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1. Introduction

Convergence theorems for sequences of measurable functions play a cen-
tral role in classical measure theory.

Relationships among different types of convergences such as almost
everywhere convergence, almost uniform convergence and convergence in
measure were especially described by the fundamental results contained in
the Egoroff, Lebesgue and Riesz theorems (Precupanu [19]).

It is well-known that in non-additive measure theory, developed in the
last years by numerous authors as Wang and Klir [29], Pap [18],
Denneberg [1], these results do not hold without additional conditions.

In this way, we mention the papers of Li and Yasuda [13], Li [9, 10],
Li and Li [11], Li et al. [14], Murofushi et al. [17], Kawabe [6, 7]
concerning Egoroff’s theorem, or the papers of Li [9], Song and Li [23] for
Lebesgue’s theorem or Sun [24] for Riesz’s theorem and Jiang et al. [5]
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or Takahashi et al. [26], Ha et al. [3], Liu [15], Li et al. [12], Li [9],
Li et al. [14], Li et al. [8], concerning different convergence theorems of
sequences of measurable functions in non-additive measure theory. We also
remark the papers of Murofushi [16], Ren et al. [22], Sun [25], Zhang
[27], Wang [28] and many others.

More recently, motivated by the applied problems coming from mathe-
matic economics, artificial intelligence, biomathematics and other impor-
tant fields, some of the above mentioned results were generalized in the
set-valued case.

Thus, we remark the paper of Liu [15], in which are given set-valued
versions of Egoroff theorem and of Lebesgue theorem for sequences of set-
valued measurable functions, our papers [20, 21] concerning Egoroff and
Lusin theorems for set-valued fuzzy (i.e., monotone) multimeasures, or the
paper of Wu and Liu [30], which contains a set-valued version of Riesz
theorem.

The aim of this paper is to investigate, for set-valued non-additive mono-
tonic set functions, some relationships among the main types of conver-
gences of sequences of measurable functions. We especially insist on the
different types of pseudo-convergences of sequences of measurable functions,
for the set-valued non-additive monotonic set functions, such as, pseudo-
almost everywhere (p.a.e.), pseudo-almost uniform (p.a.u) convergences and
pseudo-convergence in measure (p.µ) and on the relationships among them,
or with almost everywhere, almost uniform convergences and convergence
in measure.

Thus, we give a set-valued pseudo-version of Egoroff’s theorem and,
as a consequence, we obtain a result which emphasizes the non-hereditary
character of the pseudo-convergences. We also give characterizations of
several important structural properties of monotone multimeasures.

2. Terminology and notations

Let T be an abstract space, A a σ-algebra of subsets of T , X a real normed
space, P0(X) the family of all nonvoid subsets of X,Pf (X) the family of
closed, nonvoid sets of X, Pbf (X) the family of all bounded, closed, nonvoid
sets of X, Pbfc(X) the family of all bounded, closed, convex nonvoid sets
of X and h the Hausdorff pseudometric on Pf (X) given by:

h(M,N) = max{e(M,N), e(N,M)}, for every M,N ∈ Pf (X),
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where e(M,N) = supx∈M d(x,N). e is called the excess of M over N .

It is known that e(M,N) = 0 if and only if M ⊂ N. Also, e(M,N) ≤
e(M,P ) + e(P,N), for every M,N,P ∈ Pf (X). On Pbf (X), h becomes a
metric [4].

We denote |M | = h(M, {0}), for every M ∈ Pf (X), where 0 is the origin

of X. On P0(X) we introduce the Minkowski addition ”
•
+ ” defined by:

M
•
+N = M +N, for every M,N ∈ P0(X),

where M + N = {x + y;x ∈ M,y ∈ N} and M +N is the closure of
M +N with respect to the topology induced by the norm of X. We denote
A ∩ A = {E ⊂ A,E ∈ A}, where A is a fixed set in A.

We also recall the following cancelation law [4]:

(C) If M
•
+N = M

•
+ P , where M,N,P ∈ Pbfc(X), then N = P.

We shall also use property

(C̃) h(M
•
+N,M

•
+ P ) = h(N,P ), for every M,N,P ∈ Pbfc(X).

Obviously, (C̃) implies (C).

By N we mean the set of all naturals and by N∗ we mean N\{0}.
We shall also use the following:

Lemma 2.1. If (An)n, (Bn)n, (Cn)n are sequences of nonvoid closed
subsets of T , then:

i) If An ⊂ Bn, for every n ∈ N, and limn→∞ h(An, A) = 0 =
limn→∞ h(Bn, B), then A ⊂ B.

ii) If An ⊂ Bn ⊂ Cn, for every n ∈ N, and limn→∞ h(An, E) = 0 =
limn→∞ h(Cn, E), then limn→∞ h(Bn, E) = 0.

Proof. i) We observe that, for every n ∈ N,

e(A,B) ≤ e(A,An) + e(An, Bn) + e(Bn, B) =

= e(A,An) + e(Bn, B) ≤ h(A,An) + h(Bn, B),

whence, by the hypothesis, e(A,B) = 0, which means that A ⊂ B.
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ii) We observe that, for every n ∈ N,

e(Bn, E) ≤ e(Bn, Cn) + e(Cn, E) = e(Cn, E) ≤ h(Cn, E),

e(E,Bn) ≤ e(E,An) + e(An, Bn) = e(E,An) ≤ h(E,An).

Consequently, by the hypothesis, limn→∞ h(Bn, E) = 0. �

Throughout the paper we shall use the following notions in the set valued
case:

Definition 2.2 ([2, 20, 21]). A set multifunction µ : A → Pf (X) is said
to be:

i) a fuzzy multimeasure if µ is monotone with respect to the inclusion
of sets (i.e., µ(A) ⊆ µ(B), for every A,B ∈ A, with A ⊆ B) and
µ(∅) = {0}.

ii) continuous from below if limn→∞ h(µ(An), µ(A)) = 0, for every in-
creasing sequence of sets (An)n ⊂ A, with An ↗ A.

iii) continuous from above if limn→∞ h(µ(An), µ(A)) = 0, for every de-
creasing sequence of sets (An)n ⊂ A, with An ↘ A.

iv) a fuzzy multimeasure in the sense of Sugeno, for short (S)-fuzzy multi-
measure, if µ is a fuzzy multimeasure which is continuous from below
and continuous from above.

v) order continuous if limn→∞ |µ(An)| = 0, for every sequence of sets
(An)n ⊂ A, with An ↘ ∅.

vi) strongly order continuous if limn→∞ |µ(An)| = 0, for every sequence
of sets (An)n ⊂ A, with An ↘ A and µ(A) = {0}.

vii) pseudo-order continuous if limn→∞ |µ(An)| = 0, for every sequence of
sets (An)n ⊂ A and every B ∈ A, with An ⊂ B, for every n, An ↘ A
and µ(B\A) = µ(B).

viii) null-additive if µ(A ∪ B) = µ(B), for every disjoint A,B ∈ A, with
µ(A) = {0}.

ix) pseudo-null-additive if µ(B ∪ C) = µ(C), whenever A ∈ A, B ∈ A ∩
A, C ∈ A ∩ A and µ(A\B) = µ(A).
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x) a) autocontinuous from below (autocontinuous from above, respective-
ly) if for every A ∈ A and every (Bn)n ⊂ A, with limn→∞ |µ(Bn)| =
0, we have limn→∞ h(µ(A\Bn), µ(A)) = 0 (limn→∞ h(µ(A ∪ Bn),
µ(A)) = 0, respectively).

b) autocontinuous if it is autocontinuous from above and autocon-
tinuous from below.

xi) a) pseudo-autocontinuous from above (pseudo-autocontinuous from be-
low, respectively) if for every A ∈ A and every (Bn)n ⊂ A, with
limn→∞ h(µ(Bn ∩ A), µ(A)) = 0, we have limn→∞ h((µ(A\Bn) ∪ C),
µ(C)) = 0 (respectively, limn→∞ h((µ(Bn ∩ C), µ(C)) = 0), for every
C ∈ A ∩ A.

b) pseudo-autocontinuous if it is pseudo-autocontinuous from above
and pseudo-autocontinuous from below.

xii) an additive multimeasure if µ(∅) = {0} and µ(A∪B) = µ(A)
•
+µ(B),

for every A,B ∈ A, with A ∩B = ∅.

Unless stated otherwise, all over the paper we assume that µ : A →
Pf (X) is a fuzzy (i.e., monotone) multimeasure. By M we denote the class
of all A-measurable real-valued functions on (T,A, µ), the space with the
fuzzy multimeasure µ.

In the following, we point out some relationships among certain types
of the above considered continuity, which will be necessary in the other
sections.

One can easily verify the following:

Remark 2.3. 1) i) Any additive multimeasure is null-additive.

ii) If µ is pseudo-null-additive, then it is null-additive.

iii) The following statements are equivalent:

a) µ is pseudo-null-additive;

b) µ(B ∩ C) = µ(C), whenever A ∈ A, B ∈ A ∩ A, C ∈ A ∩ A and
µ(B) = µ(A);

c) µ((A\B) ∪ C) = µ(C), whenever A ∈ A, B ∈ A ∩ A, C ∈ A ∩ A
and µ(B) = µ(A).
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2) If µ is strongly order continuous, then it is order continuous.
If, moreover, µ is null-additive, then the converse also holds.
So, if µ is null-additive, then µ is strongly order continuous if and only

if it is order continuous.
3) If µ is pseudo-order continuous, then it is also order continuous.
If µ : A → Pbfc(X) is an additive multimeasure, by the law of cancela-

tion (C), we also immediately get the converse.
So, if µ : A → Pbfc(X) is an additive multimeasure, then µ is pseudo-

order continuous if and only if it is order continuous.
4) [30] If µ : A → Pbf (X) is a (S)-fuzzy multimeasure, then the following

properties are equivalent:

a) autocontinuous from above;

b) autocontinuous from below;

c) autocontinuous.

By the above considerations we get:

Proposition 2.4. Suppose µ : A → Pbfc(X) is an additive multimea-
sure. Then the following statements are equivalent:

i) µ is strongly order continuous;

ii) µ is order continuous;

iii) µ is pseudo-order continuous.

Remark 2.5. If µ is autocontinuous from above, then pseudo-order
continuity implies continuity from below. If µ : A → Pbfc(X) is an additive
multimeasure, the converse also holds.

Consequently, we have:

Proposition 2.6. If µ : A → Pbfc(X) is an additive multimeasure, the
following statements are equivalent:

i) µ is strongly order continuous;

ii) µ is order continuous;

iii) µ is pseudo-order continuous;
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iv) µ is continuous from above;

v) µ is continuous from below.

Definition 2.7. We say that µ : A → Pf (X) fulfils:

i) [20] property (S) if for any sequence of sets (An)n ⊂ A, with
limn→∞ |µ(An)| = 0, there exists a subsequence (Ank

)k of (An)n such
that µ(lim kAnk

) = {0}, where limnEn =
∩∞

n=1

∪∞
k=nEk.

ii) property (PS) if for any A ∈ A and any sequence of sets (An)n ⊂
A ∩ A, with limn→∞ h(µ(An), µ(A)) = 0, there exists a subsequence
(Ank

)k of (An)n such that h(µ(lim kAnk
), µ(A)) = 0, where limnEn =∪∞

n=1

∩∞
k=nEk.

3. Relationships among convergences, respectively pseudo–
convergences

In this section, we point out, under special conditions, some relation-
ships among almost everywhere, pseudo-almost everywhere, almost uniform
and pseudo-almost uniform convergences, generalizing in the set-valued case
some results from the real case [29], [18], [3], [9], [14], [26].

Firstly, we shall give the following general result:

Proposition 3.1. Let be A ∈ A and P , a proposition concerning the
points of A. Then P holds on A p.a.e. whenever P is true a.e. on A if and
only if µ is null-additive.

Proof. Necessity. To prove that µ is null-additive, let be A ∈ A and
E ∈ A, with µ(E) = {0}. Let us consider x ∈ A\E as a proposition P (x).
Then P holds a.e. on A. By virtue of the hypothesis, P holds p.a.e. on
A and hence, there exists B ∈ A ∩ A, with µ(A\B) = µ(A) such that
P is true on A\B. We observe that x ∈ A\B implies x ∈ A\E and so,
A\B ⊂ A\E ⊂ A.

Using the monotonicity of µ, we obtain that µ(A\E) = µ(A), which
assures that µ is null-additive because µ(A) = µ((A ∪ E)\E) = µ(A ∪ E),
that is, µ(A ∪ E) = µ(A), for every E ∈ A, with µ(E) = {0}.

Sufficiency. Suppose that µ is null-additive. If P holds a.e. on A, there
exists E ∈ A, with µ(E) = {0} such that P is true on A\E. Since µ is
null-additive, we have µ(A\E) = µ(A) and hence P holds p.a.e. on A. �
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Remark 3.2. We observe that a pseudo-almost everywhere property P
has not a hereditary character, that is, if P is true p.a.e. on a set A and
B ⊂ A, then, generally, P is not true p.a.e. on B.

Definition 3.3. We consider arbitrary {fn} ⊂ M and f ∈ M. We say
that:

i) {fn} converges µ-almost everywhere (respectively, pseudo-µ-almost
everywhere) to f on A, and denote it by fn

a.e.−→
A

f (respectively,

fn
p.a.e.−→
A

f) if there exists a subset B ∈ A ∩ A such that µ(B) = {0}
(respectively, µ(A\B) = µ(A)) and {fn} is pointwise convergent to f
on A\B.

ii) {fn} converges in µ-measure (respectively, pseudo in µ-measure) to

f on A, and denote it by fn
µ−→
A

f (respectively, fn
p.µ−→
A

f) if for every

ε > 0, limn→∞ |µ(An(ε)| = 0, where An(ε) = {t ∈ A; |fn(t) − f(t)| ≥
ε} (respectively, limn→∞ h(µ(A\An(ε)), µ(A)) = 0).

iii) [20] {fn} converges µ-almost uniformly (respectively, µ-pseudo-almost

uniformly) to f on A and denote it by fn
a.u.−→
A

f (respectively, fn
p.a.u.−→
A

f) if there exists a decreasing sequence {Ak}k∈N ⊂ A ∩ A such that
limk→∞ |µ(Ak)| = 0 (respectively, limk→∞ h(µ(A\Ak), µ(A)) = 0) and
for every fixed k ∈ N, {fn} uniformly converges to f on A\Ak (fn

u−→
A\Ak

f).

Using Proposition 3.1 and the law of cancelation (C), we immediately
obtain:

Proposition 3.4. 1) If fn
a.e.−→
A

f and µ is null-additive, then fn
p.a.e.−→
A

f.

2) If µ : A → Pbfc(X) is an additive multimeasure, fn
a.e.−→
A

f if and only

if fn
p.a.e.−→
A

f.

Now, we point out the relationships among a.u. and a.e. convergences,
on one hand, and p.a.u. and p.a.e. on the other hand:

Proposition 3.5. i) If fn
a.u.−→
A

f , then fn
a.e.−→
A

f.

ii) If fn
p.a.u.−→
A

f , then fn
p.a.e.−→
A

f.
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Proof. i) If fn
a.u.−→
A

f , there exists a decreasing sequence {Ck}k∈N ⊂
A ∩ A such that limk→∞ |µ(Ck)| = 0 and for every fixed k ∈ N, {fn}
uniformly converges to f on A\Ck.

Let us denote C =
∩∞

k=1Ck. Since C ⊂ Ck, for every k ∈ N∗, by the
monotonicity of µ, we have µ(C) ⊂ µ(Ck), for every k ∈ N∗, so |µ(C)| ≤
|µ(Ck)|. Because limk→∞ |µ(Ck)| = 0, we obtain that µ(C) = {0}.

We see that for any x ∈ A\C, there exists k0 ∈ N∗ so that x ∈ A\Ck0

and, therefore, fn(x) converges to f(x), which assures that fn
a.e.→
A

f .

ii) If fn
p.a.u.→
A

f , there exists a sequence {Ck} ⊂ A so that

lim
k→∞

h(µ(A\Ck), µ(A)) = 0 and {fn} uniformly converges to(1)

f on A\Ck, for any fixed k ∈ N∗.

Take C =
∩∞

k=1Ck. Then A\Ck ⊂ A\C ⊂ A, for every k ∈ N∗, which
implies by the monotonicity of µ that µ(A\Ck) ⊂ µ(A\C) ⊂ µ(A), for every
k ∈ N∗.

From (1), using Lemma 2.1, we obtain that µ(A\C) = µ(A). It is easy

to see that {fn} converges to f on A\C, which assures that fn
p.a.e.→
A

f. �

Theorem 3.6. i) If µ is autocontinuous from below and if fn
a.u.−→
A

f ,

then fn
p.a.u.−→
A

f.

ii) If µ : A → Pbfc(X) is an additive multimeasure, then fn
a.u.−→
A

f if

and only if fn
p.a.u.−→
A

f.

iii) If µ : A → Pbf (X) and fn
p.a.u.−→
A

f whenever fn
a.u.−→
A

f , then µ is

null-additive.

Proof. i) If fn
a.u.−→
A

f , there exists a decreasing sequence {Ck}k∈N ⊂
A ∩ A such that limk→∞ |µ(Ck)| = 0 and for every fixed k ∈ N, {fn}
uniformly converges to f on A\Ck.

Since µ is autocontinuous from below, we have limk→∞ h(µ(A\Ck), µ(A))

= 0, which assures that fn
p.a.u.−→
A

f.

ii) The statement is straightforward by i) and property (C̃).
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iii) Let be disjoint A,B ∈ A, with µ(B) = {0}. For every n ∈ N, consider

fn(x) =

{
1, if x ∈ A

0, if x ∈ B.

Obviously, {fn}n ⊂ M. We observe that fn
a.u.−→
A∪B

1. Then fn
p.a.u.−→
A∪B

1, i.e.,

there exists a decreasing sequence {Ck}k∈N ⊂ A such that Ck ⊂ A ∪B, for
every k ∈ N, limk→∞ h(µ((A ∪ B)\Ck), µ(A ∪ B)) = 0 and fn

u−→
(A∪B)\Ck

1.

Consequently, (A ∪ B)\Ck ⊂ A, whence B\Ck = ∅, for every k ∈ N, so
(A ∪B)\Ck = A\Ck.

Therefore, for every k ∈ N,

e(µ(A ∪B), µ(A)) ≤ e(µ(A ∪B), µ((A ∪B)\Ck))+e(µ((A ∪B)\Ck), µ(A))

≤ h(µ(A ∪B), µ((A ∪B)\Ck)) + e(µ(A\Ck), µ(A))

= h(µ(A ∪B), µ((A ∪B)\Ck)),

so, for k → ∞, and taking into account that e(µ(A), µ(A ∪B)) = 0, we get
that h(µ(A), µ(A∪B)) = 0. Since µ : A → Pbf (X), then µ is null-additive.�

Theorem 3.7. fn
p.µ−→
A

f whenever fn
µ−→
A

f if and only if µ is autocon-

tinuous from below.

Proof. Necessity. Suppose fn
p.µ−→
A

f whenever fn
µ−→
A

f and let be

{Bn}n∈N ⊂ A such that limn→∞ |µ(Bn)| = 0.

We define for every n ∈ N, fn(x) =

{
1, if x ∈ Bn

0, if x ∈ A\Bn.

Obviously, {fn} ⊂ M. Also, it is easy to see that fn
µ−→
A

0. By hypo-

thesis, fn
p.µ−→
A

0 and then for ε = 1, we have limn→∞ h(µ({x ∈ A; |fn(x)| <
1}, µ(A)) = 0.

We observe that {x ∈ A; |fn(x)| < 1} = A\Bn and, consequently, we
obtain limn→∞ h(µ(A\Bn), µ(A)) = 0, which says that µ is autocontinuous
from below.

Sufficiency. Let µ be autocontinuous from below and suppose that
fn

µ−→
A

f. Then for every ε > 0, we have limn→∞ |µ({x ∈ A; |fn(x)−f(x)| ≥
ε})| = 0.
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Applying the autocontinuity from below of µ we have limn→∞ h(µ({x ∈
A; |fn(x) − f(x)| < ε}), µ(A)) = limn→∞ h(µ(A\{x ∈ A; |fn(x) − f(x)| ≥
ε}), µ(A)) = 0 and so fn

p.µ−→
A

f. �

4. A set-valued pseudo-version of Egoroff’s theorem

For the purpose of obtaining a pseudo-version of Egoroff’s theorem for
fuzzy multimeasures, we shall firstly give a multivalued form of the condition
(PE) introduced by Li and Yasuda [13] for real monotonic set functions.

We shall prove that, as in the real case [11], fulfilment of the Egoroff’s
theorem in the pseudo-version is conditioned by the property (PE).

Definition 4.1. We say that µ fulfils condition (PE) if for anyA∈A and

every double sequence {A(m)
n }m,n∈N ⊂ A∩A such that for every fixedm ∈ N,

A
(m)
n ↗ A(m) as n → ∞ and µ(

∩∞
m=1A

(m)) = µ(A), there exist increasing

sequences {ni} and {mi} of naturals such that limk→∞ h(µ(
∩∞

i=k A
(mi)
ni ),

µ(A)) = 0.

We remark that continuity from below of µ is a necessary condition for
fulfiling (PE), that is:

Proposition 4.2. If µ fulfils (PE), then µ is continuous from below.

Proof. Let be (An)n∈N⊂A, such that An ↗ A. Since µ satisfies pro-
perty (PE), there exist increasing sequences {ni} and {mi} of naturals such
that limk→∞ h(µ(

∩∞
i=k Ani), µ(A))=0, whence limk→∞ h(µ(Ank

), µ(A)) =
0. Using the monotonicity of µ and Lemma 2.1-ii), we have that
limk→∞ h(µ(Ak), µ(A)) = 0, which says that µ is continuous from below.�

Now, we can prove a pseudo-form of Egoroff’s theorem in the set-valued
case:

Theorem 4.3 (Egoroff type). Let be A ∈ A, f ∈ M and {fn}n ⊂ M.

Then fn
p.a.u.−→
A

f whenever fn
p.a.e.−→
A

f if and only if µ fulfils condition (PE).

Proof. Necessity. Suppose that for any A ∈ A, fn
p.a.e.−→
A

f implies

fn
p.a.u.−→
A

f. Let be a double sequence {A(m)
n }m,n∈N ⊂ A ∩ A such that for
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every fixed m ∈ N, A(m)
n ↗ A(m) as n → ∞ and

(2) µ(
∞∩

m=1

A(m)) = µ(A).

We denote by B
(m)
n =

∩m
i=1A

(i)
n , for every m,n ∈ N, and by B(m) =∪∞

n=1B
(m)
n , for every m ∈ N.

We see that the double sequence {B(m)
n }m,n∈N satisfies the conditions:

for every fixed n ∈ N, B(m)
n ⊃ B

(m+1)
n , for any m ∈ N, and B

(m)
n ↗ B(m) as

n → ∞. Since
∩∞

m=1B
(m) =

∩∞
m=1A

(m), from (2) we have

(3) µ(

∞∩
m=1

B(m)) = µ(A).

Now, for every n ∈ N, we consider

(4) fn(x) =


1

m+1 , if x ∈ B
(m)
n \B(m+1)

n ,m ∈ N∗

1, if x ∈ A\B(1)
n

0, if x ∈ A\
∞∩

m=1
B

(m)
n .

Then, for every m ∈ N∗, we have {x ∈ A; |fn(x)| < 1
m} = B

(m)
n , whence

{x ∈ A; |fi(x)| < 1
m , i ≥ n} =

∩∞
i=nB

(m)
i = B

(m)
n .

If we denote by C =
∪∞

m=1

∩∞
n=1

∪∞
i=n{x ∈ A; |fi(x)| ≥ 1

m}, we see

that fn converges to 0 on A\C and A\C =
∩∞

m=1

∪∞
n=1

∩∞
i=nB

(m)
i =∩∞

m=1

∪∞
n=1B

(m)
n =

∩∞
m=1B

(m).
Since by (3) we have µ(

∩∞
m=1B

(m)) = µ(A), we obtain that µ(A\C) =

µ(A) and hence fn
p.a.e.−→
A

f. Then, by virtue of the hypothesis, fn
p.a.u−→
A

0.

Consequently, there exists a decreasing sequence {Ck}k∈N such that

lim
k→∞

h(µ(A\Ck), µ(A)) = 0 and fn uniformly converges to(5)

f on A\Ck, for every k ∈ N.

Now, if k ∈ N∗, there exists nk ∈ N such that for every x ∈ A\Ck, we
have |fi(x)| < 1

k , for every i ≥ nk and thus, for every k ∈ N∗, we have

A\Ck ⊂
∩∞

i=nk
{x ∈ A; |fi(x)| < 1

k} =
∩∞

i=nk
B

(k)
i = B

(k)
nk .
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Since the sequence {A\Ck}k∈N∗ is increasing, we have for every k ∈ N∗,

µ(A\Ck) = µ(
∞∩
i=k

(A\Ci)) ⊂ µ(
∞∩
i=k

B(i)
ni
) ⊂ µ(A)

and using (5) and Lemma 2.1, we obtain

(6) lim
k→∞

h(µ(

∞∩
i=k

B(i)
ni
), µ(A)) = 0.

But A
(m)
n ⊃ B

(m)
n , for every m,n ∈ N, and hence A

(i)
ni ⊃ B

(i)
ni , for every

i ∈ N, whence, we have µ(A) ⊃ µ(
∩∞

i=k A
(i)
ni ) ⊃ µ(

∩∞
i=k B

(i)
ni ), for every

i ∈ N.
Taking again into account Lemma 2.1 and (6), we obtain

(7) lim
k→∞

h(µ(

∞∩
i=k

A(i)
ni
), µ(A)) = 0,

which assures that µ fulfils condition (PE).

Sufficiency. We assume that µ satisfies condition (PE) and fn
p.a.e.−→
A

f.

Then there exists a set E ⊂ A such that µ(A\E) = µ(A) and fn converges
to f on A\E.

Denoting by B the set of those points x ∈ A at which fn(x) converges
to f(x), we observe that B can be written as

(8) B =
∞∩
k=1

∞∪
n=1

∞∩
i=n

{
x ∈ A; |fi(x)− f(x)| < 1

m

}
.

Now, we see that A\E ⊂ B ⊂ A and hence, µ(B) = µ(A). For every fixed

m ∈ N∗, let us denote by A
(m)
n =

∩∞
i=n{x ∈ A; |fi(x) − f(x)| < 1

m}, for
every n ∈ N∗, and by A(m) =

∪∞
n=1A

(m)
n .

Since the double sequence {A(m)
n }n,m∈N∗ is such that A

(m)
n ↗ A(m) for

n → ∞ and µ(
∩∞

m=1A
(m)) = µ(B) = µ(A), we can apply condition (PE).

Consequently, there exist two sequences {ni} and {mi} of naturals such

that limk→∞ h(µ(
∩∞

i=k A
(mi)
ni ), µ(A)) = 0. Denoting by Ck = A\

∩∞
i=k A

(ki)
ni ,

k ∈ N∗, we observe that limk→∞ h(µ(A\Ck), µ(A)) = 0.
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It remains to prove that fn converges to f on A\Ck, uniformly for any
fixed k ∈ N∗.

Since A\Ck =
∩∞

i=k A
(mi)
ni =

∩∞
i=k

∩∞
j=ni

{x ∈ A; |fj(x) − f(x)| < 1
mi

},
then, for every i ≥ k,

A\Ck ⊂
∞∩

j=ni

{
x ∈ A; |fj(x)− f(x)| < 1

mi

}
.

If ε > 0 is arbitrary, we can take i0 ≥ k such that 1
mi0

< ε.

Now, if j > mi0 , for every x ∈ A\Ck, we have |fj(x)− f(x)| < 1
mi0

< ε,

which says that {fn} uniformly converges to f on A\Ck. Consequently,

fn
p.a.u.−→
A

f. �

By Theorem 4.3 and Proposition 3.5 ii), we get:

Corollary 4.4. Let be A ∈ A, f ∈ M and {fn}n ⊂ M. Then fn
p.a.e.−→
A

f ⇔ fn
p.a.u.−→
A

f if and only if µ fulfils (PE).

Also, as a corollary of Theorem 4.3, we obtain that continuity from
below is a necessary condition for pseudo-form of Egoroff’s theorem:

Corollary 4.5. Let be A ∈ A, f ∈ M and {fn}n ⊂ M. If fn
p.a.e.−→
A

f ⇒

fn
p.a.u.−→
A

f , then µ is continuous from below.

We already remarked at the beginning of Section 3 that a property which
holds ”p.a.e.” is not hereditary and then, it is justified to give the following:

Definition 4.6. Let be A ∈ A, f ∈ M and {fn}n ⊂ M. We say
that {fn} converges pseudo-almost uniformly (pseudo-almost-everywhere,

respectively) to f in A, denoted by fn
p.a.u.−→ f (fn

p.a.e.−→ f , respectively) in

A if fn
p.a.u.−→
E

f (fn
p.a.e.−→
E

f , respectively), for every E ∈ A ∩ A.

Obviously, by Proposition 3.5, if fn
p.a.u.−→ f in A, then fn

p.a.e.−→ f in A, so
fn

p.a.e.−→
A

f.

We remark that, generally, the converse is not valid. Although, we can
give the following:
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Theorem 4.7. Let be A ∈ A, f ∈ M and {fn}n ⊂ M. Then fn
p.a.u.−→ f

in A whenever fn
p.a.e.−→
A

f if and only if µ fulfils condition (PE) and µ is

pseudo-null-additive.

Proof. Necessity. Let us assume that fn
p.a.e.−→
A

f implies fn
p.a.u.−→ f in A.

Obviously, according to Egoroff’s Theorem 4.3, µ fulfils condition (PE).

To prove that µ is pseudo-null-additive, let us consider B ∈ A∩A, such
that µ(A\B) = µ(A) and take an arbitrary set C ∈ A ∩ A.

We shall prove that µ(B ∪ C) = µ(C). Since A\B ⊂ A,B\C ⊂ A, we
have µ(A\(B\C)) = µ(A). Let us define for every n ∈ N,

(9) fn(x) =

{
0, if x ∈ A\(B\C)

1, if x ∈ B\C.

We see that fn
p.a.e.−→
A

0 and then, by virtue of the hypothesis, we have

fn
p.a.u−→ 0 in B ∪ C.

Using Proposition 3.5 ii), we obtain that fn
p.a.e.−→
B∪C

0. Then, there exists

E ⊂ B ∪ C, with E ∈ A, such that µ((B ∪ C)\E) = µ(B ∪ C) and fn(x)
converges to 0 at every x ∈ (B ∪ C)\E.

By (9) we see that (B ∪ C)\E ⊂ (B ∪ C)\(B\C) = C ⊂ B ∪ C, which
implies that µ((B∪C)\(B\C)) = µ(B∪C), that is, µ(B∪C) = µ(C), which
assures because C is an arbitrary subset of A, that µ is pseudo-null-additive.

Sufficiency. Suppose that µ is pseudo-null-additive and fulfils condition
(PE). If fn

p.a.e.−→
A

f , then, since µ is pseudo-null-additive, we have fn
p.a.e.−→ f

in A.

Indeed, because fn
p.a.e.−→
A

f , there exists E ∈ A ∩ A such that

(10) µ(A\E) = µ(A) and fn(x) converges to f(x) at every x ∈ A\E.

Let C ∈ A ∩ A be an arbitrary set. We shall prove that

(11) µ(C\(C ∩E)) = µ(C)

or, equivalently,

(11′) µ(C) = µ(C\E).
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Since C = (C ∩ E) ∪ (C\E) and A\E ⊂ A\(C ∩ E) ⊂ A, by (10) we
have µ(A\(C ∩ E)) = µ(A).

Now, using the pseudo-null-additivity of µ, we get that µ(C) = µ(C\E),
that is, (11′) holds.

Consequently, there exists the subset C ∩ E of C such that µ(C) =
µ(C\(C ∩ E)) and fn converges to f on C\(C ∩ E) = C\E, which assures

that fn
p.a.e.−→ f in A. By Theorem 4.3, we get that fn

p.a.u.−→ f in A. �

By Theorem 4.7 and Proposition 3.5 ii), we get:

Corollary 4.8. Let be A ∈ A, f ∈ M and {fn}n ⊂ M. Then fn
p.a.e.−→
A

f

⇔ fn
p.a.u.−→ f in A if and only if µ fulfils condition (PE) and µ is pseudo-

null-additive.

5. Concluding remarks

In this paper, we investigated for set-valued non-additive monotonic set
functions, some relationships among the main types of convergences of se-
quences of measurable functions.

In this way, we insisted on different types of pseudo-convergences of se-
quences of measurable functions, such as, pseudo-almost everywhere (p.a.e.),
pseudo-almost uniform (p.a.u) convergences and pseudo-convergence in mea-
sure (p.µ) and on the relationships among them, or with almost everywhere,
almost uniform convergences and convergence in measure.

Thus, we gave a set-valued pseudo-version of Egoroff’s theorem and, as
a consequence, we obtained a result which emphasizes the non-hereditary
character of the pseudo-convergence. We also gave characterizations of some
important structural properties of monotone multimeasures.

We shall further our study concerning convergences and pseudo-conver-
gences in order to obtain set-valued Lebesgue and Riesz type theorems.
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