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1. Introduction

As it is well known, convergences and pseudo-convergences of sequences of
measurable real-valued functions with respect to monotone set (multi)func-
tions is a very important area of measure theory (see, for instance, [19]),
due to its various theoretical and practical applications.

In non-additive measure theory, we mention in this sense the contri-
butions of Denneberg [1], Ha, Wang and Wu [2], Jiang et al. [5],
Kawabe [6, 7], Li et al. [8], Li [9, 10], Li and Li [11], Li et al. [12], Li
and Yasuda [13], Li et al. [14], Liu [15], Murofushi [16], Murofushi
et al. [17], Pap [18], Ren et al. [24], Song and Li [25], Sun [26, 27],
Takahashi et al. [28], Wang [29], Wang and Klir [30], Wu and Liu
[31], Zhang [32] and many others.

Recently, due to various necessities coming from mathematical eco-
nomics, artificial intelligence, biomathematics etc., some results from the
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above mentioned papers were generalized to the set-valued case in Haus-
dorff topology (see, for instance, Precupanu and Gavriluţ [20-23], Wu
and Liu [31]) for Pf (X)-valued monotone set multifunctions, X being a
real normed space and Pf (X) the family of all nonvoid closed sets of X.

The aim of this paper is to further the study [22] concerning con-
vergences and pseudo-convergences of sequences of real-valued measurable
functions with respect to Pbf (X)-valued monotone set multifunctions, X
being a Banach space and Pbf (X) the family of all nonvoid closed, bounded
sets of X. Considerations concerning operations and uniqueness of the
limit with respect to such convergences are given and asymptotic structural
properties of certain monotone set multifunctions are characterized.

2. Terminology, notations and basic results

Let T be an abstract nonvoid space, A a σ-algebra of subsets of T , X a
Banach space with the origin 0, P0(X) the family of all nonvoid subsets of
X,Pf (X) the family of closed, nonvoid sets of X, Pbf (X) the family of all
bounded, closed, nonvoid sets of X and h the Hausdorff pseudometric on
Pf (X) given by:

h(M,N) = max{e(M,N), e(N,M)}, for every M,N ∈ Pf (X),

where e(M,N) = supx∈M d(x,N) is the excess of M over N .
It is known that if M,N ∈ Pf (X), then e(M,N) = 0 if and only if

M ⊂ N. Consequently, e(M,N) = h(M,N), for every M,N ∈ Pf (X), with
N ⊂ M. Also, e(M,N) ≤ e(M,P ) + e(P,N), for every M,N,P ∈ Pf (X).

On Pbf (X), h becomes a metric [3].
We denote A∩ A = {E ⊂ A,E ∈ A}, where A is a fixed set in A. By cA

we mean T\A. By N we denote the set of all naturals and by N∗ we mean
N\{0}.

All over the paper, a limit of the type limn→∞ µ(Mn) = {0} or
limn→∞ µ(Mn) = µ(M) (where (Mn)n,M ⊂ A) will be understood with
respect to h.

Throughout the paper we shall use the following notions in the set-
valued case:

Definition 2.1 ([20, 21, 22, 23]). A set multifunction µ : A → Pbf (X),
with µ(∅) = {0} is said to be:
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i) monotone if µ(A) ⊆ µ(B), for every A,B ∈ A, with A ⊆ B.

ii) continuous from below if limn→∞ h(µ(An), µ(A)) = 0, for every in-
creasing sequence of sets (An)n ⊂ A, with An ↗ A.

iii) continuous from above if limn→∞ h(µ(An), µ(A)) = 0, for every de-
creasing sequence of sets (An)n ⊂ A, with An ↘ A.

iv) Sugeno-continuous, for short (S)-continuous if µ is monotone, con-
tinuous from below and continuous from above.

v) order continuous if limn→∞ µ(An) = {0}, for every sequence of sets
(An)n ⊂ A, with An ↘ ∅.

vi) strongly order continuous if limn→∞ µ(An) = {0}, for every sequence
of sets (An)n ⊂ A, with An ↘ A and µ(A) = {0}.

vii) pseudo-order continuous if limn→∞ µ(An) = {0}, for every sequence
of sets (An)n ⊂ A and every B ∈ A, with An ⊂ B, for every n,
An ↘ A and µ(B\A) = µ(B).

viii) null-additive if µ(A ∪ B) = µ(B), for every disjoint A,B ∈ A, with
µ(A) = {0}.
double null-additive (or, null-null-additive) if µ(A ∪ B) = {0}, for
every (disjoint) A,B ∈ A, with µ(A) = µ(B) = {0}.

ix) single asymptotic null-additive if for every A ∈ A with µ(A) = {0}
and every sequence (Bn)n∈N ⊂ A, with limn→∞ µ(Bn) = {0}, we have
limn→∞ µ(A ∪Bn) = {0}.

x) double asymptotic null-additive if limm,n→∞ µ(An∪Bm) = {0}, when-
ever (An)n, (Bm)m ⊂ A, with limn→∞ µ(An) = limm→∞ µ(Bm) =
{0}.

xi) pseudo-null-additive if µ(B ∪ C) = µ(C), whenever A ∈ A, B ∈ A ∩
A, C ∈ A ∩ A and µ(A\B) = µ(A).

xii) a) autocontinuous from below (autocontinuous from above, respec-
tively) if for every A ∈ A and every (Bn)n ⊂ A, with limn→∞ µ(Bn) =
{0}, we have limn→∞ h(µ(A\Bn), µ(A)) = 0 (limn→∞ h(µ(A ∪ Bn),
µ(A)) = 0, respectively).
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b) autocontinuous if it is autocontinuous from above and autocon-
tinuous from below.

xiii) a) pseudo-autocontinuous from above (pseudo-autocontinuous from be-
low, respectively) if for every A ∈ A and every (Bn)n ⊂ A, with
limn→∞ h(µ(Bn ∩ A), µ(A)) = 0, we have limn→∞ h((µ(A\Bn) ∪ C),
µ(C)) = 0 (respectively, limn→∞ h((µ(Bn ∩ C), µ(C)) = 0), for every
C ∈ A ∩ A.

b) pseudo-autocontinuous if it is pseudo-autocontinuous from above
and pseudo-autocontinuous from below.

xiv) uniformly pseudo-autocontinuous from below if for every ε > 0, there
exists δε > 0 so that for every A ∈ A, B ∈ A ∩ A, C ∈ A ∩ A, with
h(µ(A), µ(B)) < δ, we have h(µ(C), µ(B ∩ C)) < ε.

Unless stated otherwise, all over the paper we assume that µ : A →
Pbf (X) is monotone.

The following example emphasizes the importance of the set-valued
framework:

Example 2.2. Suppose X is an AL-space [4] (i.e., a real Banach space
equipped with a lattice order relation, which is compatible with the linear
structure, such that the norm ∥ · ∥ on X is monotone, that is, |x| ≤ |y|
implies ∥x∥ ≤ ∥y∥, for every x, y ∈ X, and also satisfying the supplementary
condition ∥x+ y∥ = ∥x∥+ ∥y∥, for every x, y ∈ X, with x, y ≥ 0).

For instance, R, L1(µ), l1 are usual examples of AL-spaces.

Let Λ be the positive cone of X. As usual, by [x, y] we mean the interval
consisting of all z ∈ X so that x ≤ z ≤ y.

Suppose m : A → Λ is an arbitrary set function, with m(∅) = 0. We
consider the induced set multifunction µ : A → Pbf (X) defined for every
A ∈ A by µ(A) = [0,m(A)].

We observe that h(µ(A), {0}) = sup0≤x≤m(A) ∥x∥ = ∥m(A)∥, for every
A,B ∈ A.

We remark that the set-valued framework is a very good direction study,
because when we use a proper set multifunction (for example, the induced
set multifunction), it allows us to get back our considerations to important
particular spaces, as, for instance, AL-spaces.
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Definition 2.3 ([22, 23]). We say that µ fulfils:

i) property (S) if for any sequence of sets (An)n ⊂ A, with limn→∞ µ(An)
= {0}, there exists a subsequence (Ank

)k of (An)n such that
µ(limk→∞Ank

) = {0}, where limn→∞En =
∩∞

n=1

∪∞
k=nEk.

ii) property (PS) if for any A ∈ A and any sequence of sets (An)n ⊂
A ∩ A, with limn→∞ h(µ(An), µ(A)) = 0, there exists a subsequence
(Ank

)k of (An)n such that µ(limk→∞Ank
) = µ(A), where limn→∞En =∪∞

n=1

∩∞
k=nEk.

Remark 2.4. I) i) [31] If µ is (S)-continuous, then it is autocontinuous
from above if and only if it is null-additive and has property (S), if and only
if it is autocontinuous from below.

ii) If µ is null-additive, then it is single asymptotic null-additive.
If µ is single asymptotic null-additive, then it is null-null-additive.
If µ is double asymptotic null-additive, then it is single asymptotic null-

additive.
iii) [22] If µ is (S)-continuous, then µ is pseudo-autocontinuous from

below if and only if it is pseudo-null-additive and has property (PS), if and
only if it is pseudo-autocontinuous from above.

II) µ is double asymptotic null-additive if and only if limn→∞ µ(An ∪
Bn) = {0}, whenever (An)n, (Bn)n⊂A, with limn→∞ µ(An)= limn→∞ µ(Bn)
= {0}.

III) [22] The following statements are equivalent:

a) µ is pseudo-null-additive;

b) µ(B ∩ C) = µ(C), whenever A ∈ A, B ∈ A ∩ A, C ∈ A ∩ A and
µ(B) = µ(A);

c) µ((A\B) ∪ C) = µ(C), whenever A ∈ A, B ∈ A ∩ A, C ∈ A ∩ A and
µ(B) = µ(A).

Proposition 2.5. If µ is (S)-continuous and autocontinuous from above,
then it is double asymptotic null-additive.

Proof. First, suppose that, on the contrary, µ is autocontinuous from
above, but it is not double asymptotic null-additive. Consequently, there
exist ε0 > 0 and two sequences (An)n, (Bn)n ⊂ A, with limn→∞ µ(An) =
limn→∞ µ(Bn) = {0} and e(µ(An ∪Bn), {0}) ≥ ε0, for every n ∈ N.
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By Remark 2.4 I-i), µ has property (S), so, there exist two subsequences
(Ank

)k of (An)n, (Bnl
)l of (Bn)n such that µ(lim supk→∞Ank

) = {0} and
µ(lim supl→∞Bnl

) = {0}.
Again, by Remark 2.4 I-i), µ is null-additive. In consequence, because µ

is continuous from above, then 0=e(µ((lim supk→∞Ank
)∪(lim supl→∞Bnl

)),
{0}) ≥ lim supk,l→∞ e(µ(Ank

∪Bnl
), {0}) ≥ ε0, which is a contradiction. �

In what follows, by M we denote the class of all A-measurable real-
valued functions on (T,A, µ), which is the measurable space (T,A) endowed
with the monotone set multifunction µ.

Definition 2.6. I) Let be arbitrary f, g ∈ M. We say that:

i) f = g almost everywhere (for short, a.e.) if there exists A ∈ A such
that µ(A) = {0} and f = g on T\A.

ii) f = g pseudo-almost everywhere (for short, p.a.e.) if there exists
A ∈ A such that µ(T ) = µ(T\A) and f = g on T\A.

II) We consider arbitrary {fn} ⊂ M and f ∈ M. We say that:

i) [22] {fn} converges µ-almost everywhere (respectively, pseudo-µ-al-
most everywhere) to f on A, and denote it by fn

a.e.−→
A

f (respectively,

fn
p.a.e.−→
A

f) if there exists a subset B ∈ A ∩ A such that µ(B) = {0}
(respectively, µ(A\B) = µ(A)) and {fn} is pointwise convergent to f
on A\B.

ii) [22] {fn} converges in µ-measure (respectively, pseudo in µ-measure)

to f on A, and denote it by fn
µ−→
A

f (respectively, fn
p.µ−→
A

f) if for

every ε > 0, limn→∞ µ(An(ε) = {0}, where An(ε) = {t ∈ A; |fn(t) −
f(t)| ≥ ε} (respectively, limn→∞ h(µ(A\An(ε)), µ(A)) = 0).

iii) [22] {fn} converges µ-almost uniformly (respectively, µ-pseudo-almost

uniformly) to f on A and denote it by fn
a.u.−→
A

f (respectively, fn
p.a.u.−→
A

f) if there exists a decreasing sequence {Ak}k∈N ⊂ A ∩ A such that
limk→∞ µ(Ak) = {0} (respectively, limk→∞ h(µ(A\Ak), µ(A)) = 0)
and for every fixed k ∈ N, {fn} uniformly converges to f on A\Ak (fn

u−→
A\Ak

f).
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iv) {fn} is a.e. (respectively, a.u., µ, p.a.e., p.µ, p.a.u.)-fundamental if
limm,n→∞ |fn− fm| = 0 a.e. (respectively, a.u., µ, p.a.e., p.µ, p.a.u.).

In the sequel, we discuss the uniqueness of the limit of convergence and
pseudo-convergence with respect to a monotone set multifunction. First,
we shall need the following lemma:

Lemma 2.7. If limn→∞ µ(Mn) = {0} and for every n ∈ N, Nn ⊂ Mn,
then limn→∞ µ(Nn) = {0}.

Proof. The statement easily follows since

h(µ(Nn), {0}) = e(µ(Nn), {0}) ≤ e(µ(Nn), µ(Mn)) + e(µ(Mn), {0})
= h(µ(Mn), {0}) → 0.

�

Theorem 2.8. Let us consider arbitrary {fn} ⊂ M and f, g ∈ M so
that f = g a.e. Then µ is single asymptotic null-additive if and only if fn
µ−→ f implies fn

µ−→ g.

Proof. Necessity. Since f = g a.e., there exists A ∈ A so that µ(A) =
{0} and f(t) = g(t), for every t ∈ T\A. Then µ({t; f(t) ̸= g(t)}) = {0}.

Since µ is single asymptotic null-additive and fn
µ−→ f , then for every

ε > 0, limn→∞ µ({t; |fn(t)− f(t)| ≥ ε
2} ∪ {t; f(t) ̸= g(t)}) = {0}.

By Lemma 2.7, because

{t; |fn(t)− g(t)| ≥ ε} ⊂ {t; |fn(t)− f(t)| ≥ ε

2
} ∪ {t; f(t) ̸= g(t)},

we get that fn
µ−→ g.

Sufficiency. Let (An)n ⊂ A, A ∈ A be so that limn→∞ µ(An) = {0} and
µ(A) = {0}.

For every n ∈ N and every t ∈ T, we consider fn(t) = χAn\A(t), g(t) =
χA(t) and f(t) = 0.

We observe that f = g a.e. and for every n ∈ N and every ε > 0,

µ({t; |fn(t)− f(t)| ≥ ε}) = µ(An\A) ⊂ µ(An),

whence, by Lemma 2.7, fn
µ−→ f . Then, by the hypothesis, fn

µ−→ g.
Consequently, limn→∞ µ(A ∪An) = limn→∞ µ({t; |fn(t)− g(t)| ≥ 1}) =

{0}, i.e., µ is single asymptotic null-additive. �
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Theorem 2.9. Let us consider arbitrary {fn} ⊂ M and f, g ∈ M so

that f = g p.a.e. If µ is pseudo-null-additive and fn
p.µ−→ f , then fn

p.µ−→ g.

Proof. Since f = g p.a.e, there exists A ∈ A so that µ(T ) = µ(T\A)
and f(t) = g(t), for every t ∈ T\A.

Because fn
p.µ−→ f , then for every ε > 0, limn→∞ h(µ(T\An(ε)), µ(T )) =

0, where An(ε) = {t ∈ T ; |fn(t)− f(t)| ≥ ε
2}.

Since Ãn(ε) = {t ∈ T ; |fn(t)− g(t)| ≥ ε} ⊂ An(ε) ∪A, we have

lim
n→∞

e(µ(T ), µ(T\Ãn(ε)))

≤ lim
n→∞

[e(µ(T ), µ(T\An(ε))) + e(µ(T\An(ε)), µ(T\Ãn(ε)))]

= lim
n→∞

e(µ(T\An(ε)), µ(T\Ãn(ε)))

≤ lim
n→∞

[e(µ(T\An(ε)), µ(T\(An(ε) ∪A)))

+ e(µ(T\(An(ε) ∪A)), µ(T\Ãn(ε)))]

= lim
n→∞

e(µ(cAn(ε)), µ(cAn(ε) ∩ cA)) = 0,

because µ is pseudo-null-additive and µ(T ) = µ(cA), so, by Remark 2.3
III), we have µ(D) = µ(D ∩ cA), for every D ∈ A.

Consequently, limn→∞ h(µ(T ), µ(T\Ãn(ε)))=0 and this means fn
p.µ−→ g.�

Theorem 2.10. Let be arbitrary {{fn}, f, g} ⊂ M. If µ is double

asymptotic null-additive and continuous from below, fn
µ−→ f and fn

µ−→ g,
then f = g a.e.

Proof. Because fn
µ−→ f and fn

µ−→ g, then for every m ∈ N∗,
limn→∞ µ(({t; |fn(t)−f(t)| ≥ 1

2m}) = {0} and limn→∞ µ({t; |fn(t)−g(t)| ≥
1
2m}) = {0}.

Since µ is double asymptotic null-additive and for every m ∈ N∗,

{t; |f(t)− g(t)| ≥ 1

m
} ⊆ {t; |fn(t)− f(t)| ≥ 1

2m
}

∪ {t; |fn(t)− g(t)| ≥ 1

2m
},

by Lemma 2.7 we get that limm→∞ µ({t; |f(t)− g(t)| ≥ 1
m}) = {0}. Taking

into account that µ is continuous from below and

{t; |f(t)− g(t)| > 0} =

∞∪
m=1

{t; |f(t)− g(t)| ≥ 1

m
},
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we obtain that limm→∞ h(µ({t; |f(t) − g(t)| > 0}), µ({t; |f(t) − g(t)| ≥
1
m})) = 0, which yields µ({t; |f(t)− g(t)| > 0}) = {0}, so, f = g a.e. �

Lemma 2.11. Suppose µ is (S)-continuous. Then µ is pseudo-autocon-
tinuous from below if and only if for every A ∈ A and every (Bn)n, (Cn)n ⊂
A, with limn→∞ e(µ(A), µ(A∩Bn)) = 0 and limn→∞ e(µ(A), µ(A∩Cn)) = 0,
we have limn→∞ e(µ(A), µ(A ∩Bn ∩ Cn)) = 0.

Proof. Necessity. By the definition of lim sup of the excess, there
exists a subsequence (nk)k so that lim supn e(µ(A), µ(A ∩ Bn ∩ Cn)) =
limk→∞ e(µ(A), µ(A ∩Bnk

∩ Cnk
)).

On the other hand, by Remark 2.4 I)-iii), µ has property (PS), so there
exists a subsequence (nks)s of (nk)k so that

µ(A ∩ lim inf
s

Bnks
) = µ(A ∩ lim inf

s
Cnks

) = µ(A).

By Remark 2.4 I)-iii), µ is also pseudo-null-additive, hence, by Remark 2.4
III), µ(A ∩ lim infsBnks

∩ lim infsCnks
) = µ(A). Now, we observe that

lim sup
n

e(µ(A), µ(A ∩Bn ∩ Cn))

= lim
k→∞

e(µ(A), µ(A ∩Bnk
∩ Cnk

))

= lim
s→∞

e(µ(A), µ(A ∩Bnks
∩ Cnks

))

= lim
s→∞

e(µ(A ∩ lim inf
s

Bnks
∩ lim inf

s
Cnks

), µ(A ∩Bnks
∩ Cnks

)) = 0,

because µ is continuous from below. Consequently, lim supn e(µ(A), µ(A ∩
Bn ∩ Cn)) = 0, whence limn→∞ e(µ(A), µ(A ∩Bn ∩ Cn)) = 0, as claimed.

Sufficiency. Let us consider arbitrary A ∈ A, C ∈ A ∩ A, (Bn)n ⊂ A,
with limn→∞ h(µ(Bn ∩ A), µ(A)) = 0. We prove that limn→∞ h((µ(Bn ∩
C), µ(C)) = 0.

We shall apply the hypothesis for Cn = [(A \ Bn) ∩ C]∆C, with n ∈
N. One can easily check that Cn ⊃ A ∩ Bn, so A ∩ Cn ⊃ A ∩ Bn. Also,
A ∩Bn ∩ Cn = C ∩Bn. This implies

lim
n→∞

e(µ(A), µ(A ∩ Cn))

≤ lim
n→∞

[e(µ(A), µ(A ∩Bn)) + e(µ(A ∩Bn), µ(A ∩ Cn))]

= lim
n→∞

e(µ(A), µ(A ∩Bn)) = 0,
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so limn→∞ e(µ(A), µ(A ∩ Cn)) = 0.
Consequently, by the hypothesis, we have limn→∞ e(µ(A), µ(A ∩ Bn ∩

Cn)) = 0, whence

lim
n→∞

h((µ(Bn ∩ C), µ(C)) = lim
n→∞

e(µ(C), µ(Bn ∩ C))

≤ lim
n→∞

[e(µ(C), µ(A)) + e(µ(A), µ(Bn ∩ C))]

= lim
n→∞

e(µ(A), µ(Bn ∩ C)) = lim
n→∞

e(µ(A), µ(A ∩Bn ∩ Cn)) = 0.

Therefore, we get that limn→∞ h((µ(Bn∩C), µ(C)) = 0, that is, µ is pseudo-
autocontinuous from below. �

Theorem 2.12. Let be arbitrary {{fn}, f, g} ⊂ M. If µ is pseudo-

autocontinuous from below and (S)-continuous, fn
p.µ−→ f and fn

p.µ−→ g,
then f = g p.a.e.

Proof. Because fn
p.µ−→ f and fn

p.µ−→ g, then for every m ∈ N∗,
limn→∞ h(µ(T ), µ(({t; |fn(t) − f(t)| < 1

2m})) = 0 and limn→∞ h(µ(T ),
µ(({t; |fn(t) − g(t)| < 1

2m}) = 0, whence, by Lemma 2.11, we get
limn→∞ h(µ(T ), µ({t; |fn(t)− f(t)| < 1

2m} ∩ {t; |fn(t)− g(t)| < 1
2m})) = 0.

Because for every m,n ∈ N∗,

{t; |fn(t)− f(t)| < 1

2m
} ∩ {t; |fn(t)− g(t)| < 1

2m
} ⊂ {t; |f(t)− g(t)| < 1

m
},

we get that

lim
n→∞

h(µ(T ), µ({t; |f(t)− g(t)| < 1

m
})

= lim
n→∞

e(µ(T ), µ({t; |f(t)− g(t)| < 1

m
})

≤ lim
n→∞

[e(µ(T ), µ({t; |fn(t)− f(t)| < 1

2m
}

∩ {t; |fn(t)− g(t)| < 1

2m
})) + e(µ({t; |fn(t)− f(t)| < 1

2m
}

∩ {t; |fn(t)− g(t)| < 1

2m
}), µ({t; |f(t)− g(t)| < 1

m
}))]

= lim
n→∞

e(µ(T ), µ({t; |fn(t)− f(t)| < 1

2m
} ∩ {t; |fn(t)− g(t)| < 1

2m
}))

= lim
n→∞

h(µ(T ), µ({t; |fn(t)− f(t)| < 1

2m
} ∩ {t; |fn(t)− g(t)| < 1

2m
})) = 0.
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Taking into account that µ is continuous from above and

{t; |f(t)− g(t)| = 0} =

∞∩
m=1

{t; |f(t)− g(t)| < 1

m
},

we finally get that h(µ(T ), µ({t; |f(t)− g(t)| = 0}) = 0, i.e., f = g p.a.e. �

3. Algebraic operations with (pseudo-) convergent sequences
of measurable functions

In this section, we present several results concerning the inheriting of
convergence and pseudo-convergence with respect to monotone set multi-
functions, under addition and multiplication. Several asymptotic structural
properties of the monotone set multifunction are in this way characterized.

Theorem 3.1. Consider arbitrary {{fn}, {gn}, f, g} ⊂ M.

µ is double asymptotic null-additive if and only if fn
µ−→ f and gn

µ−→ g
imply fn + gn

µ−→ f + g.

Proof. Necessity. Since fn
µ−→ f and gn

µ−→ g, then for every ε >
0, limn→∞ µ({t; |fn(t)− f(t)| ≥ ε

2}) = {0} and limn→∞ µ({t; |gn(t)− g(t)| ≥
ε
2}) = {0}.

Because µ is double asymptotic null-additive and

{t; |(fn + gn)(t)− (f + g)(t)| ≥ ε} ⊂ {t; |fn(t)− f(t)| ≥ ε

2
}

∪ {t; |gn(t)− g(t)| ≥ ε

2
},

then, by Lemma 2.7, limn→∞ µ({t; |(fn + gn)(t) − (f + g)(t)| ≥ ε}) = {0},
that is, fn + gn

µ−→ f + g.
Sufficiency. Suppose that, on the contrary, there exist (An)n, (Bn)n ⊂

A, with limn→∞ µ(An) = limn→∞ µ(Bn) = {0} and limn→∞ µ(An ∪ Bn) !
{0}. For every n ∈ N, consider fn(t) = χAn(t), gn(t) = χBn(t), f(t) = 0 and
g(t) = 0. Evidently, (fn+gn)(t) = χAn∪Bn(t) and (f+g)(t) = 0. We observe
that for every ε > 0 and every n ∈ N, µ({t; |fn(t) − f(t)| ≥ ε}) ⊂ µ(An)
and µ({t; |gn(t)− g(t)| ≥ ε}) ⊂ µ(Bn).

Since limn→∞ µ(An) = {0} = limn→∞ µ(Bn), by Lemma 2.7, we get

that fn
µ−→ f and gn

µ−→ g. By the hypothesis, fn + gn
µ−→ f + g, so,

lim
n→∞

µ(An ∪Bn) = lim
n→∞

µ({t; |(fn + gn)(t)− (f + g)(t)| ≥ 1}) = {0},
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which is a contradiction. �

Theorem 3.1’. Consider arbitrary {{fn}, {gn}, f, g} ⊂ M.

If µ is (S)-continuous and pseudo-autocontinous from below, fn
p.µ−→ f

and gn
p.µ−→ g, then fn + gn

p.µ−→ f + g.

Proof. Since fn
p.µ−→ f and gn

p.µ−→ g, then for every ε > 0, we have
limn→∞ e(µ(T ), µ({t; |fn(t) − f(t)| < ε

2})) = 0 and limn→∞ e(µ(T ), µ({t;
|gn(t)−g(t)| < ε

2})) = 0. For every n ∈ N, we denote An = {t; |fn(t)−f(t)| <
ε
2}, Bn = {t; |gn(t)− g(t)| < ε

2} and Cn = {t; |(fn+gn)(t)− (f + g)(t)| < ε}.
By Lemma 2.11, we have limn→∞ e(µ(T ), µ(An ∩Bn)) = 0.

Since for every n ∈ N, An ∩Bn ⊂ Cn, then limn→∞ e(µ(T ), µ(Cn)) = 0,

that is, fn + gn
µ−→ f + g. �

Applying the notions from Definition 2.6 II)-ii), one can easily verify
the following results:

Proposition 3.2. i) Consider arbitrary c ∈ R∗ and {{fn}, f} ⊂ M. If

fn
µ−→ f (fn

p.µ−→ f , respectively), then cfn
µ−→ cf (cfn

p.µ−→ cf , respectively).

ii) If {{fn}, f} ⊂ M and fn
p.µ−→ f, then |fn|

p.µ−→ |f |.

Lemma 3.3. Consider arbitrary {{fn}, f, h} ⊂ M. If fn
µ−→ f ,

inft∈T |h(t)| > 0 and supt∈T |h(t)| < ∞, then fnh
µ−→ fh.

Proof. Since fn
µ−→ f , then for every ε > 0, limn→∞ µ({t; |fn(t) −

f(t)| ≥ ε
sup
t∈T

|h(t)|}) = {0}. Because for every ε > 0,

{t; |fn(t)h(t)− f(t)h(t)| ≥ ε} = {t; |fn(t)− f(t)| · |h(t)| ≥ ε} ⊆

≤ {t; |fn(t)− f(t)| · sup
t∈T

|h(t)| ≥ ε} =

{
t; |fn(t)− f(t)| ≥ ε

sup
t∈T

|h(t)|

}
,

the conclusion follows according to Lemma 2.7. �

Lemma 3.3’. Consider arbitrary {{fn}, f, h} ⊂ M. If supt∈T |h(t)| <
∞ and fn

p.µ−→ f , then fnh
p.µ−→ fh.

Proof. If h ≡ 0, the statement is evident. Suppose now that
supt∈T |h(t)| > 0. Since fn

p.µ−→ f , then for every ε > 0, limn→∞ e(µ(T ), µ({t;
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|fn(t)− f(t)| < ε
sup
t∈T

|h(t)|})) = 0. Because

lim
n→∞

e(µ(T ), µ({t; |fn(t)h(t)− f(t)h(t)| < ε}))

≤ lim
n→∞

e(µ(T ), µ({t; |fn(t)− f(t)| < ε

sup
t∈T

|h(t)|
})) = 0,

the conclusion follows immediately. �

Lemma 3.4. Consider arbitrary {{fn}, f} ⊂ M and let µ be double

asymptotic null-additive. If fn
µ−→ f , inft∈T |f(t)| > 0 and supt∈T |f(t)| <

∞, then f2
n

µ−→ f2.

Proof. Obviously, since fn
µ−→ f , then fn−f

µ−→ 0, so (fn−f)2
µ−→ 0.

On the other hand, by Lemma 3.3, fnf
µ−→ f2, so, by Proposition 3.2 i),

2fnf
µ−→ 2f2. Applying now Theorem 3.1, we get that f2

n
µ−→ f2. �

Lemma 3.4’. Suppose µ is (S)-continuous and pseudo-autocontinuous
from below. Consider arbitrary {{fn}, f} ⊂ M so that supt∈T |f(t)| < ∞
and fn

p.µ−→ f . Then f2
n

p.µ−→ f2.

Proof. Because fn
p.µ−→ f , then fn−f

p.µ−→ 0, whence (fn−f)2
p.µ−→ 0. By

Lemma 3.3’, fnf
p.µ−→ f2, so, according to Proposition 3.2 i), 2fnf

p.µ−→ 2f2.
By Theorem 3.1’, the conclusion follows. �

Theorem 3.5. Consider arbitrary {{fn}, {gn}, f, g} ⊂ M. Suppose that
inft∈T |f(t)| > 0, inft∈T |g(t)| > 0, inft∈T |f(t)+ g(t)| > 0, supt∈T |f(t)| < ∞
and supt∈T |g(t)| < ∞.

Then µ is double asymptotic null-additive if and only if fn
µ−→ f and

gn
µ−→ g imply fngn

µ−→ fg.

Proof. Necessity. Suppose µ is double asymptotic null-additive, fn
µ−→ f and gn

µ−→ g. By Lemma 3.4, we have f2
n

µ−→ f2, g2n
µ−→ g2 and

(fn + gn)
2 µ−→ (f + g)2, which imply by Theorem 3.1 that fngn

µ−→ fg.
Sufficiency. Suppose that, on the contrary, µ is not double asymptotic

null-additive. Consequently, there exist (An)n, (Bn)n ⊂ A and ε0 > 0 so
that limn→∞ µ(An) = limn→∞ µ(Bn) = {0} and limn→∞ µ(An∪Bn) ! {0}.

For every t ∈ T and n ∈ N, consider fn(t) =

{
1, t /∈ An

1
2 , t ∈ An

and gn(t) =
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2, t /∈ Bn

1, t ∈ Bn

. We observe that {{fn}, {gn}} ⊂ M, fn
µ−→ f ≡ 1, gn

µ−→

g ≡ 2, fn(t)gn(t) =


2, t /∈ An ∪Bn

1, t ∈ (An ∪Bn) \ (An ∩Bn)
1
2 , t ∈ An ∩Bn

, f(t)g(t) = 2.

Since t ∈ An ∪Bn if and only if |fn(t)gn(t)− f(t)g(t)| ≥ 1
2 , we have

µ(An ∪Bn) = µ({t ∈ T ; |fn(t)gn(t)− f(t)g(t)| ≥ 1

2
}).

By the hypothesis, fngn
µ−→ fg, so limn→∞ µ({t ∈ T ; |fn(t)gn(t)− f(t)g(t)|

≥ 1
2}) = {0}, which implies limn→∞ µ(An ∪ Bn) = {0} and this is a

contradiction. �

Theorem 3.5’. Suppose µ is (S)-continuous and pseudo-autocontinuous
from below. Let {{fn}, {gn}, f, g} ⊂ M so that supt∈T |f(t)| < ∞ and

supt∈T |g(t)| < ∞. If fn
p.µ−→ f and gn

p.µ−→ g, then fngn
p.µ−→ fg.

Proof. The statement is straightforward applying Lemma 3.4’ and
Theorem 3.1’. �

4. Fundamental (pseudo-) convergence

In this section, several results concerning fundamental convergence and
pseudo-convergence are established.

Theorem 4.1. µ is double asymptotic null-additive if and only if for
every fixed A ∈ A, every sequence {fn} ⊂ M on A so that fn

µ−→
A

f ∈ M
is µ−fundamental.

Proof. Without any loss of generality, we may assume that A = T.

Necessity. By the hypothesis, we have limn→∞ µ({t ∈ T ; |fn(t)−f(t)| ≥
ε
2}) = {0}.

For every ε > 0, since µ is double asymptotic null-additive and

{t ∈ T ; |fn(t)− fm(t)| ≥ ε} ⊂ {t ∈ T ; |fn(t)− f(t)| ≥ ε

2
}

∪ {t ∈ T ; |fm(t)− f(t)| ≥ ε

2
},
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by Lemma 2.7 we get that limm,n→∞ µ({t ∈ T ; |fm(t)− fn(t)| ≥ ε
2}) = {0},

i.e., {fn} is µ−fundamental.
Sufficiency. Suppose by the contrary that there exist (An)n, (Bn)n ⊂ A,

with limn→∞ µ(An) = limn→∞ µ(Bn) = {0} and limn→∞ µ(An∪Bn) ! {0}.
We consider the sequence {fn}, defined by

fn(t) =

{
χAk

(t), if n = 2k

χBk\Ak
(t), if n = 2k + 1

.

Let also be f(t) = 0. We observe that {fn} ⊂ M, f ∈ M and for every
ε > 0 and n ∈ N,

{t ∈ T ; |fn(t)− f(t)| ≥ ε} ⊆ An or {t ∈ T ; |fn(t)− f(t)| ≥ ε} ⊆ Bn.

Consequently, by Lemma 2.7, limn→∞ µ({t ∈ T ; |fn(t)− f(t)| ≥ ε}) = {0},
i.e., fn

µ−→
A

f . By the hypothesis, {fn} is then µ-fundamental, so, for every

ε > 0,
lim
n→∞

µ({t ∈ T ; |f2n(t)− f2n+1(t)| ≥ ε}) = {0}.

On the other hand, for every ε ∈ (0, 1), we have An∪Bn = {t ∈ T ; |f2n(t)−
f2n+1(t)| ≥ ε}.

Consequently, limn→∞ µ(An ∪Bn) = {0} and this is a contradiction. �
Theorem 4.2. If µ is pseudo-autocontinuous from above and A ∈ A

is fixed, then every sequence {fn} ⊂ M on A so that fn
p.µ−→
A

f ∈ M is

p.µ−fundamental.

Proof. By the hypothesis, limn→∞ e(µ(T ), µ({t ∈ T ; |fn(t) − f(t)| <
ε
2})) = 0 and limm→∞ e(µ(T ), µ({t ∈ T ; |fm(t) − f(t)| < ε

2})) = 0. For
every m,n ∈ N, let us denote Bn = {t ∈ T ; |fn(t)− f(t)| < ε

2} and Cm,n =
{t ∈ T ; |fn(t) − fm(t)| < ε}. We observe that Bn ∩ Bm ⊂ Cm,n, whence
(T\Bn) ∪ (T\Bm) ∪ Cm,n=T. Because µ is pseudo-autocontinuous from
above, then for everym∈N, limn→∞ e(µ((T\Bn)∪(T\Bm)∪Cm,n), µ((T\Bm)
∪Cm,n)) = 0 and for every n ∈ N, limm→∞ e(µ((T\Bm) ∪ Cm,n), µ(Cm,n))
= 0.

Consequently, limm,n→∞ e(µ(T ), µ(Cm,n)) = 0, which says that (fn) is
p.µ-fundamental. �

Theorem 4.3. If µ is uniformly pseudo-autocontinuous from below and
{fn} ⊂ M is p.µ-fundamental, there exists a subsequence {fnk

}k of {fn}n
so that {fnk

}k is pseudo almost uniformly convergent.



100 ALINA GAVRILUŢ 16

Proof. Since {fn}n is p.µ-fundamental, then limm,n→∞ e(µ(T ), µ({t ∈
T ; |fn(t) − fm(t)| < 1

2})) = 0, so, there exists n1 ∈ N such that, for every
n ≥ n1,

e(µ(T ), µ({t ∈ T ; |fn(t)− fn1(t)| <
1

2
})) < 1

2
.

Because µ is uniformly pseudo-autocontinuous from below, there exists n2 >
n1 so that for every n ≥ n2,

e(µ(T ), µ({t ∈ T ; |fn(t)− fn2(t)| <
1

22
})) < 1

22

and

e(µ({t ∈ T ; |fn(t)− fn2(t)| <
1

22
}), µ({t ∈ T ; |fn2(t)− fn1(t)| <

1

2
}

∩ {t ∈ T ; |fn(t)− fn2(t)| <
1

22
})) < 1

2
,

whence

e(µ(T ), µ({t ∈ T ; |fn2(t)− fn1(t)| <
1

2
} ∩ {t ∈ T ; |fn(t)− fn2(t)| <

1

22
}))

<
1

2
+

1

22
.

Analogously, there exists n3 > n2 so that for every n ≥ n3,

e(µ(T ), µ({t ∈ T ; |fn(t)− fn3(t)| <
1

23
})) < 1

23
,

e(µ(T ), µ({t ∈ T ; |fn3(t)− fn2(t)| <
1

23
}

∩ {t ∈ T ; |fn(t)− fn3(t)| <
1

22
})) < 1

22
+

1

23

and

e(µ(T ), µ({t ∈ T ; |fn3(t)− fn2(t)| <
1

22
}

∩ {t ∈ T ; |fn2(t)− fn1(t)| <
1

2
}

∩ {t ∈ T ; |fn(t)− fn3(t)| <
1

23
})) < 1

2
+

1

22
+

1

23
.
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Inductively, there exists a subsequence (nk)k so that for every l ∈ N∗,

e(µ(T ), µ({t ∈ T ;

∞∩
k=l

|fnk+1
(t)− fnk

(t)| < 1

2k
})) < 1

2l
+

1

2l+1
+ . . .

If for every l∈N∗, we denote Cl={t ∈ T ;
∩∞

k=l |fnk+1
(t) − fnk

(t)| < 1
2k
},

then the sequence (C̃l)l = (cCl)l is decreasing and e(µ(T ), µ(T\C̃l)) <∑∞
n=0

1
2l+n = 1

2l−1 , which implies that liml→∞ e(µ(T ), µ(T\C̃l)) = 0.

In consequence, {fnk
}k is pseudo-almost uniformly convergent. �

Corollary 4.4. Suppose µ is (S)-continuous and uniformly pseudo-
autocontinuous from below. Then {fn} ⊂ M is p.µ-fundamental if and

only if there exists f ∈ M so that fn
p.µ−→ f .

Proof. Necessity. If {fn} ⊂ M is p.µ-fundamental, by Theorem 4.3,
there exists a subsequence {fnk

}k of {fn}n so that {fnk
}k is pseudo-almost

uniformly convergent. Because µ is continuous from below, one can easily
observe that it is also pseudo-almost everywhere convergent, i.e., there exists
A ∈ A such that µ(T ) = µ(T\A) and {fnk

}k is convergent on T\A.

We consider f(t) =

{
lim
k
fnk

(t), if t ∈ T\A

0, if t ∈ A
. Then f ∈ M. Evidently,

for every ε > 0,

{t ∈ T ; |fn(t)− f(t)| < ε}

⊃ {t ∈ T ; |fn(t)− fnk
(t)| < ε

2
} ∩ {t ∈ T ; |fnk

(t)− f(t)| < ε

2
}.

Then one can easily observe that limn→∞ e(µ(T ), µ({t ∈ T ; |fn(t)− f(t)| <
ε})) = 0, so fn

p.µ−→ f .

Sufficiency. The statement results from Theorem 4.2 and Remark 2.4
I)-iii). �

The following result is straightforward applying the definitions.

Theorem 4.5. Suppose A ∈ A and {fn} ⊂ F . If {fn} converges
a.u. (p.a.u., respectively) on A, then {fn} is fundamental a.u. (p.a.u.,
respectively) on A.



102 ALINA GAVRILUŢ 18

5. Concluding remarks

In this paper, the studies [22, 23] concerning convergences and pseudo-
convergences of sequences of measurable functions on monotone set mul-
tifunction spaces are furthered in order to obtain results concerning oper-
ations and uniqueness of the limit of such convergences. As application,
important asymptotic structural properties of the monotone set multifunc-
tion are characterized.

Acknowledgements. The author is grateful to Prof. Dr. Anca Pre-
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