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Abstract. The aim of the paper is to give a generalization of the notion of iterated
function system in a topological setting, namely to define a topological iterated function
system. We will also give some examples of compact metric spaces which are not attractors
of iterated function systems but are attractors of topological iterated function systems. In
some examples this spaces are homeomorphic with attractors of classical iterated function
systems and in others are not.
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1. Introduction

Iterated function systems (IFS) are one of the most common and general
ways to generate fractals. IFS were conceived by Hutchinson ([7]) and
were popularized by Barnsley ([2]). There is a current effort to extend
Hutchinson’s classical framework for fractals to more general spaces and
infinite IFSs and to study them. For example, in [9], it was provided such
a general framework where attractors are non-empty closed and bounded
subsets of a complete metric spaces and where the IFSs may be infinite, in
contrast with the classical theory ([2, 4, 5, 15]), where only attractors that
are compact metric spaces and IFSs that are finite were considered. Some
extensions of IFSs come from replacing contractions from the definition of an
IFS with more general contractive conditions (see [14], for example). Other
extensions of IFSs can be found in [1, 4, 10, 12, 13]. There are examples of
compact metric spaces which are homeomorphic with an attractor of an IFS
but are not attractors of IFSs. We define the notion of topological iterated
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function systems (TIFSs) to see this spaces as attractors of a generalized
kind of IFSs and we will give an example of such a space. We will also
give an example of a metrizable compact space which is the attractor of a
TIFS but is not the attractor of an IFS with any metric which induces the
initial topology of the space. The notion of the shift space of an IFS has
an important place in the definition of a TIFS. A generalization of the shift
space for an infinite IFS can be found in [11].

2. Preliminaries

For a set X, P(X) denotes the subsets of X. For a subset A of P(X), by
A∗ we mean A− {∅}. For a topological space (X, τ), K(X) denotes the set
of compact subsets of X.

Definition 2.1. Let (X, d) be a metric space. A function f : X → X is
a Lipschitz function if Lip(f) < +∞ and a contraction if Lip(f) < 1, where

Lip(f) = supx,y∈X;x ̸=y
d(f(x),f(y))

d(x,y) .

Definition 2.2. Let (X, d) be a metric space. The generalized Hausdorff-
Pompeiu semidistance is an application h : P∗(X)×P∗(X) → [0,+∞] defi-
ned by h(A,B) = max(d(A,B), d(B,A)), where d(A,B) = supx∈A d(x,B) =
supx∈A(infy∈B d(x, y)).

It is well-known that if (X, d) is a complete metric space, then (K∗(X), h)
is also a complete metric space (see for example [2], Ch. 2, Sec. 7, Theorem
1, [4, 5, 6] or [15] Ch. 1, Sec. 2, Theorem 1.3).

Concerning the Hausdorff-Pompeiu semidistance we have the following
important properties:

Proposition 2.1 ([2], Ch. 3, Sec. 7, [5, 6] Sec. 3 proof of Lemma 1,
[15], Ch. 1, Sec. 1, Theorem 1.1). Let (X, d) be a metric space. Then:

1) If H and K are two nonempty subsets of X, then h(H,K) = h(H,K).

2) If (Hi)i∈I and (Ki)i∈I are two families of nonempty subsets of X,
then

h(
∪
i∈I

Hi,
∪
i∈I

Ki) = h(
∪
i∈I

Hi,
∪
i∈I

Ki) ≤ sup
i∈I

h(Hi,Ki).

3) If H and K are two nonempty subsets of X and f : X → X is a
Lipschitz function, then h(f(K), f(H)) ≤ Lip(f) · h(K,H).
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Definition 2.3. An iterated function system on a metric space (X, d)
consists in a finite family of contractions (fk)k=1,n on X and it is denoted
by S = ((X, d), (fk)k=1,n).

For an IFS S = ((X, d), (fk)k=1,n), one can consider the function FS :
K∗(X) → K∗(X) defined by FS(B) =

∪n
k=1 fk(B).

The function FS is a contraction with Lip(FS) ≤ maxk=1,n Lip(fk) (see
[2, 4, 5, 15]).

Using Banach contraction theorem one can prove that there exists, for
an IFS S = ((X, d), (fk)k=1,n) defined on a complete metric space, a unique
compact nonvoid set A(S) such that FS(A(S)) = A(S). More precisely we
have the following well-known result (see [2, 4, 5, 15]).

Theorem 2.1 ([2], Ch. 3, Sec. 7, Theorem 1, [4, 5, 15] Ch. 3,
Sec. 1, Theorem 3.1). Let (X, d) be a complete metric space and S =
((X, d), (fk)k=1,n) be an IFS with c = maxk=1,n Lip(fk) < 1. Then there ex-
ists a unique A(S) ∈ K∗(X) such that FS(A(S)) = A(S). Moreover, for any
H0 ∈ K∗(X) the sequence (Hm)m≥0 defined recursively by Hm+1 = FS(Hm)
is convergent to A(S). Concerning the speed of the convergence we have the
following estimation h(Hm, A(S)) ≤ cm

1−ch(H0,H1), for every m ∈ N∗.

Definition 2.3. The set A(S) from the above theorem is called the
attractor of the IFS S = ((X, d), (fk)k=1,n).

More generally we introduce the notion of a topological iterated function
system.

Definition 2.4. A topologically iterated function system (TIFS) on a
topological Hausdorff space (X, τ) consists in a finite family of continuous
functions (fk)k=1,n, where fk : X → X, such that:

1) For every K ∈ K∗(X), there exists HK ∈ K∗(X) such that:

i) K ⊂ HK ,

ii)
∪n

k=1 fk(HK) ⊂ HK .

2) For every sequence (αl)l≥1 with αl ∈ {1, 2, . . . , n} and every K ∈
K∗(X) such that

∪n
k=1 fk(K) ⊂ K, the set

∩
l≥1 fα1 ◦fα2 ◦ . . .◦fαl

(K)
has at most one point.
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A TIFS is denoted by S = ((X, τ), (fk)k=1,n).

As in the case of an IFS, for a TIFS S = ((X, τ), (fk)k=1,n), one can con-
sider the function FS : K∗(X) → K∗(X) defined by FS(B) =

∪n
k=1 fk(B).

Remark 2.1. Let S = ((X, τ), (fk)k=1,n) be a TIFS and K ∈ K∗(X)
be such that FS(K) ⊂ K. We remark that the sequence of sets (fα1 ◦ fα2 ◦
. . .◦fαl

(K))l is decreasing since fk(K) ⊂ K, for every k ∈ {1, 2, . . . , n} and
the set

∩
l≥1 fα1 ◦ fα2 ◦ . . . ◦ fαl

(K) has exactly one point as we will see in
the proof of Theorem 3.1.

We now present some notations used in the definition of the shift space
of an (T)IFS: R denotes the real numbers, N denotes the natural numbers,
N∗= N − {0}, N∗

n = {1, 2, . . . , n}. For two non-empty sets A and B, BA

denotes the set of functions from A to B.

By Λ = Λ(B) we will understand the set BN∗
and by Λn = Λn(B)

we will understand the set BN∗
n . The elements of Λ = Λ(B) = BN∗

will
be written as infinite words ω = ω1ω2 . . . ωmωm+1 . . . , where ωm ∈ B
and the elements of Λn = Λn(B) = BN∗

n will be written as words ω =
ω1ω2 . . . ωn. By Λ∗ = Λ∗(B) we will understand the set of all finite words
Λ∗ = Λ∗(B) =

∪
n≥1 Λn(B). By |ω| we will understand the length of the

word ω. If ω = ω1ω2 . . . ωmωm+1 . . . or if ω = ω1ω2 . . . ωn and n ≥ m
then [ω]m denotes the word ω1ω2 . . . ωm. For two words α ∈ Λn(B) and
β ∈ Λm(B) ∪ Λ(B) by αβ we will understand the concatenation of the
words α and β, namely αβ = α1α2 . . . αnβ1β2 . . . βm and respectively αβ =
α1α2 . . . αnβ1β2 . . . βmβm+1 . . .. For two words α ∈ Λn(B) and β ∈ Λm(B)
or β ∈ Λ(B) we say that α ≺ β if α = β or there exists γ ∈ Λ∗(B) ∪ Λ(B)
such that β = αγ. For α ∈ Λ∗(B) α̇ = αα . . . α . . ..

On Λ = Λ(N∗
n) = (N∗

n)
N∗

one can consider the metric ds(α, β) =∑∞
k=1(1− δβk

αk)/3
k, where δyx =

{
1, if x = y

0, if x ̸= y
.

Definition 2.5. The pair (Λ(N∗
n), ds) is a compact metric space and it

is called the shift space with n letters.

Let Fk : Λ(N∗
n) → Λ(N∗

n) be defined by Fk(ω) = kω for k = 1, n. The
functions Fk are continuous and they are called the right shift functions.
Let us note that

ds(Fk(α), Fk(β)) =
ds(α, β)

3
.
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Remark 2.2. Since Λ =
∪n

k=1 Fk(Λ), Λ is the attractor of the IFS
S = ((Λ, ds), (Fk)k=1,n).

Notation 2.1. Let (X, τ) be a topological space, S = ((X, τ), (fk)k=1,n)
be a TIFS on X and A be a set in X. For ω = ω1ω2 . . . ωm ∈ Λm(N∗

n) one

can consider fω
def
= fω1 ◦ fω2 ◦ . . . ◦ fωm and Aω

def
= fω(A). In particular, if

(X, τ) is (Λ, ds), we have Fω = Fω1 ◦ Fω2 ◦ . . . ◦ Fωm and Λω = Fω(Λ).

Notation 2.2. Let X be a set, n ∈ N∗ and f : X → X be a function.
By f [n] we will understand the function f ◦ f ◦ . . . ◦ f , where f is taken for
n-times.

3. The main result

The main result of the paper is the following Theorem 3.1. It contains
the generalization for TIFS of the results concerning the existence of the
attractor of an IFS and of the relation between the shift space associated
with an IFS and the attractor of the IFS.

Theorem 3.1. Let (X, τ) be a topological space and S=((X, τ), (fk)k=1,n)
be a TIFS on X. Then:

1) There exists a unique nonvoid compact set A = A(S) such that
FS(A(S)) = A(S).

2) For every ω ∈ Λ = Λ(N∗
n) and every K ∈ K∗(X) such that FS(K) ⊂

K, there exists a unique aω(K) such that
∩

n≥1 f[ω]n(K) = {aω(K)}.
Moreover, if H ∈ K∗(X) has also the property that FS(H) ⊂ H,
then aω(K) = aω(H). So we can define aω = aω(K), where K is an
arbitrary set from K∗(X) having the property that FS(K) ⊂ K.

3) A = A(S) =
∪

ω∈Λ{aω} and Aα = A(S)α =
∪

ω∈Λ{aαω}, for every
α ∈ Λ∗.

4) For every K0 ∈ K∗(X), let us consider the sequence (Km)m de-
fined recursively by Km+1 = FS(Km). Then for every open sets
(Di)i=1,l such that A(S) ⊂

∪l
i=1Di and A(S) ∩ Di ̸= ∅, for every

i ∈ {1, 2, . . . , l}, there exists a m0 such that, for every m ≥ m0, we
have Km ⊂

∪l
i=1Di and Km ∩Di ̸= ∅, for every i ∈ {1, 2, . . . , l}.

5) π◦Fk = fk◦π for k ∈ {1, 2, . . . , n}, where π is the function π : Λ → A
defined by π(ω) = aω.
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6) The function π : Λ = Λ(N∗
n) → A defined by π(ω) = aω is a continuous

and surjective function. We also have π(Λ) = A(S) and π(Λω) =
A(S)ω, for every ω ∈ Λ∗.

7) The function fω, for ω ∈ Λ∗ and m ∈ N∗, has a unique fixed point
denoted by eω and the set {eω : ω ∈ Λ∗} is dense in A. In fact
eω = aωω...ω....

8) For every x ∈ X and every ω ∈ Λ, limm→∞ f[ω]m(x) = aω.

Definition 3.1. The set A(S), defined in Theorem 3.1, is called the
attractor of the TIFS S = ((X, τ), (fk)k=1,n).

The metric space (Λ = Λ(N∗
n), ds) is called the shift space of the TIFS

S=((X, τ), (fk)k=1,n). The function π : Λ=Λ(N∗
n) → A is called the cano-

nical projection between the shift space of the TIFS S = ((X, τ), (fk)k=1,n)
and the attractor of the TIFS S.

Remark 3.1. The set A(S) from the above Theorem is a topological
self-similar set (see [8]).

Proof of Theorem 3.1. We start with the proof of point 2). Let
ω ∈ Λ and H,K ∈ K∗(X) be such that FS(H) ⊂ H and FS(K) ⊂ K. We
remark that the sequence of sets (f[ω]n(K))n is decreasing since fk(K) ⊂ K,
for every k ∈ {1, 2, . . . , n}. The fact that

∩
n≥1 f[ω]n(K) is nonvoid results

from the fact that f[ω]n(K) are compact sets since K is compact and f[ω]n
are continuous. The fact that

∩
n≥1 f[ω]n(K) has at most one point results

from the definition of a TIFS. If H ⊂ K then f[ω]n(H) ⊂ f[ω]n(K) and
{aω(H)} =

∩
n≥1 f[ω]n(H) ⊂

∩
n≥1 f[ω]n(K) = {aω(K)}. Thus aω(H) =

aω(K). In general, for arbitrary H,K ∈ K∗(X) such that FS(H) ⊂ H and
FS(K) ⊂ K we have aω(H) = aω(H ∪K) = aω(K). The proof of point 2)
is finished.

We also remark that if ω ∈ Λ and α ∈ Λ∗, then

(1) fα(aω) = aαω.

Indeed, for a set K ∈ K∗(X) such that FS(K) ⊂ K, we have fα(aω) ∈
fα(

∩
n≥1 f[ω]n(K)) ⊂

∩
n≥1 fα ◦ f[ω]n(K) ⊂

∩
n≥1 f[αω]n(K) = {aαω}. Let

Ã = {aω : ω ∈ Λ}. We want to prove that Ã = A(S). For this we remark
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first that FS(Ã) = Ã. Indeed, using (1), we have

FS(Ã) =

n∪
i=1

fi(Ã) =

n∪
i=1

fi({aω : ω ∈ Λ}) =
n∪

i=1

{fi(aω) : ω ∈ Λ}

= {aiω : ω ∈ Λ, i = 1, n} = {aω : ω ∈ Λ} = Ã.

We now prove that Ã is a compact set. For a set H ∈ K∗(X) such that
FS(H) ⊂ H, we have Hm+1 ⊂ Hm, where (Hm)m is the sequence defined
by Hm+1 = FS(Hm) and H0 = H. Let us consider AH =

∩
m≥1Hm. We

remark that AH is a nonvoid compact set, being a intersection of nonvoid
compact sets. We also remark that AH ⊂ AK if H,K ∈ K∗(X) are such
that FS(H) ⊂ H, FS(K) ⊂ K and H ⊂ K.

We want to prove that Ã = AH , for every H ∈ K∗(X) such that
FS(H) ⊂ H. This will show that Ã is a nonvoid compact set.

We start with the inclusion Ã ⊂ AH . Indeed, for ω ∈ Λ we have

aω ∈
∩

n≥1 f[ω]n(H) ⊂
∩

n≥1 F
[n]
S (H) = AH .

Let us prove the inclusion AH ⊂ Ã. Let x0 be an arbitrary element

of AH =
∩

m≥1Hm. Then x0 ∈ Hm = F
[m]
S (H) =

∪
ω∈Λm

fω(H), for all

m ≥ 1. Let T̃m = {ω ∈ Λm : x0 ∈ fω(H)}. The set T̃m is nonvoid and so
the set T =

∪
m≥1 T̃m is infinite. Let Tω = {α ∈ Λ : α ∈ T and ω ≺ α}

for ω ∈ Λ∗. We remark first that if Tω is nonvoid then ω ∈ Tω. Indeed,
we have fα(H) ⊂ fω(H) if ω ≺ α since fα(H) = fωβ(H) = fω(fβ(H)) ⊂
fω(F

[|β|]
S (H)) ⊂ fω(H), where β is defined by α = ωβ. As x0 ∈ fα(H) we

conclude x0 ∈ fω(H).
Since T =

∪
ω∈Λ1

Tω, there exists α1 ∈ Λ1 such that Tα1 is infinite. Since
Tα1\{α1} =

∪
ω∈Λ1

Tα1ω, there exists α2 ∈ Λ1 such that Tα1α2 is infinite.
By induction one can find α1, α2, . . . , αm, . . . such that Tα1α2...αm is infinite,
for every m ∈ N∗. Let α = α1α2 . . . αm . . .. From the above considerations
α1α2 . . . αm ∈ Tα1α2...αm and so x0 ∈ Hα1α2...αm , for all m ≥ 1. Therefore
x0 ∈

∩
m≥1Hα1α2...αm = {aα}. Thus x0 = aα ∈ Ã.

This finishes the proof of the fact that Ã = AH , for every H ∈ K∗(X)
such that FS(H) ⊂ H.

We remark that there exists a set H ∈ K∗(X) such that FS(H) ⊂ H
(this results from point 1) ii) of the Definition 2.5 and from the fact that a
finite set is compact). Therefore Ã = AH is a nonvoid compact set.

To finish the proof of the first point it is enough to remark that if
H ∈ K∗(X) is such that FS(H) = H, then H = AH = Ã.
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Therefore there exists a unique nonvoid compact set A(S) such that
FS(A(S)) = A(S) and A(S) = Ã. With these we have also proved the first
part of the point 3). For the second we have Aα = fα(A(S)) = fα({aω :
ω ∈ Λ}) = {fα(aω) : ω ∈ Λ} =

∪
ω∈Λ{aαω}, for every α ∈ Λ∗.

4) Let K ∈ K∗(X) and HK ∈ K∗(X) be such that K ⊂ HK and
FS(HK) ⊂ HK . Let (Km)m and (Hm)m be defined recursively by K0 = K,
H0 = HK , Km+1 = FS(Km) and Hm+1 = FS(Hm). It is obvious that
Km ⊂ Hm.

Let D be an open set in X such that A(S) ⊂ D. Then A(S) = AHK
=∩

m≥1Hm ⊂ D. Since Hm are compact sets, Hm+1 ⊂ Hm, for every m and
D is open it follows that there exists m0 such that Hm0 ⊂ D. Then, for
m ≥ m0, we have Km ⊂ Hm ⊂ Hm0 ⊂ D.

Let (Di)i=1,l be open sets such that A(S) ⊂
∪l

i=1Di and A(S)∩Di ̸= ∅,
for every i ∈ {1, .., l}. Taking D =

∪l
i=1Di, from the above considerations,

there exists m0 such that Hm ⊂ D, for all m ≥ m0.

On the other side, taking into account 3), there are aωi ∈ Di, for every
i ∈ {1, .., l}. Since {aωi} =

∩
n≥1 f[ωi]n(HK) ⊂ Di, f[ωi]n(HK) are compact

sets and Di is open, it follows that, for every i ∈ {1, .., l}, there exists mi

such that f[ωi]mi
(HK) ⊂ Di. Thus f[ωi]m(K) ⊂ f[ωi]m(HK) ⊂ f[ωi]mi

(HK) ⊂
Di, for every m ≥ mi and every i ∈ {1, .., l}. Let m0 = maxli=1 mi. Then,

for m ≥ m0, we have ∅ ̸= f[ωi]m(K) ⊂ Di ∩ F [m]
S (K) = Di ∩Km, for every

i ∈ {1, .., l}.
Point 5), π ◦ Fk = fk ◦ π for k ∈ {1, .., n}, is a particular case of (1).

6) The surjectivity of the function π : Λ → A results from point 3). We
also have π(Λω) = A(S)ω, for every ω ∈ Λ∗, from point 5) and point 3).

We now prove the continuity of π. Let ω ∈ Λ, aω = π(ω) and D be an
open set such that aω ∈ D. With a similar argument as above there exists
a m such that A(S)[ω]m ⊂ D. Then B(ω, 1

3m ) = Λ[ω]m ⊂ π−1(A(S)[ω]m) ⊂
π−1(D).

7) Let us consider ω ∈ Λ∗ and ω̇ = ωω . . . ω . . .. Let eω = aω̇ = π(ω̇).
Then fω(eω) = fω(π(ω̇)) = π(Fω(ω̇)) = π(ω̇) = eω and so eω is a fixed
point for fω. Let e be another fixed point for fω. We want to prove that
e = eω. The set {e} is compact and so there exists He ∈ K∗(X) such that

{e} ⊂ He and FS(He) ⊂ He. Then e = f
[m]
ω (e) ∈ f

[m]
ω (He) = f[ω̇]m|ω|(He)

and so e ∈
∩

m≥1 f[ω̇]m|ω|(He) =
∩

m≥1 f[ω̇]m(He) = {eω}. Therefore e = eω.

Now we will prove that the set {eω : ω ∈ Λ∗} is dense in A. To this end
let D be an open set in X such that A(S)∩D ̸= ∅. Taking into account 3),
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there exists ω ∈ Λ such that aω ∈ D. Then with a similar argument as above
there exists a m such that A(S)[ω]m ⊂ D. Then e[ω]m ∈ A(S)[ω]m ⊂ D.

8) The set {x} is compact. Therefore there exists H{x} ∈ K∗(X) such
that x ∈ H{x} and FS(H{x}) ⊂ H{x}. Let ω ∈ Λ. We remark that f[ω]m(x) ∈
f[ω]m(H{x}). Since for every open neighborhood D of aω, there exists a m0

such that, for every m ≥ m0 f[ω]m(H{x}) ⊂ D, it follows that f[ω]m(x) ∈ D,
for every m ≥ m0. It results that limm→∞ f[ω]m(x) = aω. �

4. The relation between IFSs and TIFSs

In this section we discuss the relation between IFSs and TIFSs. We will
prove first that every system of functions defined on a topological space, for
which there exists an IFS and a homeomorphism between the topological
space and the space where the IFS is defined such that the homeomorphism
moves the functions of the system of functions into the functions of the IFS
is a TIFS. After that we present an example of a compact metric space which
is homeomorphic with an attractor of the IFS (in fact it is homeomorphic
with a closed compact interval), and so is the attractor of a TIFS, but is
not an attractor of an IFS (Example 4.1 and Remark 4.2). We also give an
example of a compact metrizable space which is the attractor of a TIFS but
is not the attractor of an IFS, for every distance on the compact space whose
associated topology is the topology of the compact space (Example 4.4).

Proposition 4.1. Let (X, d) be a complete metric space and S =
((X, d), (fk)k=1,n) be an IFS. Then S = ((X, τd), (fk)k=1,n) is a TIFS.

Proof. Let A(S) be the attractor of the IFS S, K ∈ K∗(X) and (Kn)n≥0

be the sequence defined by K0 = K and Kn+1 = FS(Kn). Let HK =
A(S) ∪ (

∪
n≥0Kn). We have FS(HK) = FS(A(S)) ∪ (

∪
n≥0 FS(Kn)) =

A(S) ∪ (
∪

n≥1Kn) ⊂ HK . We also remark that HK ∈ K∗(X). Indeed,
the fact that KH is nonvoid is obvious. Since the sequence (Kn)n≥0 is
convergent to A(S) it follows that the sequence (

∪n
i≥0Ki)n≥0 is convergent

to KH . To see this we notice that

h(

n∪
i≥0

Ki,KH) = h(

n∪
i=0

Ki, A(S) ∪ (
∪
i≥0

Ki))

= h(Kn ∪ (
n∪

i=0

Ki) ∪ (
∪

i≥n+1

Kn), A(S) ∪ (
n∪

i=0

Ki) ∪ (
∪

i≥n+1

Ki))
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≤ max{h(Kn, A(S)),
n

max
i=0

h(Ki,Ki), sup
i>n

h(Kn,Ki)}

≤ sup{h(Kn, A(S)), h(K1,K1), . . . ., h(Kn,Kn), h(Kn,Kn+1), . . .}
= sup{h(Kn, A(S)), h(Kn,Kn+1), h(Kn,Kn+2), . . .}.

Since (K∗(X), h) is complete it follows that HK ∈ K∗(X). With this
we have proved point 1) from the definition of a TIFS (Definition 2.5). The
requirement of point 2) result from the fact that if H ∈ K∗(X) is such that
FS(H) ⊂ H then H[ω]m+1

⊂ H[ω]m and δ(H[ω]m) ≤ (maxni=i Lip(fi))
mδ(H),

for every ω ∈ Λ and m ∈ N∗, where δ(H) denotes the diameter of H, i.e.
δ(H) = supx,y∈H d(x, y). �

Remark 4.1. Let (X, τ), (Y, τ ′) be two topological Hausdorff spaces,
(gk)k=1,n be a family of continuous functions, gk : Y → Y , and S =
((X, τ), (fk)k=1,n) be a TIFS on X such that, there exists a homeomorphism
ϕ : X → Y with the property gk ◦ ϕ = ϕ ◦ fk that for every k ∈ {1, .., n}.
Then S ′ = ((Y, τ ′), (gk)k=1,n) is a TIFS.

Corollary 4.1. Let (X, d) be a complete metric space and S = ((X, d),
(fk)k=1,n) be an IFS. If (Y, τ) is a topological Hausdorff space and (gk)k=1,n

is a family of continuous functions on Y such that, there exists a home-
omorphism ϕ : X → Y with the property gk ◦ ϕ = ϕ ◦ fk that for every
k ∈ {1, 2, . . . , n} then S ′ = ((Y, τ), (gk)k=1,n) is a TIFS.

Notation 4.1. 1) We denote by p the function p : R2 → R defined by
p(x, y) = x.

2) For a function ϕ : [a, b] → R by
∨b

a(f) we understand the variation
of f on [a, b] that is the number

sup
∆

{
n−1∑
i=0

|f(xi+1)− f(xi)| : ∆ = (a = x0 < x1 < . . . < xn = b)}.

3) If b < a by [a, b] we mean [b, a] and by
∨b

a(f) we mean
∨a

b (f).

Example 4.1. Let us consider a continuous function λ : [0, 1] → [0, 1]
such that, λ(0) = 0,

∨1
ε(λ) < +∞, for every ε > 0 and

∨1
0(λ) = +∞. We

denote by Gλ the graph of λ and consider the metric space (Gλ, d2), where
d2 is the euclidean distance induced from R2. We claim that there does not
exist any IFS S on (Gλ, d2), such that Gλ = A(S).
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To see this let us suppose by reduction ad absurdum that there exists
an IFS S = ((Gλ, d2), (fi)i∈I) such that Gλ = A(S), where I is a finite set.

Let us note first that:

1) fi(Gλ) = Gλ|[ai,bi], where ai, bi ∈ [0, 1].

2) There exists an i ∈ I, such that (0, 0) ∈ fi(Gλ) and fi(Gλ) ̸= {(0, 0)}.

3) If there exists an i ∈ I and a ∈ (0, 1], such that fi(a, λ(a)) = (0, 0),
then fi(Gλ) = {(0, 0)}.

4) There exists an i0 ∈ I, such that (0, 0) = fi0((0, 0)) and fi0(a, λ(a)) ̸=
(0, 0), for every a ∈ (0, 1].

Indeed, we have

1) fk(Gλ) = Gλ|A, where A = p ◦ fk(Gλ) ⊂ [0, 1]. Since Gλ is (arc-
wise) connected and compact it follows that A is (arcwise) connected and
compact. Therefore A is a closed interval.

2) We consider the sets I ′ = {i ∈ I : fi(Gλ) = {(0, 0)}}, I ′′ = {i ∈
I : (0, 0) /∈ fi(Gλ)} and I ′′′ = {i ∈ I : (0, 0) ∈ fi(Gλ) and {(0, 0)} ̸=
fi(Gλ)}. Then,

∪
i∈I′ fi(Gλ) = {(0, 0)}, p(

∪
i∈I′ fi(Gλ)) = {0} and 0 /∈

p(
∪

i∈I′′ fi(Gλ)). Because 0 /∈ p(
∪

i∈I′′ fi(Gλ)) and p(
∪

i∈I′′ fi(Gλ)) is a
compact set it follows that there exists µ > 0, such that p(

∪
i∈I′′ fi(Gλ)) ⊂

[µ, 1]. Thus p(
∪

i∈I′ fi(Gλ)) ∪ p(
∪

i∈I′′ fi(Gλ)) ⊂ {0} ∪ [µ, 1]. But

[0, 1] = p(
∪
i∈I

fi(Gλ)) = p(
∪
i∈I′

fi(Gλ)) ∪ p(
∪
i∈I′′

fi(Gλ)) ∪ p(
∪
i∈I′′′

fi(Gλ))

⊂ {0} ∪ [µ, 1] ∪ p(
∪
i∈I′′′

fi(Gλ))

and so I ′′′ is nonvoid.

3) Let us suppose by reduction ad absurdum that there exist i ∈ I
and a, b ∈ (0, 1], such that fi(a, λ(a)) = (0, 0) and fi(b, λ(b)) ̸= (0, 0).

Then Gλ|[0,λ(b)] ⊂ fi(Gλ|[a,b]). It follows that +∞ =
∨λ(b)

0 (λ) ≤
∨b

a(fi ◦
λ) ≤ Lip(fi)

∨b
a(λ) < +∞, which is a contradiction. If, there exists an

i ∈ I such that there exist a ∈ (0, 1] such that fi(a, λ(a)) = (0, 0), using
the above considerations, it follows that fi(Gλ − (0, 0)) = {(0, 0)} and so
fi(Gλ) = {(0, 0)}.

4) It results from 2) and 3).
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Therefore, using 4), one can consider i0 ∈ I be such that (0, 0) =
fi0((0, 0)) and fi0(a, λ(a)) ̸= (0, 0) for every a ∈ (0, 1].

Let us consider the sequence (xn)n defined by x0 = 1 and (xn+1, λ(xn+1)) =

fi0(xn, λ(xn)) = f
[n+1]
i0

(x0, λ(x0)).
It is easy to see by induction that xn ̸= 0.
We remark first that, because (0, 0) is the fixed point of the contraction

fi0 , (xn, λ(xn)) → (0, 0) when n → 0 and so xn → 0. Then Gλ|[xn+2,xn+1]
⊂

fi0(Gλ|[xn+1,xn]
) and so

xn+1∨
xn+2

(λ) ≤
xn∨

xn+1

(fi0 ◦ λ) ≤ Lip(fi0)

xn∨
xn+1

(λ) ≤ Lipn(fi0)

1∨
x1

(λ).

Thus

1∨
xn

(λ) ≤
xn−1∨
xn

(λ) +

xn−2∨
xn−1

(λ) + . . .+
1∨
x1

(λ) ≤ 1

1− Lip(fi0)

1∨
x1

(λ).

Since λ is continuous in 0 it results that +∞ =
∨1

0(λ) ≤ lim supn
∨1

xn
(λ) ≤

1
1−Lip(fi0 )

∨1
x1
(λ) < +∞, which is a contradiction.

Remark 4.2. In the above framework (Example 4.1) Gλ is homeo-
morphic with the interval [0, 1]. Since [0, 1] is the attractor of an IFS (see
Example 4.2 below), from Proposition 4.1 it follows that Gλ is the attractor
of a TIFS.

Example 4.2. The interval [0, 1] is the attractor of the IFS S = ((R, d),
(f, g)), where the functions f, g : R → R are given by f(x) = x

2 and by
f(x) = x

2 + 1
2 and d is the usual distance on R.

Example 4.3. An example of a function with the properties from
Example 4.1.

Let ϕ : R → R be the function defined by ϕ(x) = d(x,Z). Let us
also consider the functions ϕa : R → R and ψa : (0, 1] → R defined by
ϕa(x) = aϕ(x) and by ψa(x) = ϕa(1/x), where a > 0. Then

∨n+p
n (ϕ) = p,∨(n+p)

n (ϕa) = ap and
∨1/n

1/(n+p)(ψa) = ap, where a > 0 and n, p are natural
numbers.

Let us consider the function λ : [0, 1] → [0, 1] defined by

λ(x) =

{
0, if x = 0

ψ1/(n+1)(x), if x ∈ (1/2n+1, 1/2n].
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It follows that λ is a continuous function,
∨1/2n

1/2n+1(λ) =
2n

n+1 ,
∨1

1/2n(λ) =∑n−1
k=0

2k

k+1 and
∨1

0(λ) = +∞.

For the next example we need some preparations. The next result is
well-known.

Lemma 4.1. Let (X, d) and (Y, d1) be two metric spaces, f : X → Y
be a continuous function and (Kn)n≥1 a sequence of compact subsets of X
such that Kn+1 ⊂ Kn. Then f(

∩
n≥1Kn) =

∩
n≥1 f(Kn).

Notation 4.2 (for Example 4.4). 1) We denote by l2 the space of all
sequences x = (xn)n≥1 such that

∑
n≥1 x

2
n < +∞. l2 is a Hilbert space with

the norm ∥x∥ = (
∑

n≥1 x
2
n)

1/2. The associated distance with the norm ∥.∥
is denoted by d.

2) We consider the functions i : R → l2, π : l2 → R, f1 : R → R and
f2 : R → R defined by i(x) = (x, 0, 0, . . . , 0, . . .), π((xn)n≥1) = x1,

f1(x) =


2, if x ≤ 2
x+2
2 , if 2 ≤ x ≤ 4

3, if x ≥ 4

and f2(x) =


3, if x ≤ 2
x+4
2 , if 2 ≤ x ≤ 4

4, if x ≥ 4

.

3) We denote by C the set ×n≥1[0,
1

2n−1 ] ⊂ l2 and by A the set C ∪
i([1, 4]).

4) Let f1, f2 : A → A be the functions defined by f1 = i ◦ f1 ◦ π|A and
f2 = i ◦ f2 ◦ π|A.

We remark that C is a Peano space (the image of continuous function
defined on a closed interval) (paragraph 6.314 page 461,462 [3]) since it is a
convex compact space and so it is a compact arcwise connected and a local
arcwise connected space (with the distance from l2). Also A is a Peano
space since it is the union of two Peano spaces, namely C and i([1, 4]), with
a common point, namely i(1). Therefore, there exists a continuous and
surjective function φ : [0, 1] → C, such that φ(0) = i(1).

Let us consider the function f3 : A→ A defined by:

f3(x) =


i(2), if x ∈ C ∪ i([1, 2])
i(−π(x) + 4), if x ∈ i([2, 3])

φ(π(x)− 3), if x ∈ i([3, 4])

.
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It is obvious that the set A has infinite topological dimension and so
it has infinite Hausdorff dimension. But, for every IFS S, the Hausdorff
dimension of the attractor of S is finite. Indeed the proof of the above
claim is similar with the one from Proposition 9.6, page 135, from [4]. It
follows that the set A is not an attractor of an IFS with any metric which
induces the same topology on A as the distance d from l2.

Example 4.4. Let us consider the metric space (A, d) and the TIFS
S = ((A, d), (f1, f2, f3)). The attractor of the TIFS S is A. We claim that
the attractor of an IFS has a finite topological dimension, but the set A is
infinite dimensional. It follows that the space (A, τd) is the attractor of an
TIFS but is not the attractor of an IFS for any distance defined on A which
induces the same topology.

We prove now that S = (A, (f1, f2, f3)) is a TIFS and that A is the
attractor of the TIFS S. Let us remark first that, since A is a compact set
then the first conditions from the definition of a TIFS is fulfilled.

Let us notice that f1(A) = i([2, 3]), f2(A) = i([3, 4]), f3(C ∪ i([1, 2])) =
{i(2)} and f3(i([2, 4])) = f3(A) = C ∪ i([1, 2]). Therefore A ⊂ f1(A) ∪
f2(A) ∪ f3(A) ⊂ A and so A = f1(A) ∪ f2(A) ∪ f3(A).

We also remark that f33(A) = f3 ◦f3(A) = f3(C∪ i([1, 2])) = {i(2)} and
fα3β(A) = fα ◦ f3 ◦ fβ(A) ⊂ fα ◦ f3(i([2, 4])) = fα(C ∪ i([1, 2])), for every
α, β ∈ {1, 2}. Thus f13β(A) = {i(2)} and f23β(A) = {i(3)}.

We want to prove that for every ω ∈ Λ = Λ({1, 2, 3}) and every K ∈
K∗(A), such that FS(K) =

∪3
k=1 fk(K) ⊂ K, the set

∩
n≥1 f[ω]n(K) has at

most one point. Since A is a compact space it is enough to prove that the
set

∩
n≥1 f[ω]n(A) has at most one point, for every ω ∈ Λ (this is point 2)

from the definition of a TIFS). Let us consider an ω = i1i2 . . . in . . . ∈ Λ =
Λ({1, 2, 3}). We have two cases:

1) 3 ∈ {i2, i3, . . . , in, . . .};

2) 3 /∈ {i2, . . . , in, . . .}.

In the first case let n be such that in = 3. There are two subcases:

i) 3 ∈ {in−1, in+1};

ii) 3 /∈ {in−1, in+1}.

In the first subcase we have fin−1in(A) = {i(2)} or finin+1(A) = {i(2)} and
so fin−1inin+1(A) has one point. The same conclusions holds in the second
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subcase since in this subcase fin−1inin+1(A) is {i(2)} or {i(3)}. Therefore
fi1i2...in−1inin+1(A) has at most one point and so has

∩
n≥1 f[ω]n(A).

In the second case we consider first the case when 3 ̸= i1. Then

fi1i2...in−1inin+1(A) = fi1i2...in−1in ◦ fin+1(A)

⊂ fi1i2...in−1in(i([2, 4])) = i(f i1i2...in−1in([2, 4]))

and so ∩
n≥1

f[ω]n(A) =
∩
n≥2

f[ω]n(A) ⊂
∩
n≥2

i(f i1i2...in−1in([2, 4]))

= i(
∩
n≥2

f i1i2...in−1in([2, 4])).

But
∩

n≥2 f i1i2...in−1in([2, 4]) contains one point since S = ([2, 4], (f1, f2)) is
a classical IFS.

In the case that 3 = i1, we have
∩

n≥1 f[ω]n(A) =
∩

n≥2 fi1i2...in−1in(A) =
f3(

∩
n≥2 fi2i3...in−1in(A)) and so

∩
n≥1 f[ω]n(A) has one point since∩

n≥2 fi2i3...in−1in(A) has one point, taking into account the previous case.
Since A is a compact space and A = f1(A) ∪ f2(A) ∪ f3(A) it follows

that A is the attractor of the TIFS S = (A, (f1, f2, f3)).
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