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1. Introduction and preliminaries

In this paper, A∗
I -sets, CI -sets and C∗

I -sets in ideal topological spaces are
introduced and studied. The relationships and properties of A∗

I -sets, CI -sets
and C∗

I -sets in ideal topological spaces are investigated. Futhermore, de-
compositions of continuous functions and decompositions of A∗

I -continuous
functions via A∗

I -sets, CI -sets and C∗
I -sets in ideal topological spaces are

provided.

In the present paper, (X, τ) or (Y, σ) will denote topological spaces
with no separation properties assumed. For a subset V of X, let Cl(V ) and
Int(V ) denote the closure and the interior of V , respectively, with respect
to the topological space (X, τ).

An ideal I on a set X is a nonempty collection of subsets of X which
satisfies

(1) V ∈ I and G ⊂ V implies G ∈ I.
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(2) V ∈ I and G ∈ I implies V ∪G ∈ I [13].

If I is an ideal on X and X /∈ I, then F = {X\G : G ∈ I} is a filter [11].

For an ideal I on (X, τ), (X, τ, I) is said to be an ideal topological space
or briefly an ideal space. Let P (X) be the set of all subsets of X. For an
ideal topological space (X, τ, I), a set operator (.)∗ : P (X) → P (X), which
will be said the local function [13] of G ⊂ X with respect to τ and I, is
defined as follows: G∗(I, τ) = {x ∈ X : H ∩ G /∈ I for every H ∈ τ(x)}
where τ(x) = {H ∈ τ : x ∈ H}. A Kuratowski closure operator Cl∗(.) for
a topology τ∗(I, τ), said to be the ⋆-topology, finer than τ , is defined by
Cl∗(G) = G∪G∗(I, τ) [11]. We will briefly write G∗ for G∗(I, τ) and τ∗ for
τ∗(I, τ).

Remark 1. The ⋆-topology is generated by τ and by the filter F . Also,
the family {H ∩G : H ∈ τ , G ∈ F} is a basis for this topology [11].

Lemma 2 ([10]). Let K be a subset of an ideal topological space (X, τ, I).
If N is open, then N ∩ Cl∗(K) ⊂ Cl∗(N ∩K).

Definition 3. A subset K of an ideal topological space (X, τ, I) is
called pre-I-open [3] (resp. semi-I-open [8], α-I-open [8], strongly β-I-
open [9], ⋆-dense [4], t-I-set [8], semi∗-I-open [5, 6]) if K ⊂ Int(Cl∗(K))
(resp. K ⊂ Cl∗(Int(K)), K ⊂ Int(Cl∗(Int(K))), K ⊂ Cl∗(Int(Cl∗(K))),
Cl∗(K) = X, Int(K) = Int(Cl∗(K)), K ⊂ Cl(Int∗(K))).

Lemma 4 ([6]). Every semi-I-open set is semi∗-I-open in an ideal topo-
logical space.

Remark 5. The reverse implication of Lemma 4 is not true in general
as shown in [5, 6].

Definition 6. The complement of a pre-I-open (resp. semi-I-open, α-
I-open, semi∗-I-open) set is called pre-I-closed [3] (resp. semi-I-closed [8],
α-I-closed [8], semi∗-I-closed [5, 6]).

Definition 7. The pre-I-closure of a subset K of an ideal topological
space (X, τ, I), denoted by pICl(K), is defined as the intersection of all
pre-I-closed sets of X containing K [6].

Lemma 8 ([6]). For a subset K of an ideal topological space (X, τ, I),
pICl(K) = K ∪ Cl(Int∗(K)).
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Definition 9. A function f : (X, τ, I) → (Y, σ) is said to be pre-I-
continuous [3] (resp. α-I-continuous [8]) if f−1(K) is pre-I-open (resp.
α-I-open) in X for each open set K in Y .

Definition 10. A subset K of an ideal topological space (X, τ, I) is
called

(1) an ηζ-set [14] if K = L∩M , where L is open and M is clopen in X.

(2) locally closed [2] if K = L ∩ M , where L is open and M is closed
in X.

(3) a BI -set [8] if K = L∩M , where L is open and M is a t-I-set in X.

(4) semi-I-regular [12] if K is a t-I-set and semi-I-open in X.

(5) an ABI -set [12] if K = L ∩M , where L is open and M is a semi-I-
regular set in X.

2. A∗
I-sets, CI-sets, C∗

I -sets in ideal topological spaces

A subset K of an ideal topological space (X, τ, I) is called pre-I-regular
if K is pre-I-open and pre-I-closed in (X, τ, I).

Definition 11. Let (X, τ, I) be an ideal topological space and K ⊂ X.
K is said to be a C∗

I -set if K = L ∩M , where L is an open set and M is a
pre-I-regular set in X.

Theorem 12. Let (X, τ, I) be an ideal topological space. Then each
C∗
I -set in X is a pre-I-open set.

Proof. Let K be a C∗
I -set in X. It follows that K = L ∩M , where L

is an open set and M is a pre-I-regular set in X. Since M is a pre-I-open
set, then by Proposition 2.10 of [3], K = L ∩M is a pre-I-open set in X.�

Remark 13. The converse of Theorem 12 need not be true in general
as shown in the following example.

Example 14. LetX = {a, b, c, d}, τ = {X, ∅, {a}, {a, b}, {c, d}, {a, c, d}}
and I = {∅, {a}, {d}, {a, d}}. Then the set K = {a, b, c} is a pre-I-open set
but it is not a C∗

I -set.

Remark 15. In an ideal topological space, every open set and every
pre-I-regular set is a C∗

I -set. The converse of this implication is not true in
general as shown in the following example.
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Example 16. Let X = {a, b, c, d}, τ = {X, ∅, {a}, {b, c}, {a, b, c}} and
I = {∅, {a}, {d}, {a, d}}. Then the set K = {a, b, c} is a C∗

I -set but it is not
pre-I-regular. The set L = {a, c, d} is a C∗

I -set but it is not open.

Remark 17. By Remark 15 and Theorem 12, the following diagram
holds for a subset K of an ideal topological space (X, τ, I):

pre-I-open
⇑

pre-I-regular =⇒ C∗
I -set

Definition 18. A subset K of an ideal topological space (X, τ, I) is said
to be

(1) a CI -set if K = L∩M , where L is an open set and M is a pre-I-closed
set in X.

(2) an ηI -set ifK = L∩M , where L is an open set andM is an α-I-closed
set in X.

(3) anA∗
I -set ifK = L∩M , where L is an open set andM = Cl(Int∗(M)).

Remark 19. Let (X, τ, I) be an ideal topological space and K ⊂ X.
The following diagram holds for K:

C∗
I -set =⇒ CI -set

⇑
A∗

I -set =⇒ ηI -set

The following examples show that these implications are not reversible
in general.

Example 20. LetX = {a, b, c, d}, τ = {X, ∅, {a}, {a, b}, {c, d}, {a, c, d}}
and I = {∅, {a}, {d}, {a, d}}. Then the set K = {b, c, d} is a CI -set and an
A∗

I -set but it is not a C∗
I -set. The set L = {a, b, d} is a CI -set but it is not

an ηI -set.

Example 21. Let X = {a, b, c, d}, τ = {X, ∅, {a}, {b, c}, {a, b, c}} and
I = {∅, {a}, {d}, {a, d}}. Then the set K = {d} is an ηI -set but it is not an
A∗

I -set. The set L = {a, b, d} is a C∗
I -set but it is not an ηI -set.

Theorem 22. For a subset K of an ideal topological space (X, τ, I), the
following properties are equivalent:

(1) K is a CI-set and a semi∗-I-open set in X.
(2) K = L ∩ Cl(Int∗(K)) for an open set L.
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Proof. (1) ⇒ (2): Suppose that K is a CI -set and a semi∗-I-open set
in X. Since K is a CI -set, then we have K = L ∩M , where L is an open
set and M is a pre-I-closed set in X. We have K ⊂ M , so Cl(Int∗(K)) ⊂
Cl(Int∗(M)). Since M is a pre-I-closed set in X, we have Cl(Int∗(M)) ⊂
M . Since K is a semi∗-I-open set in X, we have K ⊂ Cl(Int∗(K)). It
follows thatK = K∩Cl(Int∗(K)) = L∩M∩Cl(Int∗(K)) = L∩Cl(Int∗(K)).

(2) ⇒ (1): Let K = L ∩ Cl(Int∗(K)) for an open set L. We have
K ⊂ Cl(Int∗(K)). It follows that K is a semi∗-I-open set in X. Since
Cl(Int∗(K)) is a closed set, then Cl(Int∗(K)) is a pre-I-closed set in X.
Hence, K is a CI -set in X. �

Theorem 23. For a subset K of an ideal topological space (X, τ, I), the
following properties are equivalent:

(1) K is an A∗
I-set in X.

(2) K is an ηI-set and a semi∗-I-open set in X.

(3) K is a CI-set and a semi∗-I-open set in X.

Proof. (1) ⇒ (2): Suppose that K is an A∗
I -set in X. It follows that

K = L ∩M , where L is an open set and M = Cl(Int∗(M)). This implies
K = L ∩M = L ∩ Cl(Int∗(M)) ⊂ Cl(L ∩ Int∗(M)) = Cl(Int∗(L ∩M)) =
Cl(Int∗(K)). Thus, K ⊂ Cl(Int∗(K)) and hence K is a semi∗-I-open set
in X. Moreover, by Remark 19, K is an ηI -set in X.

(2) ⇒ (3): It follows from the fact that every ηI -set is a CI -set in X by
Remark 19.

(3) ⇒ (1): Suppose that K is a CI -set and a semi∗-I-open set in X.
By Theorem 22, K = L ∩ Cl(Int∗(K)) for an open set L. We have
Cl(Int∗(Cl(Int∗(K))))=Cl(Int∗(K)). It follows thatK is anA∗

I -set inX.�

Theorem 24 ([5]). A subset K of an ideal topological space (X, τ, I) is
semi∗-I-open if and only if Cl(K) = Cl(Int∗(K)).

Theorem 25. A subset K of an ideal topological space (X, τ, I) is semi∗-
I-closed if and only if K is a t-I-set.

Proof. Let K be a semi∗-I-closed set in X. Then X\K is semi∗-I-
open. By Theorem 24, we have Cl(X\K) = Cl(Int∗(X\K)). It follows
that Cl(X\K) = X\Int(K) = Cl(Int∗(X\K)) = X\Int(Cl∗(K)). Thus,
Int(K) = Int(Cl∗(K)) and hence K is a t-I-set in X. The converse is
similar. �
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Theorem 26. Let (X, τ, I) be an ideal topological space and K ⊂ X.
The following properties are equivalent:

(1) K is an open set.
(2) K is an α-I-open set and an A∗

I-set.
(3) K is a pre-I-open set and an A∗

I-set.

Proof. (1) ⇒ (2): It follows from the fact that every open set is an
α-I-open set and an A∗

I -set.
(2) ⇒ (3): It follows from the fact that every α-I-open set is pre-I-open.
(3) ⇒ (1): Suppose that K is a pre-I-open set and an A∗

I -set. Since
K is an A∗

I -set, then we have K = L ∩ M , where L is an open set and
M = Cl(Int∗(M)). It follows that Int(Cl∗(M)) ⊂ Cl∗(M) ⊂ Cl(M) =
Cl(Int∗(M)) = M . Since Int(Cl∗(M)) ⊂ M , then M is a semi∗-I-closed
set. By Theorem 25, M is a t-I-set. Hence, K is a BI -set. Since K is a
BI -set and a pre-I-open set, then by Proposition 3.3 of [8], K is an open
set in X. �

Theorem 27. Let (X, τ, I) be an ideal topological space and K ⊂ X.
The following properties are equivalent:

(1) K is an open set.
(2) K is a C∗

I -set and a semi∗-I-open set.

Proof. (1) ⇒ (2): It follows from the fact that every open set is a
C∗
I -set and a semi∗-I-open set.

(2) ⇒ (1): Let K be a C∗
I -set and a semi∗-I-open set. Since K is a

C∗
I -set, then K is a CI -set. Since K is a CI -set and a semi∗-I-open set in X,

then by Theorem 23, K is an A∗
I -set. Moreover, since K is a C∗

I -set, then
K is a pre-I-open by Theorem 12. Hence, by Theorem 26, K is an open set
in X. �

Theorem 28. Let (X, τ, I) be an ideal topological space and K ⊂ X.
The following properties are equivalent:

(1) K is an open set.
(2) K is an α-I-open set and a C∗

I -set.
(3) K is an α-I-open set and a CI-set.

Proof. (1) ⇒ (2): It is obvious.
(2) ⇒ (3): It follows from the fact that every C∗

I -set is a CI -set.
(3) ⇒ (1): Let K be an α-I-open set and a CI -set. It follows that K is

a semi∗-I-open set and a CI -set. By Theorem 23, K is an A∗
I -set. Since K
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is an α-I-open set and an A∗
I -set, then by Theorem 26, K is an open set

in X. �

Definition 29. A subset K of an ideal topological space (X, τ, I) is said
to be gp-I-open [15] if N ⊂ pIInt(K) whenever N ⊂ K and N is a closed
set in X, where pIInt(K) = K ∩ Int(Cl∗(K)).

Definition 30. A subset K of an ideal topological space (X, τ, I) is said
to be generalized pre-I-closed (gpI -closed) in (X, τ, I) if X\K is gp-I-open.

Theorem 31. For a subset K of an ideal topological space (X, τ, I), K
is gpI-closed if and only if pICl(K) ⊂ N whenever K ⊂ N and N is an
open set in (X, τ, I).

Proof. Let K be a gpI -closed set in X. Suppose that K ⊂ N and
N is an open set in (X, τ, I). Then X\K is gp-I-open and X\N ⊂ X\K
where X\N is closed. Since X\K is gp-I-open, then we have X\N ⊂
pIInt(X\K), where pIInt(X\K)=(X\K)∩Int(Cl∗(X\K)). Since (X\K)∩
Int(Cl∗(X\K)) = (X\K) ∩ (X\Cl(Int∗(K))) = X\(K ∪ Cl(Int∗(K))),
then by Lemma 8, (X\K) ∩ Int(Cl∗(X\K)) = X\(K ∪ Cl(Int∗(K))) =
X\pICl(K). It follows that pIInt(X \K) = X\pICl(K). Thus, pICl(K)
= X\pIInt(X\K) ⊂ N and hence pICl(K) ⊂ N . The converse is similar.�

Theorem 32. Let (X, τ, I) be an ideal topological space and V ⊂ X.
Then V is a CI-set in X if and only if V = G∩ pICl(V ) for an open set G
in X.

Proof. If V is a CI -set, then V = G∩M for an open set G and a pre-I-
closed set M . But then V ⊂ M and so V ⊂ pICl(V ) ⊂ M . It follows that
V = V ∩pICl(V ) = G∩M∩pICl(V ) = G∩pICl(V ). Conversely, it is enough
to prove that pICl(V ) is a pre-I-closed set. But pICl(V ) ⊂ M , for any pre-
I-closed set M containing V . So, Cl(Int∗(pICl(V ))) ⊂ Cl(Int∗(M)) ⊂ M.
It follows that Cl(Int∗(pICl(V ))) ⊂ ∩V⊂M , M is pre-I-closedM = pICl(V ).�

Theorem 33. Let (X, τ, I) be an ideal topological space and N ⊂ X.
The following properties are equivalent:

(1) N is a pre-I-closed set in X.
(2) N is a CI-set and a gpI-closed set in X.

Proof. (1) ⇒ (2): It follows from the fact that any pre-I-closed set in
X is a CI -set and a gpI -closed set in X.
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(2) ⇒ (1): Suppose that N is a CI -set and a gpI -closed set in X. Since
N is a CI -set, then by Theorem 32, N = G ∩ pICl(N) for an open set G in
(X, τ, I). Since N ⊂ G and N is a gpI -closed set in X, then pICl(N) ⊂ G.
It follows that pICl(N) ⊂ G ∩ pICl(N) = N . Thus, N = pICl(N) and
hence N is pre-I-closed. �

Theorem 34. Let (X, τ, I) be an ideal topological space and K ⊂ X.
If K is a CI-set in X, then pICl(K)\K is a pre-I-closed set and K ∪
(X\pICl(K)) is a pre-I-open set in X.

Proof. Suppose that K is a CI -set in X. By Theorem 32, we have
K = L ∩ pICl(K) for an open set L in X. It follows that pICl(K)\K
= pICl(K)\(L ∩ pICl(K)) = pICl(K) ∩ (X\(L ∩ pICl(K))) = pICl(K) ∩
((X\L)∪(X\pICl(K))) = (pICl(K)∩(X\L))∪(pICl(K)∩(X\pICl(K))) =
(pICl(K)∩(X\L))∪∅ = pICl(K)∩(X\L). Thus, pICl(K)\K = pICl(K)∩
(X\L) and hence pICl(K)\K is pre-I-closed. Moreover, since pICl(K)\K
is a pre-I-closed set inX, thenX\(pICl(K)\K) = X\(pICl(K)∩(X\K)) =
(X\pICl(K)) ∪K is a pre-I-open set.

Thus, X\(pICl(K)\K) = (X\pICl(K)) ∪K is a pre-I-open set in X. �

3. Further properties

Definition 35. Let (X, τ, I) be an ideal topological space. (X, τ, I) is
said to be pre-I-connected if X can not be expressed as the disjoint union
of two nonvoid pre-I-open sets.

Theorem 36. Let (X, τ, I) be an ideal topological space. The following
properties are equivalent:

(1) (X, τ, I) is pre-I-connected.

(2) (X, τ, I) can not be expressed as the disjoint union of two nonvoid
C∗
I -sets.

Proof. (1) ⇒ (2): Suppose that (X, τ, I) can be expressed as the
disjoint union of two nonvoid C∗

I -sets. Since any C∗
I -set is a pre-I-open set,

then (X, τ, I) can be expressed as the disjoint union of two nonvoid pre-I-
open sets. So, (X, τ, I) is not pre-I-connected. This is a contradiction.

(2) ⇒ (1): Suppose that (X, τ, I) is not pre-I-connected. Then, X
can be expressed as the disjoint union of two nonvoid pre-I-open sets. It
follows that X has a nontrivial pre-I-regular subset A. Moreover, A and
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B = X\A are pre-I-regular. Then A and B are C∗
I -sets. Hence, (X, τ, I)

can be expressed as the disjoint union of two nonvoid C∗
I -sets. This is a

contradiction. �

Definition 37. An ideal topological space (X, τ, I) is called I-subma-
ximal [1, 7] if every ⋆-dense subset of X is open.

Theorem 38 ([7]). For an ideal topological space (X, τ, I), the following
properties are equivalent:

(1) X is I-submaximal.
(2) Every pre-I-open set is open.
(3) Every pre-I-open set is semi-I-open and every α-I-open set is open.

Theorem 39. In an I-submaximal ideal space (X, τ, I), the following
properties hold:

(1) Any C∗
I -set is an ηζ-set and an ABI-set.

(2) Any ηI-set is a locally closed set.

Proof. (1): Suppose thatK is a C∗
I -set in X. It follows thatK = L∩M ,

where L is an open set and M is a pre-I-regular set in X. By Theorem 38,
M is semi-I-open and semi-I-closed. It follows from Lemma 4 that M is
semi-I-open and semi∗-I-closed. By Theorem 25, M is semi-I-open and a
t-I-set in X. Thus, K is an ABI -set in X. Furthermore, by Theorem 38,
K is an ηζ-set in X.

(2): It follows from Theorem 38. �

Definition 40. An ideal topological space (X, τ, I) is said to be ⋆-
hyperconnected [6] if A is ⋆-dense for every open subset A ̸= ∅ of X.

Theorem 41 ([6]). The following properties are equivalent for an ideal
topological space (X, τ, I):

(1) X is ⋆-hyperconnected.
(2) A is ⋆-dense for every strongly β-I-open subset ∅ ̸= A ⊂ X.

Theorem 42. For an ideal topological space (X, τ, I), the following
properties are equivalent:

(1) (X, τ, I) is ⋆-hyperconnected.
(2) any C∗

I -set in X is ⋆-dense.

Proof. (1) ⇒ (2): Let K be a C∗
I -set in X. By Theorem 12, K is

pre-I-open. Since (X, τ, I) is a ⋆-hyperconnected ideal topological space,
then by Theorem 41, K is ⋆-dense.
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(2) ⇒ (1): Suppose that any C∗
I -set in (X, τ, I) is ⋆-dense in X. Since

an open set K in X is a C∗
I -set, then K is ⋆-dense. Thus, (X, τ, I) is ⋆-

hyperconnected. �

4. Decompositions of continuity and A∗
I-continuity

Definition 43. A function f : (X, τ, I) → (Y, σ) is said to be
(1) C∗

I -continuous if f
−1(A) is a C∗

I -set in X for every open set A in Y .
(2) PRI -continuous if f

−1(A) is a pre-I-regular set in X for every open
set A in Y .

Remark 44. For a function f : (X, τ, I) → (Y, σ), the following diagram
holds. The reverses of these implications are not true in general as shown
in the following example

pre-I-continuous
⇑

PRI -continuous =⇒ C∗
I -continuous

Example 45. LetX = {a, b, c, d}, τ = {X, ∅, {a}, {a, b}, {c, d}, {a, c, d}}
and I = {∅, {a}, {d}, {a, d}}. The function f : (X, τ, I) → (X, τ), defined
by f(a) = c, f(b) = d, f(c) = a, f(d) = b is pre-I-continuous but it is not
C∗
I -continuous. The identity function i : (X, τ, I) → (X, τ) is C∗

I -continuous
but it is not PRI -continuous.

Definition 46. A function f : (X, τ, I) → (Y, σ) is said to be
(1) CI -continuous if f−1(A) is a CI -set in X for every open set A in Y .
(2) A∗

I -continuous if f
−1(A) is an A∗

I -set in X for every open set A in Y .
(3) ηI -continuous if f

−1(A) is an ηI -set in X for every open set A in Y .

Remark 47. For a function f : (X, τ, I) → (Y, σ), the following diagram
holds. The reverses of these implications are not true in general as shown
in the following example

C∗
I -continuous =⇒ CI -continuous

⇑
A∗

I -continuous =⇒ ηI -continuous

Example 48. Let X = {a, b, c, d}, τ = {X, ∅, {a}, {b, c}, {a, b, c}} and
I = {∅, {a}, {d}, {a, d}}. The function f : (X, τ, I) → (X, τ), defined by



11 DECOMPOSITIONS OF CONTINUITY IN IDEAL TOPOLOGICAL SPACES183

f(a) = b, f(b) = c, f(c) = c, f(d) = a is ηI -continuous but it is not
A∗

I -continuous. The function g : (X, τ, I) → (X, τ), defined by g(a) = b,
g(b) = c, g(c) = a, g(d) = c is C∗

I -continuous but it is not ηI -continuous.

Example 49. LetX = {a, b, c, d}, τ = {X, ∅, {a}, {a, b}, {c, d}, {a, c, d}}
and I = {∅, {a}, {d}, {a, d}}. The function f : (X, τ, I)→(X, τ), defined by
f(a)=b, f(b)=a, f(c)=c, f(d)=d is CI -continuous and A∗

I -continuous but it
is not C∗

I -continuous. The function g : (X, τ, I)→(X, τ), defined by g(a) = a,
g(b) = a, g(c) = b, g(d) = a is CI -continuous but it is not ηI -continuous.

Definition 50. A function f : (X, τ, I)→(Y, σ) is said to be semi∗-I-
continuous if f−1(V ) is a semi∗-I-open set in X for every open set V in Y .

Theorem 51. The following properties are equivalent for a function
f : (X, τ, I) → (Y, σ):

(1) f is A∗
I-continuous.

(2) f is ηI-continuous and semi∗-I-continuous.
(3) f is CI-continuous and semi∗-I-continuous.

Proof. It follows from Theorem 23. �

Theorem 52. The following properties are equivalent for a function
f : (X, τ, I) → (Y, σ):

(1) f is continuous.
(2) f is α-I-continuous and A∗

I-continuous.
(3) f is pre-I-continuous and A∗

I-continuous.
(4) f is semi∗-I-continuous and C∗

I -continuous.
(5) f is α-I-continuous and C∗

I -continuous.
(6) f is α-I-continuous and CI-continuous.

Proof. It follows from Theorem 26, 27 and 28. �
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