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Abstract. The aim of the paper is to give a generalization of the notion of iterated
function system in a topological setting, namely to define a topological iterated function
system. We will also give some examples of compact metric spaces which are not attractors
of iterated function systems but are attractors of topological iterated function systems. In
some examples this spaces are homeomorphic with attractors of classical iterated function
systems and in others are not.
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1. Introduction

Iterated function systems (IFS) are one of the most common and general
ways to generate fractals. IFS were conceived by HUTCHINSON ([7]) and
were popularized by BARNSLEY ([2]). There is a current effort to extend
Hutchinson’s classical framework for fractals to more general spaces and
infinite IFSs and to study them. For example, in [9], it was provided such
a general framework where attractors are non-empty closed and bounded
subsets of a complete metric spaces and where the IFSs may be infinite, in
contrast with the classical theory ([2, 4, 5, 15]), where only attractors that
are compact metric spaces and IFSs that are finite were considered. Some
extensions of IF'Ss come from replacing contractions from the definition of an
IF'S with more general contractive conditions (see [14], for example). Other
extensions of IFSs can be found in [1, 4, 10, 12, 13]. There are examples of
compact metric spaces which are homeomorphic with an attractor of an IFS
but are not attractors of IFSs. We define the notion of topological iterated
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function systems (TIFSs) to see this spaces as attractors of a generalized
kind of IFSs and we will give an example of such a space. We will also
give an example of a metrizable compact space which is the attractor of a
TIFS but is not the attractor of an IFS with any metric which induces the
initial topology of the space. The notion of the shift space of an IFS has
an important place in the definition of a TIFS. A generalization of the shift
space for an infinite IFS can be found in [11].

2. Preliminaries

For a set X, P(X) denotes the subsets of X. For a subset A of P(X), by
A* we mean A — {0}. For a topological space (X, 7), K£(X) denotes the set
of compact subsets of X.

Definition 2.1. Let (X, d) be a metric space. A function f: X — X is

a Lipschitz function if Lip(f) < 400 and a contraction if Lip(f) < 1, where
d(f(z),f(y)

L’Lp(f) = SUPg ye Xty d(z,y)

Definition 2.2. Let (X, d) be a metric space. The generalized Hausdorff-
Pompeiu semidistance is an application h : P*(X) x P*(X) — [0, +00] defi-
ned by h(A, B) = max(d(A, B), d(B, A)), where d(A, B) = sup,¢c 4 d(z, B) =
sup,e4(infyep d(z,y)).

It is well-known that if (X, d) is a complete metric space, then (X*(X), h)
is also a complete metric space (see for example [2], Ch. 2, Sec. 7, Theorem
1, [4, 5, 6] or [15] Ch. 1, Sec. 2, Theorem 1.3).

Concerning the Hausdorff-Pompeiu semidistance we have the following
important properties:

Proposition 2.1 (2], Ch. 3, Sec. 7, [5, 6] Sec. 3 proof of Lemma 1,
[15], Ch. 1, Sec. 1, Theorem 1.1). Let (X,d) be a metric space. Then:

1) If H and K are two nonempty subsets of X, then h(H,K) = h(H, K).

2) If (H;)ier and (K;)ier are two families of nonempty subsets of X,
then

h(J Hi | JKi) = m( Hi, |  K:) < sup h(H;, K;).

iel el i€l el tel
3) If H and K are two nonempty subsets of X and f : X — X is a
Lipschitz function, then h(f(K), f(H)) < Lip(f) - h(K,H).
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Definition 2.3. An iterated function system on a metric space (X, d)
consists in a finite family of contractions (fi),_75; on X and it is denoted
by § = ((X,d), (fk)k:l?z)

For an IFS § = ((X,d), (fx)r-15), one can consider the function Fgs :
K*(X) — K*(X) defined by Fs(B) = Uj_; fx(B).

The function Fs is a contraction with Lip(Fs) < max_1 Lip(fx) (see
2, 4, 5, 15]).

Using Banach contraction theorem one can prove that there exists, for
an IFS § = ((X,d), (fx)=15) defined on a complete metric space, a unique
compact nonvoid set A(S) such that Fs(A(S)) = A(S). More precisely we
have the following well-known result (see [2, 4, 5, 15]).

Theorem 2.1 ([2], Ch. 3, Sec. 7, Theorem 1, [4, 5, 15] Ch. 3,
Sec. 1, Theorem 3.1). Let (X,d) be a complete metric space and S =
(X, d), (fr)k=17) be an IFS with ¢ = max,_15 Lip(fi) < 1. Then there ez-
ists a unique A(S) € K*(X) such that Fs(A(S)) = A(S). Moreover, for any
Hy € K*(X) the sequence (Hy,)m>0 defined recursively by Hy,+1 = Fs(H,y,)
is convergent to A(S). Concerning the speed of the convergence we have the
following estimation h(H,,, A(S)) < %h(Ho,Hl), for every m € N*.

Definition 2.3. The set A(S) from the above theorem is called the
attractor of the IFS S = ((X,d), (fx)p=17)-

More generally we introduce the notion of a topological iterated function
system.

Definition 2.4. A topologically iterated function system (TIFS) on a
topological Hausdorff space (X, 7) consists in a finite family of continuous
functions (fk)kzﬁv where fj, : X — X, such that:

1) For every K € K*(X), there exists Hx € K*(X) such that:
) K C Hy,
i) Uy fu(Hk) C Hi.

2) For every sequence (oy);>1 with a; € {1,2,...,n} and every K €
K*(X) such that (J;_; fx(K) C K, the set (V5 fa; © faz © .- -0 fa,(K)
has at most one point.
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A TIFS is denoted by S = ((X,7), (fx)p—17)-
As in the case of an IFS, for a TIFS § = ((X, 7), (fx)x—17), one can con-
sider the function Fs : K*(X) — K*(X) defined by Fs(B) = U;_, fx(B).

Remark 2.1. Let § = ((X,7), (f&)r_15) be a TIFS and K € K£*(X)
be such that Fs(K) C K. We remark that the sequence of sets (fa, © fay ©
... 0 fa,(K)); is decreasing since fi(K) C K, for every k € {1,2,...,n} and
the set ()51 fa1 © fas © ... 0 fo,(K) has exactly one point as we will see in
the proof of Theorem 3.1.

We now present some notations used in the definition of the shift space
of an (T)IFS: R denotes the real numbers, N denotes the natural numbers,
N*=N — {0}, N¥ = {1,2,...,n}. For two non-empty sets A and B, B4
denotes the set of functions from A to B.

By A = A(B) we will understand the set BN and by A, = A,(B)
we will understand the set BN». The elements of A = A(B) = BN will
be written as infinite words w = wiws...wpWmyt ..., where w,, € B
and the elements of A, = A,(B) = B+ will be written as words w =
wWiws . . .wy. By A* = A*(B) we will understand the set of all finite words
A* = A*(B) = U, An(B). By |w| we will understand the length of the
word w. If w = JlWQ...wmwm+1... orif w = wwy...wp, and n > m
then [w],, denotes the word wiws...wp. For two words o € A,(B)and
B € An(B)UA(B) by af we will understand the concatenation of the
words « and (3, namely aff = ajas...apB10s ... Bm and respectively aff =
o109 ... 182 ... BnBm+1 - - .. For two words o € A, (B)and 5 € Ay, (B)
or f € A(B) we say that a < § if @« = 8 or there exists v € A*(B) U A(B)
such that f = ay. Fora e A*(B) a=aa...«a....

On A = A(N}) = (N*)Y' one can consider the metric ds(a,3) =
1, ifz=y

0, ifx#y

Definition 2.5. The pair (A(N}),ds) is a compact metric space and it
is called the shift space with n letters.

5% (1 —65%)/3%, where 6% =

Let Fy : A(N¥) — A(NZ) be defined by Fi(w) = kw for k = 1,n. The
functions F} are continuous and they are called the right shift functions.
Let us note that

dS(a7 /8)
5

ds(Fi(a), Fi(B)) =
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Remark 2.2. Since A = (J}_; Fi(A), A is the attractor of the IFS
S= ((Av ds)7 (Fk)k:m)

Notation 2.1. Let (X, 7) be a topological space, S = ((X, 7), (fk)r=17)

be a TIFS on X and A be a set in X. For w = wiws ... wn € Ap(N) one

can consider f,, def fur 0 fus 0.0 fu, and A, def w(A). In particular, if

(X,7)1is (A,ds), we have F,, = F,, o F,, 0...0F, and A, = F,(A).

Notation 2.2. Let X be a set, n € N* and f: X — X be a function.
By f[ we will understand the function fo fo...o f, where f is taken for
n-times.

3. The main result

The main result of the paper is the following Theorem 3.1. It contains
the generalization for TIFS of the results concerning the existence of the
attractor of an IFS and of the relation between the shift space associated
with an IFS and the attractor of the IFS.

Theorem 3.1. Let (X, T) be a topological space and S=((X, 7), (fk)kzl,n)
be a TIFS on X. Then:

1) There exists a unique nonvoid compact set A = A(S) such that

Fs(A(S)) = A(S).

2) For everyw € A = A(N}) and every K € K*(X) such that Fs(K) C
K, there exists a unique ay,(K) such that (1,51 fiu), (K) = {aw(K)}.
Moreover, if H € K*(X) has also the property that Fs(H) C H,
then ay,(K) = a,(H). So we can define a,, = a,(K), where K is an
arbitrary set from K*(X) having the property that Fs(K) C K.

3) A= A(S) = Upentaw} and Ay = A(S)a = Uyepitan}, for every
a € A

4)  For every Ko € K*(X), let us consider the sequence (Kp)m de-
fined recursively by K41 = Fs(Ky). Then for every open sets
(Di);—17 such that A(S) C U§:1 D; and A(S) N D; # 0, for every
i €{1,2,...,1l}, there exists a mqy such that, for every m > my, we
have K, C U2:1 D; and K., N D; # 0, for every i € {1,2,...,1}.

5) moFy = from fork € {1,2,...,n}, where m is the functionm: A — A
defined by m(w) = ay,.
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6) The function : A = A(N}) — A defined by m(w) = ay, is a continuous
and surjective function. We also have w(A) = A(S) and w(Ay) =
A(S)w, for every w € A*.

7) The function f,, for w € A* and m € N*| has a unique fized point
denoted by e, and the set {e, : w € A*} is dense in A. In fact

Cw = Quw...w...-
8) For every x € X and every w € A, limy, 00 fl),, () = aw-

Definition 3.1. The set A(S), defined in Theorem 3.1, is called the
attractor of the TIFS S = (X, 7), (f)p—17)-

The metric space (A = A(N}),d) is called the shift space of the TIFS
S=((X,7), (fr)k=17)- The function 7 : A=A(N}) — A is called the cano-
nical projection between the shift space of the TIFS S = ((X, 1), (f&)=17)
and the attractor of the TIFS S.

Remark 3.1. The set A(S) from the above Theorem is a topological
self-similar set (see [8]).

Proof of Theorem 3.1. We start with the proof of point 2). Let
w € A and H, K € K*(X) be such that Fs(H) C H and Fs(K) C K. We
remark that the sequence of sets (fi,, ())n is decreasing since f(K) C K,
for every k € {1,2,...,n}. The fact that ), flu), (K) is nonvoid results
from the fact that fi,), (/) are compact sets since K is compact and fj,,
are continuous. The fact that (), fi), (&) has at most one point results
from the definition of a TIFS. If H C K then fi (H) C fi,,(K) and
{au(H)} = mnzl Sl (H) C mnz1 Sl (K) = {au(K)}. Thus ay(H) =
ay(K). In general, for arbitrary H, K € K*(X) such that Fs(H) C H and
Fs(K) C K we have a,(H) = a,(H UK) = a,(K). The proof of point 2)
is finished.

We also remark that if w € A and « € A*, then

(1) falaw) = o

Indeed, for a set K € K*(X) such that Fs(K) C K, we have f,(ay,) €
Jia(ﬂn21 f[w]n(K)) C ﬂn21 fa © an(K) C O”Zl f[aw}n(K) = {aaw}' Let
A = {a, : w e A}. We want to prove that A = A(S). For this we remark
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first that Fs(fl) = A. Indeed, using (1), we have

Fs(A) = £i(A) = | fil{aw s w € A}) = [ J{filaw) s w € A}
i=1 i=1 i=1
Z{aiwiWEA,iZH}:{aw:wEA}:A.

We now prove that A is a compact set. For a set H € K*(X) such that
Fs(H) C H, we have H,,11 C Hy,, where (H,,), is the sequence defined
by Hyy1 = Fs(Hy) and Hy = H. Let us consider Ay = (),,>; Hm. We
remark that Az is a nonvoid compact set, being a intersection of nonvoid
compact sets. We also remark that Ay C Ak if H, K € K*(X) are such
that Fs(H) C H, Fs(K) C K and H C K.

We want to prove that A = Ap, for every H € K*(X) such that
Fs(H) C H. This will show that A is a nonvoid compact set.

We start with the inclusion A C Ap. Indeed, for w € A we have
@ € Mz Fiug, (H) € Nz FS™(H) = Ap.

Let us prove the inclusion Ay C A. Let z¢ be an arbitrary element
of A = o1 Hm. Then zg € Hy = FYV(H) = Uyen, fu(H), for all
m > 1. Let T, = {w € Ay i g € fu(H)}. The set T, is nonvoid and so
the set T = |, Tm is infinite. Let 7, = {a € A: o € T and w < a}
for w € A*. We remark first that if 7, is nonvoid then w € T,,. Indeed,
we have fo(H) C fu(H) if w < a since fo(H) = fog(H) = fu(fs(H)) C
Fo(FYPU(H)) € f,(H), where 8 is defined by a = wB. As xg € fol H) we
conclude zg € f,(H).

Since T' = | T, there exists a; € Ay such that T, is infinite. Since

weA
To, \{a1} = UweA1 T w, there exists aa € A; such that T, 4, is infinite.
By induction one can find ay, g, ..., Qu, ... such that Ty, as..q,, 1S infinite,
for every m € N*. Let a = ajs ...y, . ... From the above considerations

a1azg...am € Toias..an and so o € Hayay...apm, for all m > 1. Therefore
g € ﬂm21 Hoyos..a0, = {0a}. Thus zo = a, € A.

This finishes the proof of the fact that A = Ay, for every H € K*(X)
such that Fs(H) C H.

We remark that there exists a set H € K*(X) such that Fs(H) C H
(this results from point 1) ii) of the Definition 2.5 and from the fact that a
finite set is compact). Therefore A = Ay is a nonvoid compact set.

To finish the proof of the first point it is enough to remark that if
H € K*(X) is such that Fs(H) = H, then H = Ay = A.
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Therefore there exists a unique nonvoid compact set A(S) such that
Fs(A(S)) = A(S) and A(S) = A. With these we have also proved the first
part of the point 3). For the second we have A, = fo(A(S)) = fa({aw :
weA}) ={falaw) :w € A} = Uy er{aw}), for every a € A™.

4) Let K € K*(X) and Hx € K*(X) be such that K C Hg and
Fs(Hg) C Hg. Let (Kp)m and (Hy,)m be defined recursively by Ky = K,
Hy = Hg, Knt1 = Fs(K,,) and H,,+1 = Fs(H,,). It is obvious that
K,, C Hy,.

Let D be an open set in X such that A(S) C D. Then A(S) = Ap, =
MNy>1 Hm C D. Since Hy, are compact sets, Hy,11 C Hyy,, for every m and
D is open it follows that there exists mq such that H,,, € D. Then, for
m > my, we have K, C Hy,, C Hy,, C D.

Let (D;);_7; be open sets such that A(S) C Ui:l D; and A(S)ND; # 0,
for every i € {1,..,1}. Taking D = Ué:l D;, from the above considerations,
there exists mg such that H,, C D, for all m > my.

On the other side, taking into account 3), there are a,, € D;, for every
i € {1,..,1}. Since {aw, } = N,>1 flwg. (Hix) C Di; fiu,], (Hk) are compact
sets and D; is open, it follows that, for every ¢ € {1,..,1}, there exists m;
such that f[wi]mi (Hg) C D;. Thus f[wi]m (K) C f[wi]m (Hg) C f[wi]mi (Hg) C
D;, for every m > m; and every i € {1,..,1}. Let mg = maxﬁzl m;. Then,
for m > mo, we have ) # fi.,;,.(K) C D; N Fém} (K) = D; N Ky, for every
ie{l,..,1}.

Point 5), mo Fj, = frow for k € {1,..,n}, is a particular case of (1).

6) The surjectivity of the function 7 : A — A results from point 3). We
also have w(A,) = A(S),,, for every w € A*, from point 5) and point 3).

We now prove the continuity of 7. Let w € A, a, = m(w) and D be an
open set such that a,, € D. With a similar argument as above there exists
a m such that A(S)Mm C D. Then B(w, 3%) = A[w]m C Wﬁl(A(S)[w]m) C
7 1(D).

7) Let us consider w € A* and w = ww...w.... Let e, = ay, = w(w).
Then f,(ew) = fu(r(w)) = 7(F,(w)) = n(w) = e, and so e, is a fixed
point for f,. Let e be another fixed point for f,. We want to prove that
e = e,. The set {e} is compact and so there exists H, € K*(X) such that
{e} C He and Fs(H) C He. Then e = f"(e) € fI"(H.) = fiy,,, (He)
and 50 € € (51 fial,0 (He) = N1 Sl (He) = {ew}. Therefore e = e,,.

Now we will prove that the set {e, : w € A*} is dense in A. To this end
let D be an open set in X such that A(S)N D # (). Taking into account 3),
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there exists w € A such that a,, € D. Then with a similar argument as above
there exists a m such that A(S),],, C D. Then ey, € A(S)w),, C D.

8) The set {z} is compact. Therefore there exists H,) € K*(X) such
that x € Hy,y and Fs(Hy,y) C Hyyy. Let w € A We remark that fi,, (7) €
fiw)m (H{z}). Since for every open neighborhood D of ay,, there exists a mq
such that, for every m > mqg f,,, (H{z) C D, it follows that fi,,. (z) € D,
for every m > mg. It results that lim,, .o f[w]m(x) = a,,. O

4. The relation between IFSs and TIFSs

In this section we discuss the relation between IFSs and TIFSs. We will
prove first that every system of functions defined on a topological space, for
which there exists an IFS and a homeomorphism between the topological
space and the space where the IFS is defined such that the homeomorphism
moves the functions of the system of functions into the functions of the IFS
is a TIF'S. After that we present an example of a compact metric space which
is homeomorphic with an attractor of the IFS (in fact it is homeomorphic
with a closed compact interval), and so is the attractor of a TIFS, but is
not an attractor of an IFS (Example 4.1 and Remark 4.2). We also give an
example of a compact metrizable space which is the attractor of a TIFS but
is not the attractor of an IF'S, for every distance on the compact space whose
associated topology is the topology of the compact space (Example 4.4).

Proposition 4.1. Let (X,d) be a complete metric space and S =
(X, d), (f)r=17) be an IFS. Then S = (X, 1a), (f)r=17) is a TIFS.

Proof. Let A(S) be the attractor of the IFS S, K € K*(X) and (K,)n>0
be the sequence defined by Ky = K and K,y = Fs(K,). Let Hx =
A(S) U (Ups0 Kn). We have Fs(Hi) = Fs(A(S)) U (U0 Fs(Kn)) =
A(S) U (U,,>; Kn) € Hg. We also remark that Hx € K*(X). Indeed,
the fact that Ky is nonvoid is obvious. Since the sequence (K )n>o is
convergent to A(S) it follows that the sequence (|J%q K;)n>0 is convergent
to K. To see this we notice that a

UK,,KH UK,,A ) U (| Ky)

i>0 >0

= h(K, U ( U U Ky) (UKi)U( U K3))

=0 i>n+1 =0 1>n+1
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< max{h(Kn, A(S))a m%g(h(Kh Kl)a sup h(Kna KZ)}

= i>n
< Sup{h(Kn, A(S))7 h(Kla Kl)v ceeey h(Kna Kn)v h(Kna Kn+1)7 . }
= Sup{h(Kna A(S))7 h(Kna Kn-‘rl)) h(Kna KTH-?): . }

Since (K*(X),h) is complete it follows that Hx € K*(X). With this
we have proved point 1) from the definition of a TIFS (Definition 2.5). The
requirement of point 2) result from the fact that if H € £*(X) is such that
Fs(H) C H then Hy,, . C Hy,, and §(Hy,,, ) < (maxi_; Lip(f;))™0(H),
for every w € A and m € N* where §(H) denotes the diameter of H, i.e.
O(H) = sup, yepy d(,y). O

Remark 4.1. Let (X, 7), (Y,7') be two topological Hausdorff spaces,
(gk)k:Ln be a family of continuous functions, g : ¥ — Y, and § =
((X,7), (f)r=17) be a TIFS on X such that, there exists a homeomorphism
¢ : X — Y with the property gx o ¢ = ¢ o fi that for every k € {1,..,n}.
Then &' = (Y, '), (9k)=17) is a TIFS.

Corollary 4.1. Let (X,d) be a complete metric space and S = ((X,d),
(fi)p—17;) be an IFS. If (Y, T) is a topological Hausdorff space and (gi)._15
s a farﬁz’ly of continuous functions on Y such that, there exists a home-
omorphism ¢ : X — Y with the property gir o ¢ = ¢ o fr that for every
ke{l,2,...,n} then 8" = ((Y,7), (9k)p=17) s @ TIFS.

Notation 4.1. 1) We denote by p the function p : R? — R defined by
p(z,y) = .

2) For a function ¢ : [a,b] — R by \/2(f) we understand the variation
of f on [a,b] that is the number

n—1
szp{z \f(zi1) — fz)]:A=(a=20<x1 <...<xp=D0)}
=0

3) If b < a by [a,b] we mean [b,a] and by \/°(f) we mean \/{(f).

Example 4.1. Let us consider a continuous function A : [0,1] — [0, 1]
such that, A(0) = 0, \/i(/\) < 400, for every e > 0 and \/(1]()\) = +oo0. We
denote by G the graph of A and consider the metric space (G, dz2), where
ds is the euclidean distance induced from R?. We claim that there does not
exist any IFS S on (G, da2), such that G\ = A(S).
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To see this let us suppose by reduction ad absurdum that there exists
an IFS & = ((G, d2), (fi)ier) such that Gy = A(S), where [ is a finite set.
Let us note first that:

1) fi(Gx) = G)jja;p,]> Where a;, b; € [0, 1].
2) There exists an i € I, such that (0,0) € fi(Gx) and fi(Gx) # {(0,0)}.

3) If there exists an ¢ € I and a € (0, 1], such that f;(a, A(a)) = (0,0),
then fl(G)\) = {(0,0)}

4) There exists an ig € I, such that (0,0) = f;,((0,0)) and f;,(a, A(a)) #
(0,0), for every a € (0, 1].

Indeed, we have

1) fu(G)) = Gxja, where A = po fi(Gx) C [0,1]. Since G} is (arc-
wise) connected and compact it follows that A is (arcwise) connected and
compact. Therefore A is a closed interval.

2) We consider the sets I' = {i € I : f;(Gy) = {(0,0)}}, I" = {i
I : (0,0) §é fZ(G)\)} and " = {Z el : (0,0) € fZ(G,\) and {(0,0)}
fi(GA)}. Then, Uiep fi(Gr) = {(0,0)}, p(Uicp fi(Gx)) = {0} and 0
pUier £:(G)). Becase 0 ¢ pUiepr £i(Gr)) and p(Uscpn £i(G)) s
compact set it follows that there exists p > 0, such that p({U;c;» fi(Gr))
[k, 1]. Thus p(U,ep fi(Gr)) Up(Usepr fi(GA)) € {0} U [, 1]. But

0,1] = p({J £:(Gx)) = p(|J f(Ga) Up(| £(G))Up( | £i(Gr)

€
+
¢
a
-

i€l iel’ el el
C {0} U [, 1] U p( U fi(Gr))
il

and so I is nonvoid.

3) Let us suppose by reduction ad absurdum that there exist i € [
and a,b € (0,1], such that fi(a,\(a)) = (0,0) and f;(b, \(b)) # (0,0).
Then Gy, C fi(Gyp,,)- It follows that +oo = V3™ (A) < Vi(fi o
A) < Lip(fi) \/Z()\) < +o00, which is a contradiction. If, there exists an
i € I such that there exist a € (0,1] such that f;(a, A(a)) = (0,0), using
the above considerations, it follows that f;(G — (0,0)) = {(0,0)} and so
fi(Gx) = £(0,0)}.

4) It results from 2) and 3).
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Therefore, using 4), one can consider ig € I be such that (0,0) =
1i,((0,0)) and fi,(a, A(a)) # (0,0) for every a € (0,1].

Let us consider the sequence (x,),, defined by xo = 1 and (zp41, A(Zn+1))
Fio(ns Man)) = fir ) (w0, A(wo)).

It is easy to see by induction that x, # 0.

We remark first that, because (0,0) is the fixed point of the contraction
fios (zn, A(x)) — (0,0) when n — 0 and so x, — 0. Then G,\|[%+2 enin) ©

fio (GM[%H@M) and so
Tn+1 Tn, Tn 1
\V V)<V (fig 0N < Lip(fi) \/ (V) < Lip"(fi) \/ (V)
Thus
1 Tn—1 Tn—2 1
V< Vo Vo Voo s Voo

Since \ is continuous in 0 it results that 400 = \/0(/\) < limsup,, \/:lcn (A <

1 1 o .
L) V3, (A) < 400, which is a contradiction.

Remark 4.2. In the above framework (Example 4.1) G, is homeo-
morphic with the interval [0, 1]. Since [0, 1] is the attractor of an IFS (see

Example 4.2 below), from Proposition 4.1 it follows that G is the attractor
of a TIFS.

Example 4.2. The interval [0, 1] is the attractor of the IFS § = ((R, d),
(f,g)), where the functions f,g : R = R are given by f(z) = 5 and by
f(z) = £ + % and d is the usual distance on R.

Example 4.3. An example of a function with the properties from
Example 4.1.

Let ¢ : R — R be the function defined by ¢(x) = d(x,Z). Let us
also consider the functions ¢, : R — R and ¢, : (0,1] — R defined by
qba(x) = a¢( ) and by %( ) = ¢a(1/$)7 where a > 0. Then \/Zﬂ)(éb) =D
\/g”p)(cﬁ ) = ap and \/1/ (ntp)(¥a) = ap, where a > 0 and n,p are natural
numbers.

Let us consider the function A : [0,1] — [0, 1] defined by

0, if 2 =0
)\(SU) = : n+1 n
¢1/(n+1)(x)a if v e (1/2 a1/2 ]
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It follows that A is a continuous function, \/ig:Jrl (A = nQ—:l, \/%/TL(/\) =
Sico i and Vo(A) = +oo.

For the next example we need some preparations. The next result is
well-known.

Lemma 4.1. Let (X,d) and (Y,dy) be two metric spaces, f: X =Y
be a continuous function and (Ky,)n>1 @ sequence of compact subsets of X
such that Kny1 C K. Then f((,>1 Kn) = Ny>1 f(Kn)-

Notation 4.2 (for Example 4.4). 1) We denote by Iy the space of all
sequences - = (zp)p>1 such that Y - x% < +o0. Iy is a Hilbert space with
the norm ||z| = (3,5, 22)'/2. The associated distance with the norm ||.||
is denoted by d. -

2) We consider the functions i : R — Iy, 7 : I3 = R, f; : R — R and
fo: R — R defined by i(z) = (z,0,0,...,0,...), 7((zn)n>1) = 71,

2, ife <2 3, ifx <2
filz) =< =2, if2<2<4 and fo(z) == if2<z<4.
3, ifx>4 4, ifx>4

3) We denote by C' the set x,>1[0, Qn%l] C lo and by A the set C U
i([1,4). )

4) Let f1, fo: A — A be the functions defined by f1 =io f, o7|4 and
fa=io fyorm|a.

We remark that C' is a Peano space (the image of continuous function
defined on a closed interval) (paragraph 6.314 page 461,462 [3]) since it is a
convex compact space and so it is a compact arcwise connected and a local
arcwise connected space (with the distance from ls). Also A is a Peano
space since it is the union of two Peano spaces, namely C' and i([1, 4]), with
a common point, namely i(1). Therefore, there exists a continuous and
surjective function ¢ : [0,1] — C, such that ¢(0) =i(1).

Let us consider the function f3: A — A defined by:

i(2), if x € CUi([1,2])
f3(x) = i(—n(x) +4), ifzei([2,3])
o(m(z) — 3), if x € i([3,4])
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It is obvious that the set A has infinite topological dimension and so
it has infinite Hausdorff dimension. But, for every IFS S, the Hausdorff
dimension of the attractor of § is finite. Indeed the proof of the above
claim is similar with the one from Proposition 9.6, page 135, from [4]. It
follows that the set A is not an attractor of an IFS with any metric which
induces the same topology on A as the distance d from Is.

Example 4.4. Let us consider the metric space (A,d) and the TIFS
S = ((A,4d), (f1, f2, f3)). The attractor of the TIFS S is A. We claim that
the attractor of an IFS has a finite topological dimension, but the set A is
infinite dimensional. It follows that the space (A, 74) is the attractor of an
TIFS but is not the attractor of an IFS for any distance defined on A which
induces the same topology.

We prove now that S = (A4, (f1, f2, f3)) is a TIFS and that A is the
attractor of the TIFS S. Let us remark first that, since A is a compact set
then the first conditions from the definition of a TIFS is fulfilled.

Let us notice that f1(A) =i([2,3]), f2(A4) = i([3,4]), f3(CUi([1,2])) =
{i(2)} and f3(i([2,4])) = f3(A) = C Ui([1,2]). Therefore A C fi(A) U
f2(A)U f3(A) € Aand so A = fi(A)U f2(A) U f3(A).

We also remark that f33(A4) = f3o f3(4) = f3(CUi([1,2])) = {i(2)} and
fa3ﬁ(A) = fao f30 fﬁ(A) C fao fS(i([274])) = fa(CU i([172] ), for every
a,B € {1,2}. Thus fi33(A) = {i(2)} and fa3s(A) = {i(3)}.

We want to prove that for every w € A = A({1,2,3}) and every K €
K*(A), such that Fs(K) = J;_, fu(K) C K, the set (>, Jiw), (K) has at
most one point. Since A is a compact space it is enough to prove that the
set (\,>1 flu), (A) has at most one point, for every w € A (this is point 2)
from the definition of a TIFS). Let us consider an w = i1ig ..., ... € A =
A({1,2,3}). We have two cases:

1) 3 € {ig,ig,...,in,...};
2) 3¢ {ig,... 0n,...}.
In the first case let n be such that i,, = 3. There are two subcases:
1) 3 € {in_1,int1};
i) 3¢ {in—1,in+1}

In the first subcase we have f;, i, (A) = {i(2)} or fi,i,..(A) = {i(2)} and
SO fin_1ininsi(A) has one point. The same conclusions holds in the second
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subcase since in this subcase fi, i, (A) is {i(2)} or {i(3)}. Therefore
firiz.in_1inins: (A) has at most one point and so has ﬂnZI f[w]n(A).
In the second case we consider first the case when 3 # ¢;. Then

filig..,in_linin+1(A) = filig...in_lin o fin+1(A)
C fivigein—1in ((([2:4]) = i(Fiyig.irin ([2:4]))

and so

ﬂ Jw)a (A) = m flwa(4) C ﬂ i(Fivigerin_rin ([2,4]))

n>1 n>2 n>2
= i( ﬂ ?z’lig...in_lin([z 4))).
n>2

But (,>5 fiis...i,_1i, ([2,4]) contains one point since S = ([2,4], (fy, f3)) is
a classical IF'S.

In the case that 3 = i1, we have (), flu], (4) = N2 firio.in 1in(4) =
f3(Mp>2 fivig.in_1in(4)) and so (V51 fi),(A) has one point since
N> fisis...in_1in (A) has one point, taking into account the previous case.

Since A is a compact space and A = fi(A) U fo(A) U f3(A) it follows
that A is the attractor of the TIFS S = (A, (f1, fo, f3))-
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