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1. Introduction

Several notions which are equivalent to hyperconnectedness were inves-
tigated in the literature such as the notions of D-spaces, semi-connected
spaces, s-connected spaces, irreducible spaces. On the other hand, the
notion of ideal topological spaces was studied by Kuratowski [7] and
Vaidyanathaswamy [9]. In 1990, Janković and Hamlett [6] inves-
tigated further properties of ideal topological spaces. In this paper, the
notion of ⋆-hyperconnected ideal topological spaces are introduced and stu-
died. Characterizations and properties of ⋆-hyperconnected ideal topologi-
cal spaces are investigated.

2. Preliminaries

Throughout the present paper, (X, τ) or (Y, σ) will denote a topological
space with no separation properties assumed. For a subset A of a topological
space (X, τ), Cl(A) and Int(A) will denote the closure and interior of A in
(X, τ), respectively. An ideal I on a topological space (X, τ) is a nonempty
collection of subsets of X which satisfies (1) A ∈ I and B ⊂ A implies
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B ∈ I, (2) A ∈ I and B ∈ I implies A ∪ B ∈ I. Given a topological space
(X, τ) with an ideal I on X and, if P (X) is the set of all subsets of X, a set
operator (.)∗ : P (X) → P (X), called a local function ([7]) of A with respect
to τ and I is defined as follows: for A ⊂ X, A∗(I, τ) = {x ∈ X : G ∩A /∈ I
for every G ∈ τ(x)} where τ(x) = {G ∈ τ : x ∈ G}. A Kuratowski closure
operator Cl∗(.) for a topology τ∗(I, τ), called the ⋆-topology, finer than τ ,
is defined by Cl∗(A) = A ∪ A∗(I, τ) ([6]). When there is no chance for
confusion, we will simply write A∗ for A∗(I, τ) and τ∗ or τ∗(I) for τ∗(I, τ).
For any ideal space (X, τ, I), the collection {U\J : U ∈ τ and J ∈ I} is a
basis for τ∗. If I is an ideal on X, then (X, τ, I) is called an ideal topological
space or simply an ideal space.

Definition 1. A subset A of an ideal space (X, τ, I) is said to be:

(1) pre-I-open ([1]) if A ⊂ Int(Cl∗(A));

(2) semi-I-open ([3]) if A ⊂ Cl∗(Int(A));

(3) strongly β-I-open ([4]) if A ⊂ Cl∗(Int(Cl∗(A)));

(4) ⋆-dense ([2]) if Cl∗(A) = X;

(5) ⋆-nowhere dense if Int(Cl∗(A)) = ∅.

The complement of a pre-I-open (resp. semi-I-open, strongly β-I-open)
set is called pre-I-closed (resp. semi-I-closed, strongly β-I-closed). A topo-
logical space X is said to be hyperconnected ([8]) if every pair of nonempty
open sets of X has nonempty intersection. A function f : (X, τ, I) → (Y, σ)
is said to be semi-I-continuous ([3]) if, for every open set A of Y , f−1(A)
is semi-I-open in X.

3. Characterizations of ⋆-hyperconnected spaces

Definition 2. An ideal space (X, τ, I) is said to be:

(1) ⋆-hyperconnected if A is ⋆-dense for every open subset A ̸= ∅ of X;

(2) ⋆-connected if X can not be written as the union of nonempty and
disjoint an open set and a ⋆-open set of X.
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Remark 3. (1) Generally, it is known that every hyperconnected topo-
logical space is connected, but not conversely.

(2) For an ideal space (X, τ, I), τ ⊂ τ∗ and we have the following pro-
perties:

(X, τ, I) is ⋆ -hyperconnected ⇒ (X, τ) is hyperconnected
⇓ ⇓

(X, τ, I) is ⋆ -connected ⇒ (X, τ) is connected

The implications in the diagram are not reversible as shown in the following
examples:

Example 4. Let X = {a, b, c}, τ = {X, ∅, {a}, {a, b}, {a, c}} and I =
{∅, {a}}. Then the space (X, τ) is hyperconnected but (X, τ, I) is not ⋆-
connected.

Example 5. Let X = {a, b, c, d}, τ = {X, ∅, {a}, {c}, {a, b}, {a, c},
{a, b, c}, {a, c, d}} and I = {∅, {b}}. Then, the ideal space (X, τ, I) is
⋆-connected but it is not hyperconnected.

Definition 6. A subset A of an ideal space (X, τ, I) is called

(1) semi∗-I-open if A ⊂ Cl(Int∗(A));

(2) semi∗-I-closed if its complement is semi∗-I-open.

Lemma 7. Every semi-I-open set is semi∗-I-open.

Proof. Let A be a semi-I-open subset in an ideal space (X, τ, I). Then
A ⊂ Cl∗(Int(A)). We have A ⊂ Cl∗(Int(A)) ⊂ Cl(Int∗(A)). Thus, A is
semi∗-I-open. �

The implication in Lemma 7 is not reversible as shown in the following
example:

Example 8. Let X = {a, b, c, d}, τ = {X, ∅, {a}, {a, b}, {c, d}, {a, c, d}}
and I = {∅, {a}, {d}, {a, d}}. Then, the set A = {b, c, d} is semi∗-I-open
but it is not semi-I-open.

Lemma 9 ([5]). A subset A of an ideal space (X, τ, I) is semi-I-open,
if and only if there exists B ∈ τ , such that B ⊂ A ⊂ Cl∗(B).

Lemma 10. A subset A of an ideal space (X, τ, I) is semi∗-I-open, if
and only if there exists B ∈ τ∗, such that B ⊂ A ⊂ Cl(B).
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Proof. Let A be semi∗-I-open. Then A ⊂ Cl(Int∗(A)). Take B =
Int∗(A). We have B ⊂ A ⊂ Cl(B).

Conversely, let B ⊂ A ⊂ Cl(B) for a B ∈ τ∗. Since B ⊂ A, then
B ⊂ Int∗(A). Thus, Cl(B) ⊂ Cl(Int∗(A)) and A ⊂ Cl(Int∗(A)). Hence,
A is semi∗-I-open. �

Theorem 11. Let (X, τ, I) be an ideal space. The following properties
are equivalent:

(1) X is ⋆-hyperconnected;

(2) A is ⋆-dense or ⋆-nowhere dense, for every subset A ⊂ X;

(3) A ∩ B ̸= ∅, for every nonempty open subset A and every nonempty
⋆-open subset B of X;

(4) A ∩B ̸= ∅, for every nonempty semi-I-open subset A ⊂ X and every
nonempty semi∗-I-open subset B ⊂ X.

Proof. (1) ⇒ (2) : Let X be ⋆-hyperconnected and A ⊂ X. Suppose
that A is not ⋆-nowhere dense. Then Cl(X\Cl∗(A)) = X\Int(Cl∗(A)) ̸=
X. By (1), for Int(Cl∗(A)) ̸= ∅, Cl∗(Int(Cl∗(A))) = X.

Since Cl∗(Int(Cl∗(A))) = X ⊂ Cl∗(A), then Cl∗(A) = X. Thus, A is
⋆-dense.

(2) ⇒ (3) : Suppose that A∩B = ∅, for some nonempty sets A ∈ τ and
B ∈ τ∗. Then Cl∗(A)∩B = ∅ and A is not ⋆-dense. Moreover, since A ∈ τ ,
∅ ̸= A ⊂ Int(Cl∗(A)) and A is not ⋆-nowhere dense.

(3) ⇒ (4) : Suppose that A ∩ B = ∅, for some nonempty semi-I-open
set A and some nonempty semi∗-I-open set B. By Lemmas 9 and 10, there
exist M ∈ τ and N ∈ τ∗, such that M ⊂ A ⊂ Cl∗(M) and N ⊂ B ⊂ Cl(N).
Since A and B are nonempty, M and N are nonempty. Moreover, we have
M ∩N ⊂ A ∩B = ∅.

(4) ⇒ (1) : Suppose that A ∩ B ̸= ∅, for every nonempty semi-I-open
subset A ⊂ X and every nonempty semi∗-I-open subset B ⊂ X. Since
every open set is semi-I-open and every ⋆-open set is semi∗-I-open, then X
is ⋆-hyperconnected. �

Definition 12. The semi∗-I-closure (resp. semi-I-closure, pre-I-closure,
strongly β-I-closure) of a subset A of an ideal space (X, τ, I), denoted by
S∗-I-Cl(A) (resp. S-I-Cl(A), P -I-Cl(A), Sβ-I-Cl(A)), is defined by the
intersection of all semi∗-I-closed (resp. semi-I-closed, pre-I-closed, strongly
β-I-closed) sets of X containing A.
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Lemma 13. The following properties hold for a subset A of an ideal
space (X, τ, I):

(1) S∗-I-Cl(A) = A ∪ Int(Cl∗(A));

(2) S-I-Cl(A) = A ∪ Int∗(Cl(A));

(3) P -I-Cl(A) = A ∪ Cl(Int∗(A));

(4) Sβ-I-Cl(A) = A ∪ Int∗(Cl(Int∗(A))).

Proof. (4) Since Sβ-I-Cl(A) is strongly β-I-closed, then

Int∗(Cl(Int∗(A))) ⊂ Int∗(Cl(Int∗(Sβ-I-Cl(A)))) ⊂ Sβ-I-Cl(A).

Hence, A ∪ Int∗(Cl(Int∗(A))) ⊂ Sβ-I-Cl(A). Conversely, we have:

Int∗(Cl(Int∗(A ∪ Int∗(Cl(Int∗(A))))))

⊂ Int∗(Cl(Int∗(A ∪ Cl(Int∗(A)))))

⊂ Int∗(Cl(Int∗(A) ∪ Cl(Int∗(A)))))

= Int∗(Cl(Int∗(A))) ⊂ A ∪ Int∗(Cl(Int∗(A)))).

Then A ∪ Int∗(Cl(Int∗(A))) is strongly β-I-closed containing A. Thus,
Sβ-I-Cl(A) ⊂ A ∪ Int∗(Cl(Int∗(A))). Hence,

Sβ-I-Cl(A) = A ∪ Int∗(Cl(Int∗(A))).

The proofs of (1), (2) and (3) are similar to that of (4). �

Theorem 14. The following are equivalent for an ideal space (X, τ, I):

(1) X is ⋆-hyperconnected;

(2) H is ⋆-dense, for every strongly β-I-open subset ∅ ̸= H ⊂ X;

(3) S∗-I-Cl(H) = X, for every strongly β-I-open subset ∅ ̸= H ⊂ X;

(4) Sβ-I-Cl(G) = X, for every semi∗-I-open subset ∅ ̸= G ⊂ X;

(5) P -I-Cl(G) = X, for every semi∗-I-open subset ∅ ̸= G ⊂ X.
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Proof. (1) ⇒ (2) : Let (X, τ, I) be a ⋆-hyperconnected ideal space. Let
H be any nonempty strongly β-I-open subset ofX. We have Int(Cl∗(H)) ̸=
∅. Thus, X = Cl∗(Int(Cl∗(H))) = Cl∗(H).

(2) ⇒ (3) : Let H be any nonempty strongly β-I-open subset of X.
Thus, by Lemma 13, S∗-I-Cl(H) = H ∪ Int(Cl∗(H)) = H ∪ Int(X) = X.

(3) ⇒ (4) : Let G be a nonempty semi∗-I-open subset of X. Thus, by
Lemma 13,

Sβ-I-Cl(G) = G ∪ Int∗(Cl(Int∗(G))) = G ∪ Int∗(Cl(G))

⊃ G ∪ Int(Cl∗(G)) ⊃ Int(G) ∪ Int(Cl∗(Int(G)))

= S∗-I-Cl(Int(G)) = X.

Thus, Sβ-I-Cl(G) = X.

(4) ⇒ (5) : Let G be a nonempty semi∗-I-open subset of X. By Lemma
13, we have P -I-Cl(G) = G ∪ Cl(Int∗(G)) ⊃ G ∪ Int∗(Cl(Int∗(G))) =
Sβ-I-Cl(G) = X. Thus, P -I-Cl(G) = X.

(5) ⇒ (1) : Let G be a nonempty ⋆-open set of X. By (5), P -I-Cl(G) =
G ∪ Cl(Int∗(G)) = X. This implies that Cl(G) = X. By Theorem 11, X
is ⋆-hyperconnected. �

Corollary 15. For an ideal space (X, τ, I), the following properties are
equivalent:

(1) X is ⋆-hyperconnected;

(2) G∩H ̸= ∅, for every nonempty semi∗-I-open subset G ⊂ X and every
nonempty strongly β-I-open subset H ⊂ X;

(3) G ∩H ̸= ∅, for any nonempty semi∗-I-open set G and any nonempty
pre-I-open set H.

Proof. The proof is obvious from Theorem 14. �

4. ⋆-hyperconnected spaces and functions

Definition 16. The semi-I-interior of a subset A of an ideal space
(X, τ, I), denoted by S-I-Int(A), is defined by the union of all semi-I-open
sets of X contained in A.
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Definition 17. A function f : (X, τ, I) → (Y, σ) is said to be almost
F -I-continuous if for every nonempty regular open set A of Y , f−1(A) ̸= ∅
implies S-I-Int(f−1(A)) ̸= ∅.

Theorem 18. Every semi-I-continuous function f : (X, τ, I) → (Y, σ)
is almost F -I-continuous.

Proof. Let f : (X, τ, I) → (Y, σ) be a semi-I-continuous function. Let
A be any regular open subset of Y such that f−1(A) ̸= ∅. Then f−1(A) is
a nonempty semi-I-open set in X and hence, f−1(A) = S-I-Int(f−1(A)).
Thus, f is almost F -I-continuous. �

The implication in Theorem 18 is not reversible as shown in the following
example:

Example 19. LetX = Y = {a, b, c, d}, τ = σ = {X, ∅, {a}, {a, b}, {c, d},
{a, c, d}} and I = {∅, {a}, {d}, {a, d}}. Define the function f : (X, τ, I) →
(Y, σ) as follows: f(a) = a, f(b) = c, f(c) = d, f(d) = c. Then f is almost
F -I-continuous but it is not semi-I-continuous.

Theorem 20. The following properties hold for a ⋆-hyperconnected ideal
space (X, τ, I):

(1) Every almost F -I-continuous function f : (X, τ, I) → (Y, σ), where
(Y, σ) is a Hausdorff space is constant;

(2) Every semi-I-continuous function f : (X, τ, I) → (Y, σ), where (Y, σ)
is a Hausdorff space is constant;

(3) Every semi-I-continuous function f : (X, τ, I) → (Y, σ), where (Y, σ)
is a two point discrete space is constant.

Proof. (1) : Let X be a ⋆-hyperconnected ideal space. Suppose that
there exist a Hausdorff space Y and an almost F -I-continuous function
f : X → Y , such that f is not constant. There exist two points x and
y of X, such that f(x) ̸= f(y). Since Y is Hausdorff, then there exist
open sets A and B in Y , such that f(x) ∈ A, f(y) ∈ B and A ∩ B = ∅.
Take M = Int(Cl(A)) and N = Int(Cl(B)). This implies that M and
N are nonempty regular open and M ∩ N = ∅. Since f is almost F -I-
continuous, then S-I-Int(f−1(M)) ̸= ∅ and S-I-Int(f−1(N)) ̸= ∅. We
have S-I-Int(f−1(M)) ∩ S-I-Int(f−1(N)) ⊂ f−1(M ∩N) = ∅. Since S-I-
Int(f−1(M)) and S-I-Int(f−1(N)) are semi-I-open, then by Lemma 7 and
Theorem 11, X is not ⋆-hyperconnected. This is a contradiction.
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(2) : Let f : (X, τ, I) → (Y, σ) be a semi-I-continuous function of
(X, τ, I) into a Hausdorff space (Y, σ). Since every semi-I-continuous func-
tion is almost F -I-continuous, then by (1), f is constant.

(3) : It follows from (2). �
The implication in Theorem 20 is not reversible as shown in the following

example:

Example 21. Let X = {a, b, c}, τ = {X, ∅, {a}, {a, b}, {a, c}} and I =
{∅, {a}}. Then every semi-I-continuous function f : (X, τ, I) → (Y, σ),
where (Y, σ) is a two point discrete space is constant but (X, τ, I) is not
⋆-hyperconnected.

Theorem 22. If X is a ⋆-hyperconnected ideal space and f : (X, τ, I) →
(Y, σ) is an almost F -I-continuous surjection, then Y is hyperconnected.

Proof. Suppose that Y is not hyperconnected. Then there exist disjoint
nonempty open sets A ⊂ Y and B ⊂ Y . Take M = Int(Cl(A)) and N =
Int(Cl(B)). ThenM andN are nonempty regular open sets andM∩N = ∅.
We have S-I-Int(f−1(M)) ∩ S-I-Int(f−1(N)) ⊂ f−1(M) ∩ f−1(N) = ∅.
Since f is an almost F -I-continuous surjection, then S-I-Int(f−1(M)) ̸= ∅
and S-I-Int(f−1(N)) ̸= ∅. By Lemma 7 and Theorem 11, X is not ⋆-
hyperconnected. This is a contradiction. �

Corollary 23. If X is a ⋆-hyperconnected ideal space and f : (X, τ, I) →
(Y, σ) is a continuous surjection, then Y is hyperconnected.

Proof. Since every continuous function is almost F -I-continuous, it
follows from Theorem 22. �

Definition 24. A function f : (X, τ) → (Y, σ, I) is said to be almost
F -I-open if S-I-Int(f(A)) ̸= ∅, for every nonempty regular open set A ⊂ X.

Theorem 25. If Y is a ⋆-hyperconnected ideal space and f : (X, τ) →
(Y, σ, I) is an almost F -I-open injection, then X is hyperconnected.

Proof. Let A and B be any nonempty open sets of X. Take M =
Int(Cl(A)) andN = Int(Cl(B)). This implies thatM andN are nonempty
regular open sets. Since f is almost F -I-open, then S-I-Int(f(M)) ̸=
∅ and S-I-Int(f(N)) ̸= ∅. Since Y is ⋆-hyperconnected, then ∅ ̸= S-I-
Int(f(M))∩S-I-Int(f(N)) ⊂ f(M)∩f(N). Since f is an injective function,
then M ∩N ̸= ∅. Thus, A ∩B ̸= ∅ and hence X is hyperconnected. �
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Corollary 26. If Y is a ⋆-hyperconnected ideal space and f : (X, τ) →
(Y, σ, I) is an open injection, then X is hyperconnected.

Proof. Since every open function is almost F -I-open, it follows from
Theorem 25. �
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