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1. Introduction and preliminary

As it is well-known, regularity is an important property of continuity,
which connects measure theory and topology. It gives us an important
tool to approximate general Borel sets by more tractable sets, such as, for
instance, compact and/or open sets. That is why, many authors gave a
special interest in the last years to different problems and applications of
regularity, for instance, in order to obtain Alexandroff and Lusin type the-
orems, in convergence problems for Choquet integrals etc. We mention in
this sense the works of Dinculeanu [3] (for real normed space-valued mea-
sures), Ha andWang [11], Li andYasuda [18], Li, Yasuda and Song [19],
Narukawa [20], Narukawa, Murofushi and Sugeno [21], Song and
Li [27], Wu and Ha [28], Wu and Wu [29] (for fuzzy measures) etc. We
also mention the contributions [14-17] of Kawabe, who generalized many
classical fuzzy measure theory problems to Riesz space-valued measures.
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On the other hand, by theoretical and practical necessities, a set-valued
measure theory became to develop (see, for instance, Guo and Zhang [10],
Gavriluţ [4-9], Precupanu [23, 24], Precupanu, Gavriluţ and Croi-
toru [25], Precupanu and Gavriluţ [26], Zhang and Guo [30], Zhang
and Wang [31] and many others).

In this paper, we focuse on the study of different abstract regularities for
fuzzy set multifunctions. Some relationships among these types of regularity
are presented.

The results we obtained generalize other previous results of Gavri-
luţ [4-9], Kawabe [16], Wu and Wu [29], Li and Yasuda [18], Naru-
kawa [20], Narukawa et. al [21], Jiang and Suzuki [13] etc. Our
generalization is made in two directions: firstly, since here we deal with
abstract regularity and secondly, because we work in the set-valued case.

We mention that regularity in an abstract sense was also treated for
topological group-valued measures by Belley and Morales [2], by Pre-
cupanu [24] for additive multimeasures etc.

2. Terminology, notations and basic results

Let T be an abstract set, C a ring of subsets of T , X a real normed space,
P0(X) the family of all nonvoid subsets of X,Pf (X) the family of closed,
nonvoid sets of X, Pbf (X) the family of all bounded, closed, nonvoid sets
of X and h the Hausdorff pseudometric on Pf (X).

As it is well-known, h(M,N) = max{e(M,N), e(N,M)}, for every M,
N ∈ Pf (X), where e(M,N) = supx∈M d(x,N) is the excess of M over N .

On Pbf (X), h becomes a metric [12].
We denote |M | = h(M, {0}), for every M ∈ Pf (X), where 0 is the origin

of X. If, in addition, X is complete, then the same is Pf (X) [12].
We observe that e(N,M) = h(M,N), for every M,N ∈ Pf (X), with

M ⊆ N . Also, e(M,N) ≤ e(M,P ), for every M,N,P ∈ Pf (X), with
P ⊆ N and e(M,P ) ≤ e(N,P ), for every M,N,P ∈ Pf (X), with M ⊆ N.

On P0(X) we introduce the Minkowski addition ”
•
+ ” defined by:

M
•
+N = M +N, for every M,N ∈ P0(X),

where M +N = {x+ y;x ∈ M,y ∈ N} and M +N is the closure of M +N
with respect to the topology induced by the norm of X.

We denote by N the set of all naturals, by R the set of all real numbers
and by R+ the set [0,∞).
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Also, by cA we usually mean T\A, where A ⊂ T.
Throughout the paper we shall use the following notions in the set-

valued case:

Definition 2.1 ([4]-[9], [25, 26]). A set multifunction µ : C → Pf (X) is
said to be:

I) increasing convergent (with respect to h) if limn→∞ h(µ(An), µ(A)) =
0, for every increasing sequence of sets (An)n∈N ⊂ C, with An ↗ A ∈
C.

II) decreasing convergent (with respect to h) if limn→∞ h(µ(An), µ(A)) =
0, for every decreasing sequence of sets (An)n∈N ⊂ C, with An ↘ A ∈
C.

III) i) fuzzy (or, monotone) if µ(A) ⊆ µ(B), for every A,B ∈ C, with
A ⊆ B.

ii) fuzzy in the sense of Sugeno (briefly, (S)-fuzzy) if it is fuzzy,
increasing convergent, decreasing convergent and µ(∅) = {0}.

IV) exhaustive (with respect to h) if limn→∞ |µ(An)| = 0, for every pair-
wise disjoint sequence of sets (An)n∈N ⊂ C.

V) order continuous (with respect to h) if limn→∞ |µ(An)| = 0, for every
sequence of sets (An)n∈N ⊂ C, with An ↘ ∅.

VI) autocontinuous from above if for every A ∈ C and every (Bn)n∈N ⊂ C,
with limn→∞ |µ(Bn)| = 0, we have limn→∞ h(µ(A ∪Bn), µ(A)) = 0.

VII) uniformly autocontinuous if for every A ∈ C and every ε > 0, there is
δ(ε) > 0 so that for every B ∈ C, with |µ(B)| < δ, we have h(µ(A ∪
B), µ(A)) < ε.

VIII) i) null-additive if µ(A ∪ B) = µ(A), for every A,B ∈ C, with µ(B) =
{0}.

ii) null-null-additive if µ(A ∪B) = {0}, for every A,B ∈ C, with
µ(A) = µ(B) = {0}.

IX) single asymptotic null-additive if for every A ∈ C with µ(A) = {0}
and every sequence (Bn)n∈N ⊂ C, with limn→∞ |µ(Bn)| = 0, we have
limn→∞ |µ(A ∪Bn)| = 0.
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X) asymptotic null-additive if for every sequences (An)n∈N, (Bn)n∈N ⊂ C,
with limn→∞ |µ(An)| = limn→∞ |µ(Bn)| = 0, we have limn→∞ |µ(An∪
Bn)| = 0.

All over the paper, unless stated otherwise, µ : C → Pf (X) is supposed
to be a fuzzy (i.e., monotone) set multifunction, with µ(∅) = {0}.

Remark 2.2. We observe that the above definitions I)-X) generalize
to the fuzzy set-valued measure case the corresponding notions from the
classical fuzzy measure case (see [1], [13], [16], [22]). An example in this
sense is the following:

One may consider the fuzzy set multifunction µ : C → Pf (R+), defined
for every A ∈ C by µ(A) = [0,m(A)], which is induced by a fuzzy set
function m : C → R+. We immediately observe that µ satisfies one of
the notions I)-X) if and only if the same does m, due to the inequalities:
h([0, a], [0, b]) = |a− b| and |[0, a]| = a, for every a, b ∈ R+.

Proposition 2.3. I) i) If µ is asymptotic null-additive, then it is single
asymptotic null-additive.

ii) If µ is single asymptotic null-additive, then it is null-null-additive.

II) Suppose C is a δ-ring.

i) If µ is null-null-additive and decreasing convergent, then it is
asymptotic null-additive.

ii) If µ is null-null-additive and decreasing convergent, then it is
single asymptotic null-additive.

Proof. I) The statements are straightforward by the definitions.
II) i) Let be (An)n∈N, (Bn)n∈N ⊂ C, with limn→∞ |µ(An)| =

limn→∞ |µ(Bn)| = 0.
We denote A =

∩∞
n=1An and B =

∩∞
n=1Bn. Without loss of genera-

lity, suppose An ↘ A and Bn ↘ B. Because µ is decreasing convergent,
limn→∞ h(µ(An), µ(A)) = 0, so,

0 ≤ |µ(A)| ≤ lim
n→∞

|µ(An)|+ lim
n→∞

h(µ(An), µ(A)) = 0,

which implies that µ(A) = {0}. Analogously, µ(B) = {0}, so µ(A ∪ B) =
{0}. Again, by the decreasing convergence of µ, we have limn→∞ h(µ(An ∪
Bn), µ(A ∪B)) = 0. Consequently,

0 ≤ lim
n→∞

|µ(An ∪Bn)| ≤ lim
n→∞

h(µ(An ∪Bn), µ(A ∪B)) + |µ(A ∪B)| = 0,
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hence, µ is asymptotic null-additive.
ii) The statement immediately follows by I i) and II i). �
Corollary 2.4. Suppose C is a δ-ring. If µ is decreasing convergent,

then i) µ is asymptotic null-additive ⇔ ii) µ is single asymptotic null-
additive ⇔ iii) µ is null-null-additive.

One can easily check the following results:

Remark 2.5. i) If µ is uniformly autocontinuous, then it is autocon-
tinuous from above.

ii) If µ is autocontinuous from above, then µ is asymptotic null-additive,
so, by Proposition 2.3 I), it is also null-null-additive.

iii) If µ : C → Pbf (X) is autocontinuous from above, then it is null-
additive.

iv) a) If µ : C → Pf (X) is decreasing convergent, then it is order contin-
uous.

b) If C is a σ-ring and µ is order continuous, then µ is exhaustive.

Definition 2.6 ([9]). We say that µ : C → Pf (X) has the pseudometric
generating property (briefly, PGP) if for every ε > 0, there is δ(ε) > 0
so that for every A,B ∈ C, with |µ(A)| < δ and |µ(B)| < δ, we have
|µ(A ∪B)| < ε.

Remark 2.7 ([9]). i) If µ is uniformly autocontinuous, then it has PGP.
ii) If C is a σ-ring and µ is fuzzy, increasing convergent and autoconti-

nuous from above, then µ has PGP.

By the definitions, in like manner as in the proof of Proposition 2.3 II)
i), one can easily verify:

Remark 2.8. i) If C is a δ-ring and µ is null-additive and decreasing
convergent, then it is autocontinuous from above, so it is also asymptotic
null-additive.

ii) a) Any autocontinuous from above order continuous set multifunction
is increasing convergent and decreasing convergent.

b) Any decreasing convergent set multifunction is order continuous.
Consequently, if µ is fuzzy and autocontinuous from above, then µ is (S)-
fuzzy if and only if it is order continuous.

iii) If µ has PGP, then µ is asymptotic null-additive.
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By Remark 2.8 i) and Remark 2.5 iii), we get:

Remark 2.9. If C is a δ-ring and µ : C → Pbf (X) is decreasing conver-
gent, then µ is null-additive if and only if it is autocontinuous from above.

In what follows in this section, let C be a σ-ring. We recall from [26]
the following:

Definition 2.10. A double sequence {Am,n}(m,n)∈N2 ⊂ C is called a
µ-regulator if it satisfies the following two conditions:

(R1) Am,n ⊃ Am,n′ , whenever m,n, n′ ∈ N and n ≤ n′;

(R′
2) µ(

∩∞
n=1Am,n) = {0}, for any m ∈ N.

Definition 2.11. µ is said to fulfil condition (E′) if for any ε > 0 and
any µ-regulator {Am,n}(m,n)∈N2 ⊂ C, there exists an increasing sequence
{ni}i∈N of naturals such that |µ(

∪∞
i=1Ai,ni)| < ε.

Proposition 2.12 ([26]). Let µ be (S)-fuzzy. Then µ fulfils condition
(E′) if and only if it is null-null-additive.

By Remark 2.5 ii), Remark 2.7 ii) and Proposition 2.12, we have:

Corollary 2.13. i) If µ is (S)-fuzzy and autocontinuous from above,
then it fulfils (E′).

ii) Moreover, if C is a σ-ring and µ is (S)-fuzzy and autocontinuous
from above, then µ fulfils (E′) and has PGP.

By Proposition 2.12 and Corollary 2.4, we have:

Corollary 2.14. Suppose C is a δ-ring and µ is (S)-fuzzy. Then i) µ
is null-null-additive ⇔ ii) µ fulfils (E′) ⇔ iii) µ is asymptotic null-additive
⇔ iv) µ is single asymptotic null-additive.

Many of the results we obtained in this section generalize to the set-
valued case previous results ofKawabe [16], Jiang and Suzuki [13], Pap [22]
concerning corresponding asymptotic structural properties of fuzzy set func-
tions.
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3. Abstract regularity for monotone set multifunctions

In this section, we shall introduce different types of abstract regularity
in the fuzzy set-valued measure case and we shall establish various rela-
tionships among them. These results will find their direct applicability in
concrete regularities that will be studied in Section 4.

Some of the results concerning abstract regularity we shall obtain in this
section generalize other previous results we obtained in [4-6] and [8].

Let T be a Hausdorff space, X a real normed space, C a ring of subsets
of T , A ∈ C an arbitrary set, µ : C → Pf (X) a fuzzy (i.e., monotone) set
multifunction, with µ(∅) = {0} and M,N ⊂ P(T ) two arbitrary nonvoid
families of subsets of T.

For the consistency of the following notions, one may place itself in one
of the following situations (but not only, as we shall see, for instance, in
Theorem 3.10 or Example 3.12):

(i) T is a Hausdorff space, C is the Borel σ-algebra B̃ generated by the
open sets of T , M = F , the family of closed subsets of T and N = D, the
family of open subsets of T or M = K, the family of compact subsets of T
and N = D;

(It is known that B̃ = A(F) = A(D), and, particularly, if T = Rn, then
B̃ = A(K), where, by A(L), we mean the σ-algebra generated by a nonvoid
family L of subsets of T.)

(ii) T is, particularly, a locally compact Hausdorff space, C is B0 (res-
pectively, B′

0) - the Baire δ-ring (respectively, σ-ring) generated by compact
sets, which are Gδ (i.e., countable intersections of open sets) or C is B
(respectively, B′) - the Borel δ-ring (respectively, σ-ring) generated by the
compact sets of T , M = K and N = D.

Note that B0 ⊂ B, B0 ⊂ B′
0, B′

0 ⊂ B′ and B ⊂ B′.

According to the usage of M and N , F and D or K and D, it will be
understood that we place ourselves, respectively, in the general situation,
situation (i)/(ii) or situation (ii) (we remark that in situation (i) we may
have F and D or K and D and in situation (ii) we may have K and D).

We shall particularly study situation (i) when T is a locally compact
Hausdorff space.

Since e(N,M) = h(M,N), for every M,N ∈ Pf (X), with M ⊆ N , we
give the following:

Definition 3.1. I) A is said to be:
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(i) RM,N -regular if for every ε > 0, there are M ∈ M ∩ C,M ⊂ A and
N ∈ N ∩ C, N ⊃ A so that e(µ(N), µ(M)) < ε.

(ii) RM-regular if for every ε > 0, there exists M ∈ M ∩ C,M ⊂ A so
that e(µ(A), µ(M)) < ε.

(iii) RN -regular if for every ε > 0, there exists N ∈ N ∩ C, N ⊃ A such
that e(µ(N), µ(A)) < ε.

(iv) R′
M,N -regular if for every ε > 0, there are M ∈ M ∩ C,M ⊂ A and

N ∈ N ∩ C, A ⊂ N so that |µ(N\M)| < ε.

(v) R′
M-regular if for every ε > 0, there is M ∈ M ∩ C,M ⊂ A so that

|µ(A\M)| < ε.

(vi) R′
N -regular if for every ε > 0, there is N ∈ N ∩ C, A ⊂ N such that

|µ(N\A)| < ε.

II) µ is said to be:

i) RM,N -regular (respectively, RM-regular, RN -regular) if every set
A ∈ C is RM,N -regular (respectively, RM-regular, RN -regular).

ii) R′
M,N -regular (respectively, R′

M-regular, R′
N -regular) if every set

A ∈ C is R′
M,N -regular (respectively, R′

M-regular, R′
N -regular).

Remark 3.2. I) In situation (ii), our definitions generalize the well-
known notions we introduced and studied in [4-9].

In situation (i), by the aid of the fuzzy induced set multifunction, we
get the generalization to the set-valued case of the well-known notions of
regularity from the classical fuzzy measures theory.

II) EveryM ∈ M∩C is RM-regular and R′
M-regular and everyN ∈ N∩C

is RN -regular and R′
N -regular.

III) i) µ is R′
M,N -regular if and only if for every A ∈ C there are a sequence

(Mn) ⊂ M∩C and a sequence (Nn) ⊂ N ∩C so that for every n ∈ N,
Mn ⊂ A ⊂ Nn and limn→∞ |µ(Nn\Mn)| = 0.

ii) µ is R′
M-regular if and only if for every A ∈ C there is a sequence

(Mn) ⊂ M∩ C so that for every n ∈ N, Mn ⊂ A and
limn→∞ |µ(A\Mn)| = 0.
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iii) µ is R′
N -regular if and only if for every A ∈ C there is a sequence

(Nn) ⊂ N ∩ C so that for every n ∈ N, A ⊂ Nn and
limn→∞ |µ(Nn\A)| = 0.

iv) µ is RM,N -regular if and only if for every A ∈ C there are a
sequence (Mn) ⊂ M∩C and a sequence (Nn) ⊂ N ∩C so that for
every n ∈ N, Mn ⊂ A ⊂ Nn and limn→∞ e(µ(Nn), µ(Mn)) = 0.

v) µ is RM-regular if and only if for every A ∈ C there is a sequence
(Mn) ⊂ M∩ C so that for every n ∈ N, Mn ⊂ A and
limn→∞ e(µ(A), µ(Mn)) = 0.

vi) µ is RN -regular if and only if for every A ∈ C there is a sequence
(Nn) ⊂ N ∩ C so that for every n ∈ N, A ⊂ Nn and
limn→∞ e(µ(Nn), µ(A)) = 0.

IV) (Mn) may be chosen increasing and (Nn) may be chosen decreasing.

V) If M = C or if N = C, then µ is R′
C-regular and RC-regular.

VI) i) If M1 ⊂ M2 and µ is R′
M1

-regular (RM1-regular, respectively),
then µ is R′

M2
-regular (RM2-regular, respectively).

ii) If N1 ⊂ N2 and µ is R′
N1

-regular (RN1-regular, respectively),
then µ is R′

N2
-regular (RN2-regular, respectively).

iii) IfM1 ⊂ M2,N1 ⊂ N2 and µ is R′
M1,N1

-regular (RM1,N1-regular,
respectively), then µ is R′

M2,N2
-regular (RM2,N2-regular, respec-

tively).

In what follows, we establish different relationships among these types
of abstract regularity, which generalize some other previous results we es-
tablished in [6] and [8].

Theorem 3.3. i) µ is RM,N -regular if and only if it is RM-regular and
RN -regular.

ii) If µ is R′
M,N -regular, then it is R′

M-regular and R′
N -regular.

iii) If µ is asymptotic null-additive, then µ is R′
M,N -regular if and only if

it is R′
M-regular and R′

N -regular.

iv) If C is a δ-ring and µ is decreasing convergent and null-null-additive,
then µ is R′

M,N -regular if and only if it is R′
M-regular and R′

N -regular.
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Proof. The statements i) and ii) can be proved analogously as in [8].

iii) The Only if part follows by ii).

For The if part, let A ∈ C be arbitrarily. Since A is R′
M-regular, there

is (Mn) ⊂ M ∩ C so that Mn ⊂ A and limn→∞ |µ(A\Mn)| = 0. Also,
because A is R′

N -regular, there is (Nn) ⊂ D ∩ C so that A ⊂ Nn and
limn→∞ |µ(Nn\A)| = 0. Then limn→∞ |µ(Nn\Mn)| = limn→∞ |µ((Nn\A) ∪
(A\Mn))| = 0, hence A is R′

M,N -regular.

iv) The statement is straightforward according to iii) and Proposition
2.3 II i). �

Corollary 3.4. (i) A set M ∈ M ∩ C is RM,N -regular if and only if
it is RN -regular and a set N ∈ N ∩ C is RM,N -regular if and only if it is
RM-regular.

(ii) If µ is asymptotic null-additive, then a set M ∈ M ∩ C is R′
M,N -

regular if and only if it is R′
N -regular and a set N ∈ N ∩C is R′

M,N -regular
if and only if it is R′

M-regular.

Theorem 3.5. Suppose µ is autocontinuous from above.

i) If µ is R′
M-regular, then µ is RM-regular.

ii) If µ is R′
N -regular, then µ is RN -regular.

iii) If µ is R′
M,N -regular, then µ is RM,N -regular.

Proof. i) and ii) are immediate because µ is autocontinuous from above.

iii) The statement is straightforward by i), ii), Theorem 3.3 ii) and i)
and also by Remark 2.5 ii). �

Proposition 3.6. Suppose C is an algebra, M is arbitrarily, N = {A ∈
C; cA ∈ M} and µ is asymptotic null-additive and R′

M-regular (or, respec-
tively, R′

N -regular). Then µ is R′
M,N -regular.

Proof. Let us consider arbitrary A ∈ C.
If µ is R′

M-regular, there exists an increasing sequence of sets (Mn) ⊂
M∩ C so that for every n ∈ N, Mn ⊂ A and limn→∞ |µ(A\Mn)| = 0.

Analogously, for cA ∈ C, there exists an increasing sequence of sets
(Pn) ⊂M∩C so that for every n ∈ N, Pn ⊂ cA and limn→∞ |µ(cA\Pn)| = 0.

If we denote Nn = cPn, for every n ∈ N, then (Nn) ⊂ N ∩ C, A ⊂ Nn

and limn→∞ |µ(Nn\A)| = 0.
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Since µ is asymptotic null-additive, limn→∞ |µ(Nn\Mn)| = 0, so, finally,
µ is R′

M,N -regular.
Similar argues in case when µ is R′

N -regular. �
By Theorem 3.3 and Theorem 3.6, we have:

Corollary 3.7. Suppose C is an algebra, M is arbitrarily, N = {A ∈
C; cA ∈ M} and µ is asymptotic null-additive. Then i) µ is R′

M-regular ⇔
ii) µ is R′

N -regular ⇔ iii) µ is R′
M,N -regular.

Theorem 3.8. Suppose µ1, µ2 : C → Pbf (X) are fuzzy and let M be
closed for finite unions and N be closed for finite intersections. Then:

i) If µ1, µ2 are RM-regular, then µ1 = µ2 on M ∩ C if and only if
µ1 = µ2 on C.

ii) If µ1, µ2 are RN -regular, then µ1 = µ2 on N ∩ C if and only if
µ1 = µ2 on C.

Proof. Let A ∈ C be an arbitrary set.
i) The If part is straightforward.
The Only if part : Suppose µ1 and µ2 are RM-regular and µ1 = µ2 on

M∩C. Because µ1 is RM-regular, there is a sequence (M1
n) ⊂ M∩C so that

for every n ∈ N, M1
n ⊂ A and limn→∞ e(µ1(A), µ1(M

1
n)) = 0. Analogously,

for µ2, there is an increasing sequence (M2
n) ⊂ M ∩ C so that for every

n ∈ N, M2
n ⊂ A and limn→∞ e(µ2(A), µ2(M

2
n)) = 0. For every n ∈ N, we

denote Mn = M1
n ∪M2

n ∈ M∩C. Obviously, limn→∞ h(µ1(A), µ1(Mn)) = 0
and limn→∞ h(µ2(A), µ2(Mn)) = 0. Because for every n ∈ N, µ1(Mn) =
µ2(Mn), then h(µ1(A), µ2(A)) = 0, so, because µ1, µ2 : C → Pbf (X), we
get µ1(A) = µ2(A).

ii) One can obtain the result using similar argues as in i). �

In what follows, let C be a ring of subsets of T and µ1, µ2 : C → Pf (X)
two fuzzy set multifunctions, with µ1(∅) = µ2(∅) = {0}.

We introduce now the fuzzy set multifunction µ : C → Pf (X), with

µ(∅) = {0}, defined for every A ∈ C by µ(A) = µ1(A)
•
+µ2(A) (the so called

Minkowski sum of the fuzzy set multifunctions).
In the sequel, we observe that µ preserves the continuity properties

which both µ1 and µ2 have:

Theorem 3.9. i) If both µ1, µ2 : C → Pf (X) are order continu-
ous (increasing convergent, decreasing convergent, (S)-fuzzy or exhaustive,
respectively), then the same is µ;
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ii) If µ1 is R
′
M1

-regular (RM1-regular, respectively) and µ2 is R
′
M2

-regular
(RM2-regular, respectively), where M1 and M2 are two arbitrary fa-
milies of subsets of T , then µ is R′

M1∪M2
-regular (RM1∪M2-regular,

respectively), where M1 ∪M2 = {M1 ∪M2;M1 ∈ M1,M2 ∈ M2}.
Particularly, if µ1 and µ2 are R′

M-regular (RM-regular, respectively),
then the same is µ, where M is an arbitrary, closed for finite unions,
family of subsets of T .

iii) If µ1 is R′
N1

-regular (RN1-regular, respectively) and µ2 is R′
N2

-regular
(RN2-regular, respectively), where N1 and N2 are two arbitrary fa-
milies of subsets of T , then µ is R′

N1∩N2
-regular (RN1∩N2-regular, res-

pectively), where N1 ∩N2 = {N1 ∩N2;N1 ∈ N1, N2 ∈ N2}.
Particularly, if µ1 and µ2 are R′

N -regular (RN -regular, respectively),
then the same is µ, where N is an arbitrary, closed for finite inter-
sections, family of subsets of T .

Proof. i) One may easily verify the statements using the inequalities:

|M
•
+N | ≤ |M |+ |N |, for every M,N ∈ Pf (X);(1)

h(M
•
+ P,N

•
+ P ) ≤ h(M,N),(2)

for every M,N,P ∈ Pf (X), which implies that for every n ∈ N, (3)

h(µ1(An)
•
+ µ2(An), µ1(A)

•
+ µ2(A))

≤ h(µ1(An)
•
+ µ2(An), µ1(An)

•
+ µ2(A))

+ h(µ1(An)
•
+ µ2(A), µ1(A)

•
+ µ2(A))(3)

≤ h(µ1(An), µ1(A)) + h(µ2(An), µ2(A)),

for every (An)n ⊂ C, with An ↗ A ∈ C or An ↘ A ∈ C.
ii) and iii) are simple consequences of the definitions, also taking into

account that, generally,

h(M1

•
+M2, N1

•
+N2) ≤ h(M1, N1) + h(M2, N2),

for every M1,M2, N1, N2 ∈ Pf (X). �
In what follows, we consider:
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Cδ = {A ⊂ T ; ∃ (An)n ⊂ C so that An ↘ A} and Cσ = {A ⊂ T ; ∃
(An)n ⊂ C so that An ↗ A}.

We easily observe that C ⊂ Cδ, C ⊂ Cσ, (Cδ)δ = Cδ and (Cσ)σ = Cσ. By
σ(C) we denote the σ-ring generated by C.

Obviously, Cδ ⊂ σ(C) and Cσ ⊂ σ(C).
As we shall see in the following, regularity does not necessarily mean

approximation by compact/open sets.

Theorem 3.10. Suppose µ : σ(C) → Pf (X) is decreasing convergent
and has PGP and (E′). Then µ is R′

Cδ ,Cσ -regular.

Proof. Since µ has PGP, then, also, for every ε > 0, there is δ̃(ε) > 0
so that for every A,B,C ∈ C, with |µ(A)| < δ̃, |µ(B)| < δ̃ and |µ(C)| < δ̃,
we have |µ(A ∪B ∪ C)| < ε.

Let M = {A ∈ σ(C);A is R′
Cδ ,Cσ -regular}. Obviously, C ⊂ M.

We prove that M is a σ−ring, and this will imply that M = σ(C), so,
µ is R′

Cδ ,Cσ -regular.

For this, let be A1, A2 ∈ M. There are two sequences (M1
n), (M

2
n) ⊂ Cδ

and two sequences (N1
n), (N

2
n) ⊂ Cσ so that for every n ∈ N, M1

n ⊂ A1 ⊂
N1

n,M
2
n ⊂ A2 ⊂ N2

n, limn→∞ |µ(N1
n\M1

n)| = 0 and limn→∞ |µ(N2
n\M2

n)| =
0. Since µ has PGP, by Remark 2.8 iii), it is asymptotic null-additive, so
limn→∞ |µ((N1

n\M1
n) ∪ µ(N2

n\M2
n))| = 0.

Because for every n ∈ N, N1
n\M2

n ∈ Cσ, M1
n\N2

n ∈ Cδ, M1
n\N2

n ⊂
A1\A2 ⊂ N1

n\M2
n and

|µ((N1
n\M2

n)\(M1
n\N2

n))| ≤ |µ((N1
n\M1

n) ∪ µ(N2
n\M2

n))|,

then A1\A2 ∈ M.

Let be (An)n ⊂ M, An ↗ A. We prove that A ∈ M.

Because µ is decreasing convergent, by Remark 2.5 iv) a), it is order
continuous, so, we have limn→∞ |µ(A\An)| = 0. Consequently, there is
n0(ε) ∈ N such that |µ(A\An0)| < δ̃.

Since An0 ∈ M, then An0 is R′
Cδ ,Cσ -regular, so, by Theorem 3.3 ii), it

is also R′
Cδ -regular, which implies that there is (Mn0,m)m ⊂ Cδ, so that for

every m ∈ N, Mn0,m ⊂ An0 and limm→∞ |µ(An0\Mn0,m)| = 0. Conse-

quently, there is m0(ε) ∈ N such that |µ(An0\Mn0,m0)| < δ̃.

Analogously, according to Theorem 3.3 ii), because R′
Cδ ,Cσ -regularity

implies R′
Cσ -regularity, then, for every n ∈ N, with n ≥ n0(ε), for An there
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is a decreasing sequence (Nn,m)m ⊂ Cσ so that for every m ∈ N, An ⊂ Nn,m

and limm→∞ |µ(Nn,m\An)| = 0.
We observe that for every n ∈ N, with n ≥ n0(ε), Nn,m\An ↘

m→∞∩∞
m=1(Nn,m\An) and, since limm→∞ |µ(Nn,m\An)| = 0, by the decreasing

convergence property of µ, we get that for every n ∈ N, with n ≥ n0(ε), we
have µ(

∩∞
m=1(Nn,m\An)) = {0}.

Therefore, since µ has (E’), then for δ̃, there is an increasing sequence
of naturals (mi)i∈N so that |µ(

∪∞
i=1(Nn0+i,mi\An0+i))| < δ̃.

Let us consider N =
∪∞

i=1Nn0+i,mi . Because (Cσ)σ = Cσ, then N ∈ Cσ.
Also,

A = An0 ∪ (

∞∪
i=1

An0+i) ⊂ Nn0+1,m1 ∪ (

∞∪
i=1

Nn0+i,mi) =

∞∪
i=1

Nn0+i,mi = N.

Because

N\A = (

∞∪
i=1

Nn0+i,mi)\(
∞∪
i=1

Ai) ⊂ (

∞∪
i=1

Nn0+i,mi)\(
∞∪
i=1

An0+i)

⊂
∞∪
i=1

(Nn0+i,mi\An0+i),

we get that |µ(N\A)| < δ̃.
Since N\Mn0,m0 = (N\A) ∪ (A\An0) ∪ (An0\Mn0,m0), we finally have

|µ(N\Mn0,m0)| < ε, whereMn0,m0 ∈ Cδ andN ∈ Cσ, withMn0,m0 ⊂ A ⊂ N .
This says A ∈ M. �

By Theorem 3.10, Remark 2.8 ii) and Corollary 2.14, we easily get:

Corollary 3.11. If µ : σ(C) → Pf (X) is order continuous and auto-
continuous from above, then µ is R′

Cδ ,Cσ -regular.

Example 3.12. i) If C is a δ−ring and if µ : σ(C) → Pf (X) is order
continuous, then µ is R′

C-regular.
Indeed, if µ is order continuous and A ∈ σ(C) is arbitrarily, there is an

increasing sequence of sets (An)n ⊂ C so that An ↗ A. Because µ is order
continuous, for every ε > 0, there is An0 ∈ C so that |µ(A\An0)| < ε, i.e., µ
is R′

C-regular.
ii) If C is a δ−ring, N is an arbitrary nonvoid family of subsets of T ,

(An)n ⊂ C ∩ N , An ↘ A and µ : C → Pf (X is decreasing convergent, then
A is R′

N -regular.
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iii) If C is a σ−ring, M is an arbitrary nonvoid family of subsets of T ,
(An)n ⊂ C ∩M, An ↗ A and µ : C → Pf (X is increasing convergent, then
A is R′

M-regular.

Same argues as before for the proofs.

4. Regularity properties in concrete situations

In this section, for the case when:
T is a Hausdorff space, C is an algebra, for instance, the Borel σ-algebra

B̃ generated by the open sets of T , M = F , the family of closed subsets of
T or M = K, the family of compact subsets of T and N = D, the family of
open subsets of T or, if T is, particularly, a locally compact Hausdorff space,
C is a ring, for instance, B0 (respectively, B′

0) or B (respectively, B′) (but
not only), M = K and N = D, we shall present important consequences
of the results established in Section 3, pointing out various relationships
existing among concrete regularities.

As we shall see, our results generalize other previous results obtained
by Gavriluţ [4-9], Kawabe [16], Wu and Wu [29], Li and Yasuda [18],
Narukawa [20] and Narukawa et. al [21].

By Corollary 3.7, we have:

Corollary 4.1. If T is a Hausdorff space and µ : B̃ → Pf (X) is asymp-
totic null-additive, then µ is R′

F -regular ⇔ µ is R′
D-regular ⇔ µ is R′

F ,D-
regular.

Moreover, if T is compact, then a) µ is R′
F -regular ⇔ b) µ is R′

K-regular
⇔ c) µ is R′

D-regular ⇔ d) µ is R′
F ,D-regular ⇔ e) µ is R′

K,D-regular.

Corollary 4.2. Suppose T is a compact space and µ : C → Pf (X) is
asymptotic null-additive.

i) If C is B or B′, then µ is R′
K-regular if and only if it is R′

D-regular if
and only if it is R′

K,D-regular.

ii) If, moreover, T is metrisable and C is B0 or B′
0, then µ is R′

K-regular
if and only if it is R′

D-regular if and only if it is R′
K,D-regular.

Also, by Theorem 3.8, we get:

Corollary 4.3. Suppose T is a Hausdorff space and µ1, µ2 : B̃ →
Pbf (X) are fuzzy.
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a) If µ1, µ2 are RF -regular, then µ1 = µ2 on F ∩C if and only if µ1 = µ2

on C;

b) If µ1, µ2 are RD-regular, then µ1 = µ2 on D∩C if and only if µ1 = µ2

on C;

c) If µ1, µ2 are RK-regular, then µ1 = µ2 on K∩C if and only if µ1 = µ2

on C.

By Corollary 4.3 and Theorem 3.3 i), we get:

Corollary 4.4. Suppose T is a Hausdorff space and µ1, µ2 : B̃ →
Pbf (X) are fuzzy and RK,D-regular. Then i) µ1 = µ2 on C ⇔ ii) µ1 = µ2

on F ∩ C ⇔ iii) µ1 = µ2 on K ∩ C ⇔ iv) µ1 = µ2 on D ∩ C.

By Theorem 3.8, we also get:

Corollary 4.5. Suppose T is a locally compact Hausdorff space and C
is, for instance, B,B0,B′ or B′

0.

a) If µ1, µ2 : C → Pbf (X) are fuzzy and RK-regular, then µ1 = µ2 on
K ∩ C if and only if µ1 = µ2 on C;

b) If µ1, µ2 : C → Pbf (X) are fuzzy and RD-regular, then µ1 = µ2 on
D ∩ C if and only if µ1 = µ2 on C.

By Corollary 4.5 and Theorem 3.3 i), we have:

Corollary 4.6. Suppose T is a locally compact Hausdorff space, C is,
for instance, B,B0,B′ or B′

0 and µ1, µ2 : C → Pbf (X) are fuzzy and RK,D-
regular. Then i) µ1 = µ2 on C ⇔ ii) µ1 = µ2 on K ∩ C ⇔ iii) µ1 = µ2 on
D ∩ C.

In the following, we obtain a result which is stronger than Corollary 4.1:

Proposition 4.7. Suppose T is a Hausdorff space.
If µ : B̃ → Pf (X) is asymptotic null-additive, then µ is R′

K,D-regular if
and only if it is R′

F ,D-regular and T is R′
K-regular.

Proof. The Only if part is straightforward.
The If part : Let A ∈ B̃ be arbitrarily. Because µ is R′

F ,D-regular,
there is an increasing sequence (Fn) ⊂ F ∩ C and a decreasing sequence
(Dn) ⊂ D ∩ C so that Fn ⊂ A ⊂ Dn and limn→∞ |µ(Dn\Fn)| = 0.
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Since T is R′
K-regular, there is an increasing sequence (Kn) ⊂ K ∩ C so

that limn→∞ |µ(T\Kn)| = 0.

If for any n ∈ N we denote Ln = Fn ∩ Kn, then (Ln) is an increasing
sequence of compact sets and {0} ⊂ µ(Dn\Ln) ⊂ µ((T\Kn) ∪ (Dn\Fn)).

By the asymptotic null-additivity, since limn→∞ |µ((T\Kn)∪(Dn\Fn))| =
0, then limn→∞ |µ(Dn\Ln)| = 0, which says that µ is R′

K,D-regular. �

Theorem 4.8 ([8]). Suppose T is a locally compact Hausdorff space. If
C is the ring (or the δ-ring) generated by the compact sets or by the compact,
Gδ sets, then µ is R′

K-regular if and only if µ is R′
D-regular.

By Theorem 4.8 and Theorem 3.3 iii) we have:

Corollary 4.9. Suppose T is a locally compact Hausdorff space. If C
is the ring (or the δ-ring) generated by the compact sets or by the compact,
Gδ sets and if µ is asymptotic null-additive, then i) µ is R′

K-regular ⇔ ii)
µ is R′

D-regular ⇔ iii) µ is R′
K,D-regular.

5. Concluding remarks

In this paper, abstract regularity is studied in the fuzzy set-valued case,
with direct applications in some concrete situations. We shall apply these
results in future research, in order to obtain set-valued Alexandroff and
Lusin type theorems.
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Univ. ”Al. I. Cuza” Iaşi Secţ. I a Mat., 31 (1985), 5–15.

24. Precupanu, A.-M. – Some properties of (B-M)-regular multimeasures, An. Ştiinţ.
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