there exists a hyperideal P which is maximal in the set of all
hyperideals of R disjoint from S, containing I. Any such hyperideal P is a
prime hyperideal of R.

Proof. Let S be the set of all hyperideals of R disjoint from S, con-
taining I. Then S ≠ ϕ, since I ∈ S. So S is a partially ordered set with
respect to set inclusion relation. By Zorn’s lemma, there is a hyperideal
P which is maximal in S. Let A and B be two hyperideals of R such
that AB ⊆ P . If A ̸⊆ P and B ̸⊆ P , then each of the two hyperide-
als P + A and P + B properly contain P . So, by maximality of P in S,
we have that (P + A) ∩ S ̸= ϕ and (P + B) ∩ S ̸= ϕ. Then, there ex-
ist p1, p2 ∈ P, a ∈ A and b ∈ B such that p1 + a ∈ S and p2 + b ∈ S.
Then (p1 + a) ◦ (p2 + b) ∩ S ̸= ϕ (since S is a multiplicative set). Now
(p1 + a) ◦ (p2 + b) ⊆ p1 ◦ p2 + a ◦ p2 + p1 ◦ b + a ◦ b ⊆ P + AB ⊆ P
(since AB ⊆ P ). Thus, P ∩ S ̸= ϕ which is contradictory to the fact that
P ∈ S. Hence, by proposition 2.16, P is a prime hyperideal (since R is
commutative). �

Proposition 2.18. Every maximal hyperideal of a commutative multi-
plicative hyperring with an i-set, is a prime hyperideal.
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Proof. Let P be a maximal hyperideal of a commutative multiplicative
hyperring (R, +, ◦) with an i-set E = {e1, e2, . . . , en}. Suppose, A and B
are two hyperideals of R such that AB ⊆ P , but A ̸⊆ P . Then P + A
is a hyperideal of R properly containing P . Hence by maximality of P ,
P + A = R. So, E ⊆ P + A. Thus for each ei ∈ E , there exist pi ∈ P and
ai ∈ A such that ei = pi + ai. Then, for each i(= 1, 2, . . . , n), and for any
b ∈ B, ei ◦ b ⊆ (pi + ai) ◦ b ⊆ pi ◦ b+ ai ◦ b ⊆ P . Hence, b ∈

∑n
i=1 ei ◦ b ⊆ P ,

i.e., B ⊆ P . So, by proposition 2.16, P is a prime hyperideal of R (since R
is a commutative multiplicative hyperring). �

Proposition 2.19. Let K be a subhyperring of a multiplicative hyper-
ring (R, +, ◦). If P1, P2, . . . , Pn are prime C-ideals of R such that K ⊆∪n

i=1 Pi, then K ⊆ Pi for some i.

Proof. If n = 1, then there is nothing left to be proved. So, suppose
that n > 1. If possible let K ̸⊆ Pi for any i. If K ∩ Pi = ϕ for some
i, then, K ⊆

∪m
j=1Qj ⊆

∪n
i=1 Pi, where Qj = Pkj for some kj(1 ≤ kj ≤

n, j = 1, 2, . . .m) such that K ∩ Pkj ̸= ϕ for any j. Then, for each j,
K ̸⊆

∪
l ̸=j Ql; but K ∩ (

∪
l ̸=j Ql) ̸= ϕ, as otherwise, since K ⊆

∪m
j=1Qj we

arrive at a contradiction that K ⊆ Qj for some j. So for each j, we choose
aj ∈ K \ (

∪
k ̸=j Qk). Since K ⊆

∪m
j=1Qj , so each aj ∈ Qj . We consider

the set {a1} + a2 ◦ a3 ◦ . . . ◦ am. Clearly, {a1} + a2 ◦ a3 ◦ . . . ◦ am ⊆ K
(since K is a subhyperring of the multiplicative hyperring R) and hence
{a1} + a2 ◦ a3 ◦ . . . ◦ am ⊆

∪m
j=1Qj . Thus for each a ∈ a2 ◦ a3 ◦ . . . ◦ am,

there exists one Qj such that a1 + a ∈ Qj . If j > 1, then a ∈ a2 ◦ a3 ◦ . . . ◦
aj ◦ . . . ◦ am ⊆ Qj (since Qj is a hyperideal), whence a1 ∈ Qj , which is a
contradiction. If j = 1, then a1 + a ∈ Q1 and thus a ∈ Q1 (since a1 ∈ Q1).
So, (a2 ◦ a3 ◦ . . . ◦ am) ∩Q1 ̸= ϕ and thus a2 ◦ a3 ◦ . . . ◦ am ⊆ Q1 (since Q1

is a C-ideal of R). Hence, ak ∈ Q1 for some k = 2, 3, . . . ,m (since Q1 is a
prime hyperideal), which is also a contradiction. Thus K ⊆ Pi for some i.�

3. Prime radicals of hyperideals

At the on-set of the study of the prime radical of a hyperideal of a mul-
tiplicative hyperring, we fix up for any element r of a multiplicative hyper-
ring R the notation that (for any positive integer n > 1) rn = r ◦ r ◦ . . . ◦ r︸ ︷︷ ︸

n times

and r1 = {r}.
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Definition 3.1. Let I be a hyperideal of a multiplicative hyperring
(R, +, ◦). The intersection of all prime hyperideals of R containing I is
called the prime radical of I, being denoted by Rad(I). If the multiplicative
hyperring R does not have any prime hyperideal containing I, we define
Rad(I) = R.

Proposition 3.2. Let I be a hyperideal of a commutative multiplicative
hyperring (R, +, ◦). Then, D ⊆ Rad(I) where D = {r ∈R: rn ⊆ I for
some n ∈ N}. The equality holds when I is a C-ideal of R.

Proof. If Rad(I) = R, then D ⊆ Rad(I). Assume that Rad(I) ̸= R.
Let r ∈ D. Then rn ⊆ I for some n ∈ N. Hence, for any prime hyperideal
P of R, containing I, rn ⊆ P and hence r ∈ P . So, r ∈ Rad(I), i.e.,
D ⊆ Rad(I).

Now suppose that I is a C-ideal. Let r /∈ D. Then, for any n ∈ N,
rn ̸⊆ I. Thus rn ∩ I = ϕ for all n ∈ N (since, I is a C-ideal). Let S =
∪{rn + I : n ∈ N}. Then, for any a, b ∈ S, a ◦ b ⊆ S. Hence, S is a
multiplicative set. Here, S ∩ I = ϕ, as otherwise, if p ∈ S ∩ I, then there
exist x ∈ I and y ∈ rn for some n ∈ N, such that p = x + y, implying
that y ∈ I which is contradictory to the fact that rn ∩ I = ϕ for all n ∈ N.
Hence, by the proposition 2.17, there is a prime hyperideal P containing I,
disjoint from S. Hence rn∩P = ϕ for any n ∈ N. So, r /∈ P i.e. r /∈ Rad(I).
Hence, Rad(I) ⊆ D. �

Proposition 3.3. Let I, I1, I2, . . . , In are some C-ideals of a commuta-
tive multiplicative hyperring (R, +, ◦). Then,

(i) Rad(Rad I) = Rad(I),

(ii) Rad(I1I2 . . . In) = Rad(
∩n

j=1 Ij) =
∩n

j=1Rad(Ij).

Proof. (i) Let r ∈ Rad(Rad I). Then there exists n ∈ N such that
rn ⊆ Rad I. So, for any x ∈ rn there exists nx ∈ N such that xnx ⊆ I.
Again, x ∈ rn ⇒ xnx ⊆ (rn)nx = rnnx . Hence, rnnx ∩ I ̸= ϕ. Thus,
rnnx ⊆ I (since, I is a C-ideal), whence Rad(Rad I) ⊆ Rad(I). Clearly,
Rad(I) ⊆ Rad(Rad I). Thus, Rad(Rad I) = Rad(I).

(ii) Here I1I2 . . . In ⊆
∩n

j=1 Ij . So, Rad(I1I2 . . . In) ⊆ Rad(
∩n

j=1 Ij).
Now since each Ij is a C-ideal, so is

∩n
j=1 Ij . Thus, by proposition 3.2,

for any x ∈ Rad(
∩n

j=1 Ij), we have xm ⊆
∩n

j=1 Ij (for some m ∈ N) ⇒
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xm ⊆ Ij for all j(= 1, 2, . . . , n) ⇒ x ∈ Rad(Ij) ⇒ x ∈
∩n

j=1Rad(Ij).
So, Rad(

∩n
j=1 Ij) ⊆

∩n
j=1Rad(Ij). Finally, let x ∈

∩n
j=1Rad(Ij). Then,

for each j(= 1, 2, . . . , n) there exists mj ∈ N such that xmj ⊆ Ij ⇒
x
∑n

j=1(mj) ⊆ I1I2 . . . In ⇒ x ∈ Rad(I1I2 . . . In). Hence,
∩n

j=1Rad(Ij) ⊆
Rad(I1I2 . . . In). �

Definition 3.4. A hyperideal Q(̸= R) in a commutative multiplicative
hyperring (R, +, ◦) is called a primary hyperideal of R if for any a, b ∈ R;
a ◦ b ⊆ Q and a /∈ Q ⇒ bn ⊆ Q, for some n ∈ N.

Example 3.5. Every prime hyperideal of a commutative multiplicative
hyperring is a primary hyperideal. The set E of all even integers, is not a
prime hyperideal, but is a primary hyperideal of the multiplicative hyper-
ring of integers ZA over the ring of integers Z, induced by the set A of all
positive even integers.

Proposition 3.6. If Q is a primary C-ideal of a commutative multi-
plicative hyperring (R, +, ◦), then Rad(Q) is a prime hyperideal.

Proof. Let, a ◦ b ⊆ Rad(Q) and a /∈ Rad(Q). Then, by proposition
3.2, for any x ∈ a ◦ b there exists nx ∈ N such that xnx ⊆ Q. Again,
xnx ⊆ (a◦b)nx = anx ◦bnx (since R is commutative). So, (anx ◦bnx)∩Q ̸= ϕ
and thus, anx ◦bnx ⊆ Q (since, Q is a C-ideal). Now a /∈ Rad(Q) ⇒ anx ̸⊆ Q
(by proposition 3.2)⇒ anx ∩Q = ϕ. Thus, for any p ∈ anx and q ∈ bnx , we
have that p /∈ Q and p ◦ q ⊆ anx ◦ bnx ⊆ Q. Thus, qnq ⊆ Q for some nq ∈ N
(since Q is a primary hyperideal). Again q ∈ bnx ⇒ qnq ⊆ (bnx)nq = bnxnq .
Hence, bnxnq ∩Q ̸= ϕ and thus, bnxnq ⊆ Q, whence b ∈ Rad(Q). So, Rad(Q)
is a prime hyperideal. �

For a C-ideal Q of a commutative multiplicative hyperring R , we refer
to the prime hyperideal P = Rad(Q) as the associated prime hyperideal of
Q and on the other hand Q is referred to as a P -primary C-ideal of R.

Proposition 3.7. Let Q be a C-ideal and P be a hyperideal of a commu-
tative multiplicative hyperring (R, +, ◦). Then, Q is a P -primary C-ideal
of R if and only if

(i) Q ⊆ P ⊆ Rad(Q);

(ii) a ◦ b ⊆ Q and a /∈ Q ⇒ b ∈ P .
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Proof. Suppose (i) and (ii) hold. Let a ◦ b ⊆ Q and a /∈ Q. Then,
b ∈ P ⊆ Rad(Q), whence, bn ⊆ Q for some n ∈ N. So, Q is a primary
C-ideal of R. Now let c ∈ Rad(Q). Suppose n be the least positive integer
such that cn ⊆ Q. If n = 1, then c ∈ {c} = c1 ⊆ Q ⊆ P . If n > 1, cn−1 ̸⊆ Q
by the minimality of n and thus, cn−1∩Q = ϕ (since, Q is a C-ideal). Then,
for any x ∈ cn−1, x ◦ c ⊆ cn−1 ◦ c = cn ⊆ Q. Thus by (ii), c ∈ P (since
x /∈ Q). So, Rad(Q) ⊆ P whence P = Rad(Q) (by (i)). Hence, Q is a
P -primary C-ideal of R. The converse part is immediate. �

Proposition 3.8. If Q1, Q2, . . . , Qn are primary C-ideals of a commu-
tative multiplicative hyperring R, all of which are P -primary for a prime
hyperideal P , then

∩n
i=1Qi is also a P -primary C-ideal of the multiplicative

hyperring R.

Proof. Straightforward. �

Definition 3.9. A C-ideal I of a commutative multiplicative hyper-
ring R, is said to have a C-primary decomposition if I = Q1 ∩Q2 ∩ . . .∩Qn

for some primary C-ideals Qi of R. If no Qi contains Q1 ∩Q2 ∩ . . .∩Qi−1 ∩
Qi+1∩. . .∩Qn and the radicals of the Qi are all distinct, then the C-primary
decomposition is said to be reduced. A hyperideal I of R is said to have
a C-primary decomposition (resp. reduced C-primary decomposition) if the
C-closure C(I) of I has a C-primary decomposition (resp. reduced C-primary
decomposition).

Proposition 3.10. If a hyperideal I of a commutative multiplicative
hyperring R has a C-primary decomposition, then I has a reduced C-primary
decomposition.

Proof. Straightforward. �

4. Prime, primary hyperideals and C-ideals in ZA

Let (Z,+, ·) be the ring of integers. Corresponding to every subset
A ∈ P ∗(Z) = P (R) \ {ϕ} (|A| ≥ 2), there exists a multiplicative hyper-
ring (ZA,+, ◦), where ZA = Z and for any x, y ∈ ZA, x◦y = {x·a·y : a ∈ A}.
For the sake of brevity, the product a · b of any two elements a, b in the ring
of integers (Z,+, ·), will be written simply as ab.
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This is immediate to observe that the principal hyperideal ⟨a⟩ of the
multiplicative hyperring ZA over the ring of integers Z, induced by any
A ∈ P ∗(Z) is identical with the principal ideal generated by a in the ring
of integers Z. Moreover, every hyperideal of a ZA is a principal hyperideal.
But, unlike in the ring of integers Z, a principal hyperideal in a multiplica-
tive hyperring of integers ZA, generated by a prime integer may not be a
prime hyperideal of ZA, as is shown in the following example.

Example 4.1. In the multiplicative hyperring of integers ZA with
A = {14, 21}, the principal hyperideal ⟨7⟩ = {7n : n ∈ Z} is not a prime
hyperideal. In fact, 1 ◦ 1 = {14, 21} ⊆ ⟨7⟩, but 1 /∈ ⟨7⟩.

Example 4.2. In the multiplicative hyperring of integers ZA with A =
{2, 3}, every principal hyperideal generated by prime integer is a prime
hyperideal.

Proposition 4.3. In a multiplicative hyperring of integers ZA, a prin-
cipal hyperideal ⟨p⟩ generated by a positive integer p, is a prime hyperideal
of ZA if and only if p is a prime integer and A ̸⊆ ⟨p⟩.

Proof. Let p be a prime integer and A ̸⊆ ⟨p⟩. Then, there exists
α ∈ A\ ⟨p⟩. Now suppose that a◦ b ⊆ ⟨p⟩ and a /∈ ⟨p⟩. Then, aαb ∈ ⟨p⟩ and
hence b ∈ ⟨p⟩ (since ⟨p⟩ is a prime ideal of Z, α /∈ ⟨p⟩ and a /∈ ⟨p⟩). Thus
⟨p⟩ is a prime hyperideal of the multiplicative hyperring ZA.

Conversely let p be a positive integer and the hyperideal ⟨p⟩ be a prime
hyperideal of ZA. Suppose that a, b ∈ Z such that p | ab and p - a. Then,
a /∈ ⟨p⟩. But ab ∈ ⟨p⟩ and so, for any α ∈ A, aαb = abα ∈ ⟨p⟩. Hence
a◦b ⊆ ⟨p⟩ and thus b ∈ ⟨p⟩ (since ⟨p⟩ is a prime hyperideal of multiplicative
hyperring ZA). Hence p | b and thus p is a prime integer. If A ⊆ ⟨p⟩ then,
for any a /∈ ⟨p⟩, b /∈ ⟨p⟩ and for any α ∈ A, aαb ∈ ⟨p⟩, i.e., a ◦ b ⊆ ⟨p⟩ which
is a contradiction. �

Proposition 4.4. In a multiplicative hyperring of integers ZA, a prin-
cipal hyperideal ⟨p⟩ generated by a positive integer p, is a prime C-ideal of
ZA if and only if p is a prime integer and A ∩ ⟨p⟩ = ϕ.

Proof. Let p be a prime integer and A∩ ⟨p⟩ = ϕ. Then, by proposition
4.3, ⟨p⟩ is a prime hyperideal of ZA. Now let ri ∈ Z(i = 1, 2, . . . , n) be
such that r1 ◦ r2 ◦ . . . ◦ rn ∩ ⟨p⟩ ̸= ϕ. Then, there are some αi ∈ A such
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that r1α1r2α2 . . . αn−1rn ∈ ⟨p⟩, i.e., (r1r2 . . . rn)(α1α2 . . . αn−1) ∈ ⟨p⟩. So,
p | (r1r2 . . . rn)(α1α2 . . . αn−1) and p - (α1α2 . . . αn−1) (since A ∩ ⟨p⟩ = ϕ).
Hence p | (r1r2 . . . rn) and thus p | ri for some i. So, r1 ◦ r2 ◦ . . . ◦ rn ⊆ ⟨p⟩.
Consequently, ⟨p⟩ is a C-ideal of ZA.

Conversely let, for a positive integer p, ⟨p⟩ be a prime C-ideal of ZA.
Then, by proposition 4.3, p is a prime integer (and A ̸⊆ ⟨p⟩). If A∩⟨p⟩ ̸= ϕ,
there is an α ∈ A such that α ∈ ⟨p⟩. Moreover, α = 1α1 ∈ 1 ◦ 1. Thus,
(1 ◦ 1) ∩ ⟨p⟩ ̸= ϕ, but 1 ◦ 1 ̸⊆ ⟨p⟩ (since, ⟨p⟩ is a prime hyperideal of
multiplicative hyperring ZA and 1 /∈ ⟨p⟩). This is a contradiction (since ⟨p⟩
is a C-ideal of ZA). So, A ∩ ⟨p⟩ = ϕ. �

Proposition 4.5. For a positive integer a, if the principal hyperideal
⟨a⟩ of a multiplicative hyperring of integers ZA is a C-ideal of ZA, then
either A ⊆ ⟨a⟩ or else A ∩ ⟨a⟩ = ϕ.

Proof. For a positive integer a, let the principal hyperideal ⟨a⟩ of a
multiplicative hyperring of integers ZA is such that A ̸⊆ ⟨a⟩ and A ∩ ⟨a⟩ ̸=
ϕ. Then there are α, β ∈ A such that α ∈ ⟨a⟩ and β ∈ Z \ ⟨a⟩. So,
α = 1α1 ∈ 1 ◦ 1 ∩ ⟨a⟩, i.e., 1 ◦ 1 ∩ ⟨a⟩ ̸= ϕ, whereas 1 ◦ 1 ̸⊆ ⟨a⟩, since
β = 1β1 ∈ 1 ◦ 1 and β /∈ ⟨a⟩. Hence, ⟨a⟩ is not a C-ideal of ZA. �

Proposition 4.6. In a multiplicative hyperring of integers ZA if A ⊆
⟨a⟩( ̸= Z) for some positive integer a, then the principal hyperideal ⟨a⟩ is a
non-prime primary C-ideal of the multiplicative hyperring ZA.

Proof. since A ⊆ ⟨a⟩, so for any ri ∈ Z(i = 1, 2, . . . , n;n ∈ N), r1 ◦
r2 ◦ . . . ◦ rn = {r1α1r2α2 . . . αn−1rn : αi ∈ A, i = 1, 2, . . . , n;n ∈ N} ⊆ ⟨a⟩.
Hence, vacuously, ⟨a⟩ is a C-ideal of the multiplicative hyperring ZA. By the
same argument, since for any r ∈ Z, r2 = r ◦ r ⊆ ⟨a⟩, we can say that ⟨a⟩ is
a primary hyperideal of ZA. Again, for 1 /∈ ⟨a⟩ (since ⟨a⟩ ̸= Z), 1 ◦ 1 ⊆ ⟨a⟩.
Thus ⟨a⟩ is not a prime hyperideal of the multiplicative hyperring ZA. �

For any A ∈ P ∗(Z) and any positive integer a, the condition that A ∩
⟨a⟩ = ϕ is not a sufficient one for the principal hyperideal ⟨a⟩ to be a C-ideal
of the multiplicative hyperring ZA.

Example 4.7. Let a = 12 and A = {2, 3}. Then, 12 = 1·2·1·2·1·3·1 ∈
1 ◦ 1 ◦ 1 ◦ 1, i.e., 1 ◦ 1 ◦ 1 ◦ 1 ∩ ⟨a⟩ ̸= ϕ, whereas 1 ◦ 1 ◦ 1 ◦ 1 ̸⊆ ⟨a⟩, since
16 = 1 · 2 · 1 · 2 · 1 · 2 · 1 · 2 · 1 ∈ 1 ◦ 1 ◦ 1 ◦ 1 and 16 /∈ ⟨a⟩. Hence, for
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A = {2, 3}, though A∩ ⟨12⟩ = ϕ, the hyperideal ⟨12⟩ is not a C-ideal of the
multiplicative hyperring of integers ZA.

Corollary 4.8. A principal hyperideal ⟨p⟩ of a multiplicative hyper-
ring of integers ZA, generated by a prime integer p, is a C-ideal of ZA if
and only if either A ⊆ ⟨p⟩ or else A ∩ ⟨p⟩ = ϕ.

Proof. If A ⊆ ⟨p⟩, then by proposition 4.6, ⟨p⟩ is a C-ideal of the
multiplicative hyperring ZA. If A ∩ ⟨p⟩ = ϕ, then by proposition 4.4, ⟨p⟩ is
a C-ideal of a multiplicative hyperring ZA. The converse part follows from
proposition 4.5. �

Corollary 4.9. In a multiplicative hyperring of integers ZA, if a prin-
cipal hyperideal ⟨p⟩, generated by a prime integer p, is a C-ideal, then ⟨p⟩ is
a primary hyperideal of ZA.

Proof. It follows from corollary 4.8, proposition 4.4 and proposition 4.6.�

Following is an example of a primary hyperideal, generated by a prime
integer, which is not a C-ideal of a multiplicative hyperring ZA.

Example 4.10. In the multiplicative hyperring of integers ZA with
A = {2, 3}, the hyperideal ⟨2⟩ is a prime hyperideal (by proposition 4.3,
since A ̸⊆ ⟨2⟩) and thus a primary hyperideal; but it is not a C-ideal (by
proposition 4.4, since A ∩ ⟨2⟩ ̸= ϕ).

Proposition 4.11. Let a be a positive integer and the principal hyper-
ideal ⟨a⟩(̸= Z) be a C-ideal of a multiplicative hyperring of integers ZA(|A| >
1). Then for each prime factor p of a, the principal hyperideal ⟨p⟩ is a C-
ideal of ZA.

Proof. Since ⟨a⟩ ≠ Z, a > 1. If a is a prime integer then there
is nothing to prove. Thus we suppose that p is a prime factor of a and
a = pmpm1

1 pm2
2 . . . pmk

k , where pi’s are distinct prime integers, different from
p ; m and mi are some positive integers. If possible let A ̸⊆ ⟨p⟩ and
A ∩ ⟨p⟩ ̸= ϕ. Then there exist α, β ∈ A such that α ∈ ⟨p⟩ and β ∈ Z \ ⟨p⟩.

We claim that α ∈ ⟨a⟩. In fact, if α /∈ ⟨a⟩ then α = plpl11 p
l2
2 . . . plkk b,

where b is a positive integer such that p - b, pi - b (for any i) and l, li
(l ≥ 1 and li ≥ 0) are integers such that either l < m or li < mi for
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some i. Now we choose some integers n, ni in such a way that n = 0 or
m − l according as l ≥ m or l < m and also ni = 0 or mi − li according
as li ≥ mi or li < mi. We consider now the integer c = pnpn1

1 pn2
2 . . . pnk

k .

Then, αc = bpl+npl1+n1
1 pl2+n2

2 . . . plk+nk
k = bpm

′
p
m′

1
1 p

m′
2

2 . . . p
m′

k
k , where m′ =

l + n ≥ m and m′
i = li + ni ≥ mi for all i (due to the choice of n and

ni). So, pm
′
p
m′

1
1 p

m′
2

2 . . . p
m′

k
k = ad for some d ∈ Z whence αc = abd ∈ ⟨a⟩.

Also, αc = 1αc ∈ 1 ◦ c (since, α ∈ A). Thus (1 ◦ c) ∩ ⟨a⟩ ̸= ϕ and hence
1 ◦ c ⊆ ⟨a⟩ (since ⟨a⟩ is a C-ideal of ZA). So, for β ∈ A, 1βc ∈ 1 ◦ c ⊆ ⟨a⟩.
Hence, βpnpn1

1 pn2
2 . . . pnk

k = pmpm1
1 pm2

2 . . . pmk
k s (for some s ∈ Z) ⇒ β =

pm−npm1−n1
1 pm2−n2

2 . . . pmk−nk
k s. Now we see that m − n is either m(≥ 1)

or l(≥ 1) (and that mi − ni is either mi(≥ 1) or li(≥ 0)). Thus p | β which
is a contradiction (since β /∈ ⟨p⟩). Thus, α ∈ ⟨a⟩.

Now since β /∈ ⟨p⟩, so β /∈ ⟨a⟩. But β = 1β1 ∈ 1 ◦ 1. So, 1 ◦ 1 ̸⊆ ⟨a⟩,
whereas α = 1α1 ∈ (1◦1)∩⟨a⟩ which is again a contradiction (since ⟨a⟩ is a
C-ideal of ZA). Thus, our initial assumptions that A ̸⊆ ⟨p⟩ and A∩ ⟨p⟩ ̸= ϕ
are not simultaneously ture. So, either A ⊆ ⟨p⟩ or else A ∩ ⟨p⟩ = ϕ. Hence,
by corollary 4.8, ⟨p⟩ is a C-ideal of ZA. So, the hyperideals of ZA, generated
by the prime factors of a, are C-ideals of ZA. �

Example 4.12. Let a = 5400 and A = {6, 216}. The only prime fac-
tors of a are 2, 3, 5 and we see that A ⊆ ⟨2⟩, A ⊆ ⟨3⟩ and A∩⟨5⟩ = ϕ. Thus
by corollary 4.8, the hyperideals of the multiplicative hyperring of integers
ZA, generated by the prime factors of a, are C-ideals of the multiplicative
hyperring ZA. But here ⟨a⟩ is itself not a C-ideal of the multiplicative hyper-
ring of integers ZA. In fact, 5400 = 5 ·216 ·5 ∈ 5◦5∩⟨a⟩, i.e., 5◦5∩⟨a⟩ ̸= ϕ,
whereas 5 ◦ 5 ̸⊆ ⟨a⟩, since 150 = 5 · 6 · 5 ∈ 5 ◦ 5 and 150 /∈ ⟨a⟩.

Proposition 4.13. For a positive integer a(> 1), the principal hyper-
ideal ⟨a⟩ of a multiplicative hyperring of integers ZA, is a C-ideal of ZA if
and only if exactly one of the following two conditions hold true.

I. All the principal hyperideals of ZA, generated by the prime factors of
a are prime C-ideals of ZA.

II. a = pm1
1 pm2

2 . . . pmn
n is a representation of a as a product of distinct

prime integers pi(i = 1, 2, . . . n;n ∈ N)(mi’s being some positive integers)
corresponding to which there exists a positive integer k(1 ≤ k ≤ n) such
that

(i) α ∈ A ⇒ α = pt11 p
t2
2 . . . ptkk rα for some tj ∈ N(j = 1, 2, . . . , k) and

rα ∈ Z with pi - rα for any i, and also
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(ii) α = pt11 p
t2
2 . . . ptkk rα ∈ A and β = ps11 ps22 . . . pskk rβ ∈ A ⇒ for any j,

tj = sj whenever tj < mj .

Proof. For a positive integer a(> 1), let the principal hyperideal ⟨a⟩
of a multiplicative hyperring of integers ZA be a C-ideal of ZA. Then, by
proposition 4.11, for each prime factor p of a, the hyperideal ⟨p⟩ is a C-ideal
of ZA. So, by corollary 4.8, for each prime factor p of a, either A ⊆ ⟨p⟩ . . . (1)
or else A ∩ ⟨p⟩ = ϕ . . . (2). If (2) is true for any prime factor of a, then
all the hyperideals of ZA, generated by the prime factors of a are prime
C-ideals of ZA (by proposition 4.4). Suppose, (2) is not true for some
prime factors of a. Then, we can write a = pm1

1 pm2
2 . . . pmn

n (where pi’s
are some distinct prime integers and mi’s are some positive integers) such
that A ⊆ (pj) for some j = 1, 2, . . . , k; (1 ≤ k ≤ n) and in case when
k < n,A∩(pj) = ϕ for j = k+1, . . . , n. Thus, for each α ∈ A, there are some
tj ∈ N(j = 1, 2, . . . , k) and rα ∈ Z with pi - rα (for any i = 1, 2, . . . , n) such
that α = pt11 p

t2
2 . . . ptkk rα. Let α = pt11 p

t2
2 . . . ptkk rα and β = ps11 ps22 . . . pskk rβ

be two elements of A and suppose that tl < ml for some l ∈ {1, 2, . . . k}.
Then we have the following cases.

1. If sl < tl, then for r = pm1
1 . . . p

ml−1

l−1 pml−tl
l p

ml+1

l+1 . . . pmn
n , we see that

αr ∈ 1 ◦ r ∩ ⟨a⟩, i.e., 1 ◦ r ∩ ⟨a⟩ ̸= ϕ; whereas 1 ◦ r ̸⊆ ⟨a⟩ since βr ∈ 1 ◦ r and
βr /∈ ⟨a⟩. Thus we arrive at a contradiction (since, ⟨a⟩ is a C-ideal of ZA).

2. If sl > tl and sl < ml, then for r = pm1
1 . . . p

ml−1

l−1 pml−sl
l p

ml+1

l+1 . . . pmn
n ,

we see that βr ∈ 1 ◦ r ∩ ⟨a⟩, i.e., 1 ◦ r ∩ ⟨a⟩ ̸= ϕ; whereas 1 ◦ r ̸⊆ ⟨a⟩ (since
αr ∈ 1 ◦ r and αr /∈ ⟨a⟩) - a contradiction.

3. If sl > tl and sl > ml, then for r = pm1
1 . . . p

ml−1

l−1 p
ml+1

l+1 . . . pmn
n , we see

that βr ∈ 1 ◦ r ∩ ⟨a⟩; whereas 1 ◦ r ̸⊆ ⟨a⟩ (since, tl < ml) - a contradiction.

Thus, for any j, tj = sj whenever tj < mj .

Conversely, let the condition (I) hold true for the positive integer a.
Then, by proposition 4.4, A ∩ ⟨p⟩ = ϕ for any prime factors of a. Suppose
that r1◦r2◦. . .◦rm∩⟨a⟩ ̸= ϕ for some rı ∈ Z(ı = 1, 2, . . . ,m;m ∈ N,m > 1).
Then, there are αı ∈ A(ı = 1, 2, . . . ,m− 1) such that (r1r2 . . . rm)(α1α2 . . .
αm−1) ∈ ⟨a⟩. Now, since none of αı’s is divisible by any prime factor of a,
so r1r2 . . . rm ∈ ⟨a⟩ and hence, r1 ◦ r2 ◦ . . . ◦ rm ⊆ ⟨a⟩. Thus, the principal
hyperideal ⟨a⟩ of the multiplicative hyperring ZA is a C-ideal of ZA.

Now let the condition (II) hold true for the positive integer a = pm1
1 pm2

2

. . . pmn
n (where pi’s are distinct prime integers and mi’s are some positive

integers). Then, by condition (II)(i) there is a positive integer k(1 ≤
k ≤ n) such that, for any α ∈ A, α = pt11 p

t2
2 . . . ptkk rα (for some tj ∈
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N(j = 1, 2, . . . , k) and rα ∈ Z with pi - rα for any i). If there is β =
ps11 ps22 . . . pskk rβ ∈ A, with sj ≥ mj for all j = 1, 2, . . . k, then, by virtue of
the condition (II)(ii), we obtain that, for any rı ∈ Z(ı = 1, 2, . . . ,m;m ∈
N,m > 1), r1 ◦ r2 ◦ . . . ◦ rm ⊆ ⟨a⟩ or r1 ◦ r2 ◦ . . . ◦ rm ∩ ⟨a⟩ = ϕ according as
r1r2 . . . rm ∈ ⟨b⟩ or not (where b = p

mk+1

k+1 . . . pmn
n ). Thus, in this case, the

principal hyperideal ⟨a⟩ of the multiplicative hyperring ZA is a C-ideal of
ZA. Suppose on the contrary that there is an l(1 ≤ l ≤ k) such that sj < mj

for j = 1, 2, . . . l and (in case when l < k) sj ≥ mj , for j = l+1, . . . k. Then,
by the condition (II)(ii),

A ⊆ {ps11 ps22 . . . psll p
m′

l+1

l+1 . . . p
m′

k
k r : m′

j > mj , r ∈ Z with pi - r for any i}.

So, for any rı ∈ Z(ı = 1, 2, . . . ,m;m ∈ N,m > 1), we have that r1 ◦ r2 ◦ . . . ◦
rm ⊆ S where

S = {(r1r2 . . . rm)(p
(m−1)s1
1 p

(m−1)s2
2 . . . p

(m−1)sl
l p

µl+1

l+1 . . . pµk
k )u : µj > mj ,

u ∈ Z with pi - u,∀i}.

Now suppose that r1 ◦ r2 ◦ . . . ◦ rm ∩ ⟨a⟩ ̸= ϕ. Then, for some µj > mj ,
λi ≥ mi and u, v ∈ Z with pi - u and pi - v for any i, we have

(r1r2 . . . rm)(p
(m−1)s1
1 p

(m−1)s2
2 . . . p

(m−1)sl
l p

µl+1

l+1 . . . pµk
k )u = pλ1

1 pλ2
2 . . . pλn

n v.

Since, pi - v for any i, so (m− 1)sj ≤ λj and µj ≤ λj and thus

r1r2 . . . rm = p
λ1−(m−1)s1
1 p

λ2−(m−1)s2
2 . . . p

λl−(m−1)sl
l ·

· pλl+1−µl+1

l+1 . . . pλk−µk
k p

λk+1

k+1 . . . pλn
n w . . . (∗)

where w = v
u ∈ Z, since pi - u for any i. So, for any

x = (r1r2 . . . rm)(p
(m−1)s1
1 p

(m−1)s2
2 . . . p

(m−1)sl
l p

νl+1

l+1 . . . pνkk )z ∈ r1◦r2◦. . .◦rm,

we have from the relation (∗) that

x = pλ1
1 pλ2

2 . . . pλl
l p

λl+1−µl+1+νl+1

l+1 . . . pλk−µk+νk
k p

λk+1

k+1 . . . pλn
n wz ∈ ⟨a⟩.

Hence, the principal hyperideal ⟨a⟩ is a C-ideal of the multiplicative hyper-
ring of integers ZA. �
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