ANALELE ŞTIINŢIFICE ALE UNIVERSITĂŢII "AL.I. CUZA" DIN IAȘI (S.N.) MATEMATICĂ, Tomul LVIII, 2012, f.1 DOI: 10.2478/v10157-011-0045-9

*-HYPERCONNECTED IDEAL TOPOLOGICAL SPACES

$\mathbf{B}\mathbf{Y}$

ERDAL EKICI and TAKASHI NOIRI

Abstract. The aim of this paper is to introduce and study *-hyperconnected ideal topological spaces. Characterizations and properties of *-hyperconnected ideal topological spaces are investigated.

Mathematics Subject Classification 2000: 54A05, 54A10.

Key words: \star -hyperconnected ideal topological space, \star -nowhere dense set, \star -dense set, semi^{*}-*I*-open set.

1. Introduction

Several notions which are equivalent to hyperconnectedness were investigated in the literature such as the notions of *D*-spaces, semi-connected spaces, s-connected spaces, irreducible spaces. On the other hand, the notion of ideal topological spaces was studied by KURATOWSKI [7] and VAIDYANATHASWAMY [9]. In 1990, JANKOVIĆ and HAMLETT [6] investigated further properties of ideal topological spaces. In this paper, the notion of \star -hyperconnected ideal topological spaces are introduced and studied. Characterizations and properties of \star -hyperconnected ideal topological spaces are investigated.

2. Preliminaries

Throughout the present paper, (X, τ) or (Y, σ) will denote a topological space with no separation properties assumed. For a subset A of a topological space (X, τ) , Cl(A) and Int(A) will denote the closure and interior of A in (X, τ) , respectively. An ideal I on a topological space (X, τ) is a nonempty collection of subsets of X which satisfies (1) $A \in I$ and $B \subset A$ implies ERDAL EKICI and TAKASHI NOIRI

 $B \in I$, (2) $A \in I$ and $B \in I$ implies $A \cup B \in I$. Given a topological space (X, τ) with an ideal I on X and, if P(X) is the set of all subsets of X, a set operator $(.)^* : P(X) \to P(X)$, called a local function ([7]) of A with respect to τ and I is defined as follows: for $A \subset X$, $A^*(I, \tau) = \{x \in X : G \cap A \notin I \text{ for every } G \in \tau(x)\}$ where $\tau(x) = \{G \in \tau : x \in G\}$. A Kuratowski closure operator $Cl^*(.)$ for a topology $\tau^*(I, \tau)$, called the \star -topology, finer than τ , is defined by $Cl^*(A) = A \cup A^*(I, \tau)$ ([6]). When there is no chance for confusion, we will simply write A^* for $A^*(I, \tau)$ and τ^* or $\tau^*(I)$ for $\tau^*(I, \tau)$. For any ideal space (X, τ, I) , the collection $\{U \setminus J : U \in \tau \text{ and } J \in I\}$ is a basis for τ^* . If I is an ideal on X, then (X, τ, I) is called an ideal topological space.

Definition 1. A subset A of an ideal space (X, τ, I) is said to be:

- (1) pre-*I*-open ([1]) if $A \subset Int(Cl^*(A))$;
- (2) semi-*I*-open ([3]) if $A \subset Cl^*(Int(A))$;
- (3) strongly β -*I*-open ([4]) if $A \subset Cl^*(Int(Cl^*(A)));$
- (4) *-dense ([2]) if $Cl^*(A) = X$;

122

(5) *-nowhere dense if $Int(Cl^*(A)) = \emptyset$.

The complement of a pre-*I*-open (resp. semi-*I*-open, strongly β -*I*-open) set is called pre-*I*-closed (resp. semi-*I*-closed, strongly β -*I*-closed). A topological space X is said to be hyperconnected ([8]) if every pair of nonempty open sets of X has nonempty intersection. A function $f: (X, \tau, I) \to (Y, \sigma)$ is said to be semi-*I*-continuous ([3]) if, for every open set A of Y, $f^{-1}(A)$ is semi-*I*-open in X.

3. Characterizations of *-hyperconnected spaces

Definition 2. An ideal space (X, τ, I) is said to be:

- (1) *-hyperconnected if A is *-dense for every open subset $A \neq \emptyset$ of X;
- (2) \star -connected if X can not be written as the union of nonempty and disjoint an open set and a \star -open set of X.

2

Remark 3. (1) Generally, it is known that every hyperconnected topological space is connected, but not conversely.

(2) For an ideal space $(X, \tau, I), \tau \subset \tau^*$ and we have the following properties:

$$\begin{array}{ccc} (X,\tau,I) \text{ is } \star\text{-hyperconnected} & \Rightarrow & (X,\tau) \text{ is hyperconnected} \\ & & \downarrow \\ & & & \downarrow \\ & & (X,\tau,I) \text{ is } \star\text{-connected} & \Rightarrow & (X,\tau) \text{ is connected} \end{array}$$

The implications in the diagram are not reversible as shown in the following examples:

Example 4. Let $X = \{a, b, c\}, \tau = \{X, \emptyset, \{a\}, \{a, b\}, \{a, c\}\}$ and $I = \{\emptyset, \{a\}\}$. Then the space (X, τ) is hyperconnected but (X, τ, I) is not \star -connected.

Example 5. Let $X = \{a, b, c, d\}$, $\tau = \{X, \emptyset, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}\}$ and $I = \{\emptyset, \{b\}\}$. Then, the ideal space (X, τ, I) is \star -connected but it is not hyperconnected.

Definition 6. A subset A of an ideal space (X, τ, I) is called

(1) semi^{*}-*I*-open if $A \subset Cl(Int^*(A))$;

(2) semi*-*I*-closed if its complement is semi*-*I*-open.

Lemma 7. Every semi-I-open set is semi*-I-open.

Proof. Let A be a semi-*I*-open subset in an ideal space (X, τ, I) . Then $A \subset Cl^*(Int(A))$. We have $A \subset Cl^*(Int(A)) \subset Cl(Int^*(A))$. Thus, A is semi^{*}-*I*-open.

The implication in Lemma 7 is not reversible as shown in the following example:

Example 8. Let $X = \{a, b, c, d\}, \tau = \{X, \emptyset, \{a\}, \{a, b\}, \{c, d\}, \{a, c, d\}\}$ and $I = \{\emptyset, \{a\}, \{d\}, \{a, d\}\}$. Then, the set $A = \{b, c, d\}$ is semi*-*I*-open but it is not semi-*I*-open.

Lemma 9 ([5]). A subset A of an ideal space (X, τ, I) is semi-I-open, if and only if there exists $B \in \tau$, such that $B \subset A \subset Cl^*(B)$.

Lemma 10. A subset A of an ideal space (X, τ, I) is semi^{*}-I-open, if and only if there exists $B \in \tau^*$, such that $B \subset A \subset Cl(B)$. **Proof.** Let A be semi*-*I*-open. Then $A \subset Cl(Int^*(A))$. Take $B = Int^*(A)$. We have $B \subset A \subset Cl(B)$.

Conversely, let $B \subset A \subset Cl(B)$ for a $B \in \tau^*$. Since $B \subset A$, then $B \subset Int^*(A)$. Thus, $Cl(B) \subset Cl(Int^*(A))$ and $A \subset Cl(Int^*(A))$. Hence, A is semi^{*}-I-open.

Theorem 11. Let (X, τ, I) be an ideal space. The following properties are equivalent:

(1) X is \star -hyperconnected;

124

- (2) A is \star -dense or \star -nowhere dense, for every subset $A \subset X$;
- (3) $A \cap B \neq \emptyset$, for every nonempty open subset A and every nonempty *-open subset B of X;
- (4) $A \cap B \neq \emptyset$, for every nonempty semi-*I*-open subset $A \subset X$ and every nonempty semi^{*}-*I*-open subset $B \subset X$.

Proof. (1) \Rightarrow (2) : Let X be *-hyperconnected and $A \subset X$. Suppose that A is not *-nowhere dense. Then $Cl(X \setminus Cl^*(A)) = X \setminus Int(Cl^*(A)) \neq X$. By (1), for $Int(Cl^*(A)) \neq \emptyset$, $Cl^*(Int(Cl^*(A))) = X$.

Since $Cl^*(Int(Cl^*(A))) = X \subset Cl^*(A)$, then $Cl^*(A) = X$. Thus, A is \star -dense.

 $(2) \Rightarrow (3)$: Suppose that $A \cap B = \emptyset$, for some nonempty sets $A \in \tau$ and $B \in \tau^*$. Then $Cl^*(A) \cap B = \emptyset$ and A is not \star -dense. Moreover, since $A \in \tau$, $\emptyset \neq A \subset Int(Cl^*(A))$ and A is not \star -nowhere dense.

 $(3) \Rightarrow (4)$: Suppose that $A \cap B = \emptyset$, for some nonempty semi-*I*-open set *A* and some nonempty semi*-*I*-open set *B*. By Lemmas 9 and 10, there exist $M \in \tau$ and $N \in \tau^*$, such that $M \subset A \subset Cl^*(M)$ and $N \subset B \subset Cl(N)$. Since *A* and *B* are nonempty, *M* and *N* are nonempty. Moreover, we have $M \cap N \subset A \cap B = \emptyset$.

 $(4) \Rightarrow (1)$: Suppose that $A \cap B \neq \emptyset$, for every nonempty semi-*I*-open subset $A \subset X$ and every nonempty semi^{*}-*I*-open subset $B \subset X$. Since every open set is semi-*I*-open and every \star -open set is semi^{*}-*I*-open, then Xis \star -hyperconnected.

Definition 12. The semi^{*}-*I*-closure (resp. semi-*I*-closure, pre-*I*-closure, strongly β -*I*-closure) of a subset *A* of an ideal space (X, τ, I) , denoted by *S*^{*}-*I*-*Cl*(*A*) (resp. *S*-*I*-*Cl*(*A*), *P*-*I*-*Cl*(*A*), *S* β -*I*-*Cl*(*A*)), is defined by the intersection of all semi^{*}-*I*-closed (resp. semi-*I*-closed, pre-*I*-closed, strongly β -*I*-closed) sets of *X* containing *A*.

4

Lemma 13. The following properties hold for a subset A of an ideal space (X, τ, I) :

(1) S^* -*I*-*Cl*(*A*) = *A* \cup *Int*(*Cl**(*A*));

5

- (2) S-I- $Cl(A) = A \cup Int^*(Cl(A));$
- (3) P-I- $Cl(A) = A \cup Cl(Int^*(A));$
- (4) $S\beta$ -I- $Cl(A) = A \cup Int^*(Cl(Int^*(A))).$

Proof. (4) Since $S\beta$ -*I*-*Cl*(*A*) is strongly β -*I*-closed, then

$$Int^{*}(Cl(Int^{*}(A))) \subset Int^{*}(Cl(Int^{*}(S\beta - I - Cl(A)))) \subset S\beta - I - Cl(A).$$

Hence, $A \cup Int^*(Cl(Int^*(A))) \subset S\beta - I - Cl(A)$. Conversely, we have:

$$\begin{split} &Int^*(Cl(Int^*(A \cup Int^*(Cl(Int^*(A)))))) \\ &\subset Int^*(Cl(Int^*(A \cup Cl(Int^*(A))))) \\ &\subset Int^*(Cl(Int^*(A) \cup Cl(Int^*(A))))) \\ &= Int^*(Cl(Int^*(A))) \subset A \cup Int^*(Cl(Int^*(A)))). \end{split}$$

Then $A \cup Int^*(Cl(Int^*(A)))$ is strongly β -*I*-closed containing *A*. Thus, $S\beta$ -*I*- $Cl(A) \subset A \cup Int^*(Cl(Int^*(A)))$. Hence,

$$S\beta\text{-}I\text{-}Cl(A)=A\cup Int^*(Cl(Int^*(A))).$$

The proofs of (1), (2) and (3) are similar to that of (4).

Theorem 14. The following are equivalent for an ideal space (X, τ, I) :

- (1) X is \star -hyperconnected;
- (2) *H* is \star -dense, for every strongly β -*I*-open subset $\emptyset \neq H \subset X$;
- (3) S^* -I-Cl(H) = X, for every strongly β -I-open subset $\emptyset \neq H \subset X$;
- (4) $S\beta$ -*I*-*Cl*(*G*) = *X*, for every semi^{*}-*I*-open subset $\emptyset \neq G \subset X$;
- (5) P-I-Cl(G) = X, for every semi^{*}-I-open subset $\emptyset \neq G \subset X$.

Proof. $(1) \Rightarrow (2)$: Let (X, τ, I) be a *-hyperconnected ideal space. Let H be any nonempty strongly β -I-open subset of X. We have $Int(Cl^*(H)) \neq \emptyset$. Thus, $X = Cl^*(Int(Cl^*(H))) = Cl^*(H)$.

 $(2) \Rightarrow (3)$: Let *H* be any nonempty strongly β -*I*-open subset of *X*. Thus, by Lemma 13, S^* -*I*- $Cl(H) = H \cup Int(Cl^*(H)) = H \cup Int(X) = X$.

 $(3) \Rightarrow (4)$: Let G be a nonempty semi^{*}-I-open subset of X. Thus, by Lemma 13,

$$\begin{split} S\beta\text{-}I\text{-}Cl(G) &= G \cup Int^*(Cl(Int^*(G))) = G \cup Int^*(Cl(G)) \\ \supset G \cup Int(Cl^*(G)) \supset Int(G) \cup Int(Cl^*(Int(G))) \\ &= S^*\text{-}I\text{-}Cl(Int(G)) = X. \end{split}$$

Thus, $S\beta$ -I-Cl(G) = X.

 $(4) \Rightarrow (5)$: Let G be a nonempty semi^{*}-I-open subset of X. By Lemma 13, we have $P\text{-}I\text{-}Cl(G) = G \cup Cl(Int^*(G)) \supset G \cup Int^*(Cl(Int^*(G))) = S\beta\text{-}I\text{-}Cl(G) = X$. Thus, P-I-Cl(G) = X.

 $(5) \Rightarrow (1)$: Let G be a nonempty *-open set of X. By (5), P-I- $Cl(G) = G \cup Cl(Int^*(G)) = X$. This implies that Cl(G) = X. By Theorem 11, X is *-hyperconnected.

Corollary 15. For an ideal space (X, τ, I) , the following properties are equivalent:

- (1) X is \star -hyperconnected;
- (2) $G \cap H \neq \emptyset$, for every nonempty semi^{*}-I-open subset $G \subset X$ and every nonempty strongly β -I-open subset $H \subset X$;
- (3) $G \cap H \neq \emptyset$, for any nonempty semi^{*}-I-open set G and any nonempty pre-I-open set H.

Proof. The proof is obvious from Theorem 14.

4. *-hyperconnected spaces and functions

Definition 16. The semi-*I*-interior of a subset A of an ideal space (X, τ, I) , denoted by S-*I*-*Int*(A), is defined by the union of all semi-*I*-open sets of X contained in A.

7

Definition 17. A function $f : (X, \tau, I) \to (Y, \sigma)$ is said to be almost F-I-continuous if for every nonempty regular open set A of Y, $f^{-1}(A) \neq \emptyset$ implies S-I- $Int(f^{-1}(A)) \neq \emptyset$.

Theorem 18. Every semi-*I*-continuous function $f : (X, \tau, I) \to (Y, \sigma)$ is almost *F*-*I*-continuous.

Proof. Let $f: (X, \tau, I) \to (Y, \sigma)$ be a semi-*I*-continuous function. Let A be any regular open subset of Y such that $f^{-1}(A) \neq \emptyset$. Then $f^{-1}(A)$ is a nonempty semi-*I*-open set in X and hence, $f^{-1}(A) = S$ -*I*-*Int* $(f^{-1}(A))$. Thus, f is almost F-*I*-continuous.

The implication in Theorem 18 is not reversible as shown in the following example:

Example 19. Let $X = Y = \{a, b, c, d\}, \tau = \sigma = \{X, \emptyset, \{a\}, \{a, b\}, \{c, d\}, \{a, c, d\}\}$ and $I = \{\emptyset, \{a\}, \{d\}, \{a, d\}\}$. Define the function $f : (X, \tau, I) \rightarrow (Y, \sigma)$ as follows: f(a) = a, f(b) = c, f(c) = d, f(d) = c. Then f is almost F-I-continuous but it is not semi-I-continuous.

Theorem 20. The following properties hold for a \star -hyperconnected ideal space (X, τ, I) :

- (1) Every almost F-I-continuous function $f : (X, \tau, I) \to (Y, \sigma)$, where (Y, σ) is a Hausdorff space is constant;
- (2) Every semi-I-continuous function $f : (X, \tau, I) \to (Y, \sigma)$, where (Y, σ) is a Hausdorff space is constant;
- (3) Every semi-I-continuous function $f : (X, \tau, I) \to (Y, \sigma)$, where (Y, σ) is a two point discrete space is constant.

Proof. (1) : Let X be a *-hyperconnected ideal space. Suppose that there exist a Hausdorff space Y and an almost F-I-continuous function $f: X \to Y$, such that f is not constant. There exist two points x and y of X, such that $f(x) \neq f(y)$. Since Y is Hausdorff, then there exist open sets A and B in Y, such that $f(x) \in A$, $f(y) \in B$ and $A \cap B = \emptyset$. Take M = Int(Cl(A)) and N = Int(Cl(B)). This implies that M and N are nonempty regular open and $M \cap N = \emptyset$. Since f is almost F-Icontinuous, then S-I-Int $(f^{-1}(M)) \neq \emptyset$ and S-I-Int $(f^{-1}(N)) \neq \emptyset$. We have S-I-Int $(f^{-1}(M)) \cap S$ -I-Int $(f^{-1}(N)) \subset f^{-1}(M \cap N) = \emptyset$. Since S-I-Int $(f^{-1}(M))$ and S-I-Int $(f^{-1}(N))$ are semi-I-open, then by Lemma 7 and Theorem 11, X is not *-hyperconnected. This is a contradiction. (2) : Let $f : (X, \tau, I) \to (Y, \sigma)$ be a semi-*I*-continuous function of (X, τ, I) into a Hausdorff space (Y, σ) . Since every semi-*I*-continuous function is almost *F*-*I*-continuous, then by (1), *f* is constant.

(3): It follows from (2).

128

The implication in Theorem 20 is not reversible as shown in the following example:

Example 21. Let $X = \{a, b, c\}, \tau = \{X, \emptyset, \{a\}, \{a, b\}, \{a, c\}\}$ and $I = \{\emptyset, \{a\}\}$. Then every semi-*I*-continuous function $f : (X, \tau, I) \to (Y, \sigma)$, where (Y, σ) is a two point discrete space is constant but (X, τ, I) is not \star -hyperconnected.

Theorem 22. If X is a \star -hyperconnected ideal space and $f : (X, \tau, I) \rightarrow (Y, \sigma)$ is an almost F-I-continuous surjection, then Y is hyperconnected.

Proof. Suppose that Y is not hyperconnected. Then there exist disjoint nonempty open sets $A \subset Y$ and $B \subset Y$. Take M = Int(Cl(A)) and N = Int(Cl(B)). Then M and N are nonempty regular open sets and $M \cap N = \emptyset$. We have S-I-Int $(f^{-1}(M)) \cap S$ -I-Int $(f^{-1}(N)) \subset f^{-1}(M) \cap f^{-1}(N) = \emptyset$. Since f is an almost F-I-continuous surjection, then S-I-Int $(f^{-1}(M)) \neq \emptyset$ and S-I-Int $(f^{-1}(N)) \neq \emptyset$. By Lemma 7 and Theorem 11, X is not \star hyperconnected. This is a contradiction.

Corollary 23. If X is a \star -hyperconnected ideal space and $f : (X, \tau, I) \to (Y, \sigma)$ is a continuous surjection, then Y is hyperconnected.

Proof. Since every continuous function is almost F-I-continuous, it follows from Theorem 22.

Definition 24. A function $f : (X, \tau) \to (Y, \sigma, I)$ is said to be almost *F*-*I*-open if *S*-*I*-*Int*(f(A)) $\neq \emptyset$, for every nonempty regular open set $A \subset X$.

Theorem 25. If Y is a \star -hyperconnected ideal space and $f : (X, \tau) \to (Y, \sigma, I)$ is an almost F-I-open injection, then X is hyperconnected.

Proof. Let A and B be any nonempty open sets of X. Take M = Int(Cl(A)) and N = Int(Cl(B)). This implies that M and N are nonempty regular open sets. Since f is almost F-I-open, then S-I-Int $(f(M)) \neq \emptyset$ and S-I-Int $(f(N)) \neq \emptyset$. Since Y is \star -hyperconnected, then $\emptyset \neq S$ -I-Int $(f(M)) \cap S$ -I-Int $(f(N)) \subset f(M) \cap f(N)$. Since f is an injective function, then $M \cap N \neq \emptyset$. Thus, $A \cap B \neq \emptyset$ and hence X is hyperconnected.

Corollary 26. If Y is a \star -hyperconnected ideal space and $f : (X, \tau) \to (Y, \sigma, I)$ is an open injection, then X is hyperconnected.

Proof. Since every open function is almost F-I-open, it follows from Theorem 25.

REFERENCES

- DONTCHEV, J. On pre-I-open sets and a decomposition of I-continuity, Banyan Math. J., 2 (1996).
- DONTCHEV, J.; GANSTER, M.; ROSE, D. *Ideal resolvability*, Topology Appl., 93 (1999), 1–16.
- HATIR, E.; NOIRI, T. On decompositions of continuity via idealization, Acta Math. Hungar., 96 (2002), 341–349.
- HATIR, E.; KESKIN, A.; NOIRI, T. On a new decomposition of continuity via idealization, JP J. Geom. Topol., 3 (2003), 53–64.
- HATIR, E.; NOIRI, T. On semi-I-open sets and semi-I-continuous functions, Acta Math. Hungar., 107 (2005), 345–353.
- JANKOVIĆ, D.; HAMLETT, T.R. New topologies from old via ideals, Amer. Math. Monthly, 97 (1990), 295–310.
- 7. KURATOWSKI, K. Topology, Vol. I, Academic Press, New York-London, 1966.
- 8. STEEN, L.A.; SEEBACH, J.A., JR. *Counterexamples in Topology*, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1970.
- VAIDYANATHASWAMY, R. The localisation theory in set-topology, Proc. Indian Acad. Sci., Sect. A., 20 (1944), 51–61.

Received: 26.XI.2009

9

Department of Mathematics, Canakkale Onsekiz Mart University, Terzioglu Campus, 17020 Canakkale, TURKEY eekici@comu.edu.tr

2949-1 Shiokita-cho, Hinagu, Yatsushiro-shi, Kumomoto-ken, 869-5142, JAPAN t.noiri@nifty.com