ON \mathcal{A}_I^* -SETS, \mathcal{C}_I -SETS, \mathcal{C}_I^* -SETS AND DECOMPOSITIONS OF **CONTINUITY IN IDEAL TOPOLOGICAL SPACES**

BY

ERDAL EKICI

Abstract. The aim of this paper is to introduce and study the notions of \mathcal{A}_I^* -sets, C_I -sets and C_I^* -sets in ideal topological spaces. Properties of A_I^* -sets, C_I -sets and C_I^* -sets are investigated. Moreover, decompositions of continuous functions and decompositions of \mathcal{A}_I^* -continuous functions via \mathcal{A}_I^* -sets, \mathcal{C}_I -sets and \mathcal{C}_I^* -sets in ideal topological spaces are established.

Mathematics Subject Classification 2010: 54A05, 54A10, 54C08, 54C10.

Key words: A_I^* -set, C_I -set, C_I^* -set, pre-*I*-regular set, ideal topological space, decomposition, *⋆*-extremally disconnected ideal space, *⋆*-hyperconnected ideal space, *I*submaximal ideal space.

1. Introduction and preliminaries

In this paper, A_I^* -sets, C_I -sets and C_I^* -sets in ideal topological spaces are introduced and studied. The relationships and properties of A_I^* -sets, C_I -sets and C_I^* -sets in ideal topological spaces are investigated. Futhermore, decompositions of continuous functions and decompositions of A_I^* -continuous functions via \mathcal{A}_I^* -sets, \mathcal{C}_I -sets and \mathcal{C}_I^* -sets in ideal topological spaces are provided.

In the present paper, (X, τ) or (Y, σ) will denote topological spaces with no separation properties assumed. For a subset V of X , let $Cl(V)$ and $Int(V)$ denote the closure and the interior of V , respectively, with respect to the topological space (X, τ) .

An ideal *I* on a set *X* is a nonempty collection of subsets of *X* which satisfies

 (1) $V \in I$ and $G \subset V$ implies $G \in I$.

174 ERDAL EKICI 2

 (2) $V \in I$ and $G \in I$ implies $V \cup G \in I$ [13].

If *I* is an ideal on *X* and $X \notin I$, then $\mathcal{F} = \{X \setminus G : G \in I\}$ is a filter [11]. For an ideal *I* on (X, τ) , (X, τ, I) is said to be an ideal topological space or briefly an ideal space. Let $P(X)$ be the set of all subsets of X. For an ideal topological space (X, τ, I) , a set operator $(.)^* : P(X) \to P(X)$, which will be said the local function [13] of $G \subset X$ with respect to τ and *I*, is defined as follows: $G^*(I, \tau) = \{x \in X : H \cap G \notin I \text{ for every } H \in \tau(x)\}\$ where $\tau(x) = \{H \in \tau : x \in H\}$. A Kuratowski closure operator $Cl^*(.)$ for a topology $\tau^*(I,\tau)$, said to be the ***-topology, finer than τ , is defined by $Cl^*(G) = G \cup G^*(I, \tau)$ [11]. We will briefly write G^* for $G^*(I, \tau)$ and τ^* for *τ ∗* (*I, τ*).

Remark 1. The \star -topology is generated by τ and by the filter \mathcal{F} . Also, the family $\{H \cap G : H \in \tau, G \in \mathcal{F}\}\$ is a basis for this topology [11].

Lemma 2 ([10]). Let K be a subset of an ideal topological space (X, τ, I) . *If* N *is open, then* $N \cap Cl^*(K) \subset Cl^*(N \cap K)$ *.*

Definition 3. A subset *K* of an ideal topological space (X, τ, I) is called pre-*I*-open [3] (resp. semi-*I*-open [8], α -*I*-open [8], strongly β -*I*open [9], \star -dense [4], *t*-*I*-set [8], semi[∗]-*I*-open [5, 6]) if $K \subset Int(Cl^*(K))$ (resp. $K \subset Cl^*(Int(K)), K \subset Int(Cl^*(Int(K))), K \subset Cl^*(Int(Cl^*(K))),$ $Cl^*(K) = X$, $Int(K) = Int(Cl^*(K))$, $K \subset Cl(Int^*(K))$.

Lemma 4 ([6])**.** *Every semi-I-open set is semi∗ -I-open in an ideal topological space.*

Remark 5. The reverse implication of Lemma 4 is not true in general as shown in $[5, 6]$.

Definition 6. The complement of a pre-*I*-open (resp. semi-*I*-open, *α*-*I*-open, semi*∗* -*I*-open) set is called pre-*I*-closed [3] (resp. semi-*I*-closed [8], *α*-*I*-closed [8], semi*∗* -*I*-closed [5, 6]).

Definition 7. The pre-*I*-closure of a subset *K* of an ideal topological space (X, τ, I) , denoted by $p_I Cl(K)$, is defined as the intersection of all pre-*I*-closed sets of *X* containing *K* [6].

Lemma 8 ([6]). For a subset K of an ideal topological space (X, τ, I) , $p_I Cl(K) = K \cup Cl(Int^*(K)).$

Definition 9. A function $f : (X, \tau, I) \rightarrow (Y, \sigma)$ is said to be pre-*I*continuous [3] (resp. α -*I*-continuous [8]) if $f^{-1}(K)$ is pre-*I*-open (resp. α -*I*-open) in *X* for each open set *K* in *Y*.

Definition 10. A subset *K* of an ideal topological space (X, τ, I) is called

(1) an $\eta \zeta$ -set [14] if $K = L \cap M$, where *L* is open and *M* is clopen in *X*.

(2) locally closed [2] if $K = L \cap M$, where *L* is open and *M* is closed in *X*.

(3) a B_I -set [8] if $K = L \cap M$, where *L* is open and *M* is a *t*-*I*-set in *X*. (4) semi-*I*-regular [12] if *K* is a *t*-*I*-set and semi-*I*-open in *X*.

(5) an AB_I -set [12] if $K = L \cap M$, where *L* is open and *M* is a semi-*I*regular set in *X*.

2. \mathcal{A}_I^* -sets, \mathcal{C}_I -sets, \mathcal{C}_I^* -sets in ideal topological spaces

A subset *K* of an ideal topological space (X, τ, I) is called pre-*I*-regular if *K* is pre-*I*-open and pre-*I*-closed in (X, τ, I) .

Definition 11. Let (X, τ, I) be an ideal topological space and $K \subset X$. *K* is said to be a C_I^* -set if $K = L \cap M$, where *L* is an open set and *M* is a pre-*I*-regular set in *X*.

Theorem 12. Let (X, τ, I) be an ideal topological space. Then each \mathcal{C}_I^* -set in X is a pre-*I*-open set.

Proof. Let *K* be a C_I^* -set in *X*. It follows that $K = L \cap M$, where *L* is an open set and *M* is a pre-*I*-regular set in *X*. Since *M* is a pre-*I*-open set, then by Proposition 2.10 of [3], $K = L \cap M$ is a pre-*I*-open set in $X.\Box$

Remark 13. The converse of Theorem 12 need not be true in general as shown in the following example.

Example 14. Let $X = \{a, b, c, d\}, \tau = \{X, \emptyset, \{a\}, \{a, b\}, \{c, d\}, \{a, c, d\}\}\$ and $I = \{\emptyset, \{a\}, \{d\}, \{a, d\}\}.$ Then the set $K = \{a, b, c\}$ is a pre-*I*-open set but it is not a C_I^* -set.

Remark 15. In an ideal topological space, every open set and every pre-*I*-regular set is a C_I^* -set. The converse of this implication is not true in general as shown in the following example.

Example 16. Let $X = \{a, b, c, d\}, \tau = \{X, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}\$ and $I = \{\emptyset, \{a\}, \{d\}, \{a, d\}\}\.$ Then the set $K = \{a, b, c\}$ is a \mathcal{C}_{I}^{*} -set but it is not pre-*I*-regular. The set $L = \{a, c, d\}$ is a C_I^* -set but it is not open.

Remark 17. By Remark 15 and Theorem 12, the following diagram holds for a subset *K* of an ideal topological space (X, τ, I) :

$$
\text{pre-}I\text{-open}
$$
\n
$$
\uparrow
$$
\n
$$
\uparrow
$$
\n
$$
\uparrow
$$
\n
$$
\uparrow
$$
\n
$$
\downarrow
$$
\n<

Definition 18. A subset *K* of an ideal topological space (X, τ, I) is said to be

(1) a C_I -set if $K = L \cap M$, where *L* is an open set and *M* is a pre-*I*-closed set in *X*.

(2) an η_I -set if $K = L \cap M$, where *L* is an open set and *M* is an α -*I*-closed set in *X*.

(3) an \mathcal{A}_I^* -set if $K = L \cap M$, where *L* is an open set and $M = Cl(Int^*(M))$.

Remark 19. Let (X, τ, I) be an ideal topological space and $K \subset X$. The following diagram holds for *K*:

$$
\begin{array}{rcl}\n\mathcal{C}_{I}^{*}\text{-set} & \Longrightarrow & \mathcal{C}_{I}\text{-set} \\
\uparrow & & \uparrow & \\
\mathcal{A}_{I}^{*}\text{-set} & \Longrightarrow & \eta_{I}\text{-set}\n\end{array}
$$

The following examples show that these implications are not reversible in general.

Example 20. Let $X = \{a, b, c, d\}, \tau = \{X, \emptyset, \{a\}, \{a, b\}, \{c, d\}, \{a, c, d\}\}\$ and $I = \{\emptyset, \{a\}, \{d\}, \{a, d\}\}\$. Then the set $K = \{b, c, d\}$ is a C_I -set and an \mathcal{A}_I^* -set but it is not a \mathcal{C}_I^* -set. The set $L = \{a, b, d\}$ is a \mathcal{C}_I -set but it is not an η_I -set.

Example 21. Let $X = \{a, b, c, d\}, \tau = \{X, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}\$ and $I = \{\emptyset, \{a\}, \{d\}, \{a, d\}\}.$ Then the set $K = \{d\}$ is an η_I -set but it is not an \mathcal{A}_I^* -set. The set $L = \{a, b, d\}$ is a \mathcal{C}_I^* -set but it is not an η_I -set.

Theorem 22. For a subset K of an ideal topological space (X, τ, I) , the *following properties are equivalent*:

(1) K *is a* C_I -set and a semi^{*}-I-open set in X .

(2) $K = L \cap Cl(Int^*(K))$ for an open set L .

Proof. (1) \Rightarrow (2): Suppose that *K* is a C_I -set and a semi^{*}-*I*-open set in *X*. Since *K* is a C_I -set, then we have $K = L \cap M$, where *L* is an open set and *M* is a pre-*I*-closed set in *X*. We have $K \subset M$, so $Cl(Int^*(K)) \subset$ $Cl(Int^*(M))$. Since *M* is a pre-*I*-closed set in *X*, we have $Cl(Int^*(M)) \subset$ *M*. Since *K* is a semi^{*}-*I*-open set in *X*, we have $K \subset Cl(Int^*(K))$. It $\text{follows that } K = K \cap Cl(Int^*(K)) = L \cap M \cap Cl(Int^*(K)) = L \cap Cl(Int^*(K)).$

(2) \Rightarrow (1): Let *K* = *L* ∩ *Cl*(*Int*^{*}(*K*)) for an open set *L*. We have $K \subset Cl(Int^*(K))$. It follows that *K* is a semi^{*}-*I*-open set in *X*. Since $Cl(Int^*(K))$ is a closed set, then $Cl(Int^*(K))$ is a pre-*I*-closed set in X. Hence, *K* is a C_I -set in *X*.

Theorem 23. For a subset K of an ideal topological space (X, τ, I) , the *following properties are equivalent*:

- (1) *K is an* \mathcal{A}_I^* -set *in X*.
- (2) K *is an* η_I -set and a semi^{*}-*I*-open set in X .
- (3) K *is a* C_I -set and a semi^{*}-I-open set in X .

Proof. (1) \Rightarrow (2): Suppose that *K* is an \mathcal{A}_I^* -set in *X*. It follows that $K = L \cap M$, where *L* is an open set and $M = Cl(Int^*(M))$. This implies $K = L \cap M = L \cap Cl(Int^*(M)) \subset Cl(L \cap Int^*(M)) = Cl(Int^*(L \cap M))$ $Cl(Int^*(K))$. Thus, $K \subset Cl(Int^*(K))$ and hence *K* is a semi^{*}-*I*-open set in *X*. Moreover, by Remark 19, *K* is an η_I -set in *X*.

 $(2) \Rightarrow (3)$: It follows from the fact that every η_I -set is a \mathcal{C}_I -set in X by Remark 19.

 $(3) \Rightarrow (1)$: Suppose that *K* is a *C*_{*I*}-set and a semi^{*}-*I*-open set in *X*. By Theorem 22, $K = L \cap Cl(Int^*(K))$ for an open set *L*. We have $Cl(Int^*(Cl(Int^*(K))))=Cl(Int^*(K))$. It follows that *K* is an \mathcal{A}_I^* -set in *X*.

Theorem 24 ([5]). *A subset K of an ideal topological space* (X, τ, I) *is semi*^{$*$}-*I*-open if and only if $Cl(K) = Cl(Int^*(K))$.

Theorem 25. *A subset* K *of an ideal topological space* (X, τ, I) *is semi*^{*}-*I-closed if and only if K is a t-I-set.*

Proof. Let *K* be a semi^{*}-*I*-closed set in *X*. Then $X\backslash K$ is semi^{*}-*I*open. By Theorem 24, we have $Cl(X \backslash K) = Cl(Int^*(X \backslash K))$. It follows that $Cl(X \backslash K) = X \backslash Int(K) = Cl(Int^*(X \backslash K)) = X \backslash Int(Cl^*(K))$. Thus, $Int(K) = Int(Cl^*(K))$ and hence *K* is a *t*-*I*-set in *X*. The converse is similar. \Box **178** ERDAL EKICI 6

Theorem 26. *Let* (X, τ, I) *be an ideal topological space and* $K \subset X$ *. The following properties are equivalent*:

- (1) *K is an open set.*
- (2) *K is an* α -*I*-open set and an \mathcal{A}_I^* -set.
- (3) K *is a pre-I-open set and an* \mathcal{A}_I^* -set.

Proof. (1) \Rightarrow (2): It follows from the fact that every open set is an α -*I*-open set and an \mathcal{A}_I^* -set.

 $(2) \Rightarrow (3)$: It follows from the fact that every α -*I*-open set is pre-*I*-open. $(3) \Rightarrow (1)$: Suppose that *K* is a pre-*I*-open set and an \mathcal{A}_{I}^{*} -set. Since *K* is an \mathcal{A}_I^* -set, then we have $K = L \cap M$, where *L* is an open set and $M = Cl(Int^*(M))$. It follows that $Int(Cl^*(M)) \subset Cl^*(M) \subset Cl(M)$ $Cl(Int^*(M)) = M$. Since $Int(Cl^*(M)) \subset M$, then *M* is a semi^{*}-*I*-closed set. By Theorem 25, M is a t -*I*-set. Hence, K is a B_I -set. Since K is a

Theorem 27. *Let* (X, τ, I) *be an ideal topological space and* $K \subset X$ *. The following properties are equivalent*:

 B_I -set and a pre-*I*-open set, then by Proposition 3.3 of [8], *K* is an open set in X .

(1) *K is an open set.*

(2) K *is a* C_I^* -set and a semi^{*}-I-open set.

Proof. (1) \Rightarrow (2): It follows from the fact that every open set is a C_I^* -set and a semi^{*}-*I*-open set.

 (2) ⇒ (1): Let *K* be a C_I^* -set and a semi^{*}-*I*-open set. Since *K* is a \mathcal{C}_I^* -set, then *K* is a \mathcal{C}_I -set. Since *K* is a \mathcal{C}_I -set and a semi^{*}-*I*-open set in *X*, then by Theorem 23, *K* is an \mathcal{A}_I^* -set. Moreover, since *K* is a \mathcal{C}_I^* -set, then *K* is a pre-*I*-open by Theorem 12. Hence, by Theorem 26, *K* is an open set in X .

Theorem 28. Let (X, τ, I) be an ideal topological space and $K \subset X$. *The following properties are equivalent*:

- (1) *K is an open set.*
- (2) *K is an* α -*I*-open set and a \mathcal{C}_I^* -set.
- (3) K *is an* α *-I-open set and a* C_I -set.

Proof. $(1) \Rightarrow (2)$: It is obvious.

(2) \Rightarrow (3): It follows from the fact that every \mathcal{C}_{I}^{*} -set is a \mathcal{C}_{I} -set.

 $(3) \Rightarrow (1)$: Let *K* be an *α*-*I*-open set and a C_I -set. It follows that *K* is a semi^{*}-*I*-open set and a C_I -set. By Theorem 23, *K* is an \mathcal{A}_I^* -set. Since *K*

is an α -*I*-open set and an \mathcal{A}_{I}^{*} -set, then by Theorem 26, *K* is an open set in X .

Definition 29. A subset *K* of an ideal topological space (X, τ, I) is said to be *gp*-*I*-open [15] if $N \subset p_I Int(K)$ whenever $N \subset K$ and N is a closed set in *X*, where $p_I Int(K) = K \cap Int(Cl^*(K))$.

Definition 30. A subset *K* of an ideal topological space (X, τ, I) is said to be generalized pre-*I*-closed (*gp_I*-closed) in (X, τ, I) if $X \ K$ is *gp*-*I*-open.

Theorem 31. For a subset K of an ideal topological space (X, τ, I) , K *is gp*_{*I*} -closed if and only if $p_I Cl(K) \subset N$ whenever $K \subset N$ and N *is an open set in* (X, τ, I) *.*

Proof. Let *K* be a qp_I -closed set in *X*. Suppose that $K \subset N$ and *N* is an open set in (X, τ, I) . Then $X\ K$ is *gp*-*I*-open and $X\ N \subset X\ K$ where $X\backslash N$ is closed. Since $X\backslash K$ is *gp*-*I*-open, then we have $X\backslash N \subset$ $p_I Int(X \backslash K)$, where $p_I Int(X \backslash K) = (X \backslash K) \cap Int(Cl^*(X \backslash K))$. Since $(X \backslash K) \cap$ $Int(Cl^*(X\backslash K)) = (X\backslash K) \cap (X\backslash Cl(Int^*(K))) = X\backslash (K \cup Cl(Int^*(K))),$ then by Lemma 8, $(X \backslash K) \cap Int(Cl^*(X \backslash K)) = X \backslash (K \cup Cl(Int^*(K)))$ = $X\$ p_{*I}Cl*(*K*). It follows that $p_I Int(X \setminus K) = X\$ p_{*ICl*}(*K*). Thus, $p_I Cl(K)$ </sub> $=X\$ int I *nt* $(X\ K) \subset N$ and hence $p_I Cl(K) \subset N$. The converse is similar.

Theorem 32. *Let* (X, τ, I) *be an ideal topological space and* $V \subset X$ *. Then V is a* C_I -set *in* X *if and only if* $V = G \cap p_I Cl(V)$ *for an open set* G *in X.*

Proof. If *V* is a C_I -set, then $V = G \cap M$ for an open set *G* and a pre-*I*closed set *M*. But then $V \subset M$ and so $V \subset p_I Cl(V) \subset M$. It follows that $V = V \cap p_I Cl(V) = G \cap M \cap p_I Cl(V) = G \cap p_I Cl(V)$. Conversely, it is enough to prove that $p_I Cl(V)$ is a pre-*I*-closed set. But $p_I Cl(V) \subset M$, for any pre-*I*-closed set *M* containing *V*. So, $Cl(Int^*(p_ICl(V))) \subset Cl(Int^*(M)) \subset M$. It follows that $Cl(Int^*(p_ICl(V))) \subset \bigcap_{V \subset M, M \text{ is pre-}I\text{-closed}} M = p_ICl(V)$. \Box

Theorem 33. Let (X, τ, I) be an ideal topological space and $N \subset X$. *The following properties are equivalent*:

 (1) *N is a pre-I-closed set in X.*

(2) *N* is a C_I -set and a gp_{*I*}-closed set in X.

Proof. (1) \Rightarrow (2): It follows from the fact that any pre-*I*-closed set in *X* is a C_I -set and a *gp_I*-closed set in *X*.

 (2) ⇒ (1): Suppose that *N* is a *C*_{*I*}-set and a *gp*_{*I*}-closed set in *X*. Since *N* is a C_I -set, then by Theorem 32, $N = G \cap p_I Cl(N)$ for an open set *G* in (X, τ, I) . Since $N \subset G$ and N is a *qp_I*-closed set in X , then $p_I Cl(N) \subset G$. It follows that $p_I Cl(N) \subset G \cap p_I Cl(N) = N$. Thus, $N = p_I Cl(N)$ and hence *N* is pre-*I*-closed.

Theorem 34. Let (X, τ, I) be an ideal topological space and $K \subset X$. *If K is a* C_I -set *in X,* then $p_I Cl(K) \ K$ *is a pre-I*-closed set and $K \cup$ $(X\$ |p_ICl(K)) *is a pre-I-open set in* X.

Proof. Suppose that *K* is a C_I -set in *X*. By Theorem 32, we have $K = L \cap p_I Cl(K)$ for an open set *L* in *X*. It follows that $p_I Cl(K) \backslash K$ $= p_I Cl(K) \setminus (L \cap p_I Cl(K)) = p_I Cl(K) \cap (X \setminus (L \cap p_I Cl(K))) = p_I Cl(K) \cap$ $((X\backslash L)\cup (X\backslash p_{I}Cl(K)))=(p_{I}Cl(K)\cap (X\backslash L))\cup (p_{I}Cl(K)\cap (X\backslash p_{I}Cl(K)))=$ $(p_I Cl(K) \cap (X \backslash L)) \cup \emptyset = p_I Cl(K) \cap (X \backslash L)$. Thus, $p_I Cl(K) \backslash K = p_I Cl(K) \cap$ $(X\backslash L)$ and hence $p_ICl(K)\backslash K$ is pre-*I*-closed. Moreover, since $p_ICl(K)\backslash K$ is a pre-*I*-closed set in *X*, then $X \setminus (p_I Cl(K) \setminus K) = X \setminus (p_I Cl(K) \cap (X \setminus K)) =$ $(X\pmb{\setminus} p_ICl(K)) \cup K$ is a pre-*I*-open set.

Thus, $X \setminus (p_I Cl(K) \setminus K) = (X \setminus p_I Cl(K)) \cup K$ is a pre-*I*-open set in *X*. \square

3. Further properties

Definition 35. Let (X, τ, I) be an ideal topological space. (X, τ, I) is said to be pre-*I*-connected if *X* can not be expressed as the disjoint union of two nonvoid pre-*I*-open sets.

Theorem 36. *Let* (*X, τ, I*) *be an ideal topological space. The following properties are equivalent*:

(1) (X, τ, I) *is pre-I-connected.*

(2) (*X, τ, I*) *can not be expressed as the disjoint union of two nonvoid* \mathcal{C}_I^* -sets.

Proof. (1) \Rightarrow (2): Suppose that (X, τ, I) can be expressed as the disjoint union of two nonvoid C_I^* -sets. Since any C_I^* -set is a pre-*I*-open set, then (X, τ, I) can be expressed as the disjoint union of two nonvoid pre-*I*open sets. So, (X, τ, I) is not pre-*I*-connected. This is a contradiction.

 $(2) \Rightarrow (1)$: Suppose that (X, τ, I) is not pre-*I*-connected. Then, X can be expressed as the disjoint union of two nonvoid pre-*I*-open sets. It follows that *X* has a nontrivial pre-*I*-regular subset *A*. Moreover, *A* and

 $B = X \setminus A$ are pre-*I*-regular. Then *A* and *B* are C_I^* -sets. Hence, (X, τ, I) can be expressed as the disjoint union of two nonvoid C_I^* -sets. This is a contradiction.

Definition 37. An ideal topological space (X, τ, I) is called *I*-submaximal [1, 7] if every \star -dense subset of X is open.

Theorem 38 ([7]). For an ideal topological space (X, τ, I) , the following *properties are equivalent*:

(1) *X is I-submaximal.*

(2) *Every pre-I-open set is open.*

(3) *Every pre-I-open set is semi-I-open and every α-I-open set is open.*

Theorem 39. *In an I-submaximal ideal space* (*X, τ, I*)*, the following properties hold*:

(1) $Any \mathcal{C}_I^* \text{-} set is an \eta \zeta \text{-} set and an AB_I \text{-} set.$

(2) $Any \eta_I-set$ *is a locally closed set.*

Proof. (1): Suppose that *K* is a C_I^* -set in *X*. It follows that $K = L \cap M$, where L is an open set and M is a pre- I -regular set in X . By Theorem 38, *M* is semi-*I*-open and semi-*I*-closed. It follows from Lemma 4 that *M* is semi-*I*-open and semi*∗* -*I*-closed. By Theorem 25, *M* is semi-*I*-open and a t -*I*-set in *X*. Thus, *K* is an AB _{*I*}-set in *X*. Furthermore, by Theorem 38, *K* is an *η* ζ -set in *X*.

(2): It follows from Theorem 38. \Box

Definition 40. An ideal topological space (X, τ, I) is said to be \star hyperconnected [6] if *A* is \star -dense for every open subset $A \neq \emptyset$ of *X*.

Theorem 41 ([6])**.** *The following properties are equivalent for an ideal topological space* (*X, τ, I*):

(1) *X* is \star -hyperconnected.

(2) *A is* \star -dense for every strongly β -*I*-open subset $\emptyset \neq A \subset X$.

Theorem 42. *For an ideal topological space* (*X, τ, I*)*, the following properties are equivalent*:

(1) (X, τ, I) *is* \star *-hyperconnected.*

(2) any C_I^* -set in X is \star -dense.

Proof. (1) \Rightarrow (2): Let *K* be a C_f^* -set in *X*. By Theorem 12, *K* is pre-*I*-open. Since (X, τ, I) is a ***-hyperconnected ideal topological space, then by Theorem 41, K is \star -dense.

 (2) ⇒ (1) : Suppose that any C_I^* -set in (X, τ, I) is \star -dense in *X*. Since an open set *K* in *X* is a C_I^* -set, then *K* is \star -dense. Thus, (X, τ, I) is \star hyperconnected. $\hfill\Box$

4. Decompositions of continuity and A_I^* -continuity

Definition 43. A function $f:(X, \tau, I) \rightarrow (Y, \sigma)$ is said to be

(1) C_I^* -continuous if $f^{-1}(A)$ is a C_I^* -set in *X* for every open set *A* in *Y*. (2) *PR*_{*I*}-continuous if $f^{-1}(A)$ is a pre-*I*-regular set in *X* for every open

set *A* in *Y* .

Remark 44. For a function $f : (X, \tau, I) \to (Y, \sigma)$, the following diagram holds. The reverses of these implications are not true in general as shown in the following example

$$
pre-I-continuous
$$

\n
$$
\uparrow
$$

\n
$$
PR_{I}
$$
-continuous \Longrightarrow C_{I}^{*} -continuous

Example 45. Let $X = \{a, b, c, d\}, \tau = \{X, \emptyset, \{a\}, \{a, b\}, \{c, d\}, \{a, c, d\}\}\$ and $I = \{\emptyset, \{a\}, \{d\}, \{a, d\}\}\$. The function $f : (X, \tau, I) \to (X, \tau)$, defined by $f(a) = c$, $f(b) = d$, $f(c) = a$, $f(d) = b$ is pre-*I*-continuous but it is not \mathcal{C}_I^* -continuous. The identity function $i : (X, \tau, I) \to (X, \tau)$ is \mathcal{C}_I^* -continuous but it is not PR_I -continuous.

Definition 46. A function $f : (X, \tau, I) \to (Y, \sigma)$ is said to be

(1) C_I -continuous if $f^{-1}(A)$ is a C_I -set in *X* for every open set *A* in *Y*.

(2) \mathcal{A}_I^* -continuous if $f^{-1}(A)$ is an \mathcal{A}_I^* -set in *X* for every open set *A* in *Y*.

(3) η_I -continuous if $f^{-1}(A)$ is an η_I -set in *X* for every open set *A* in *Y*.

Remark 47. For a function $f : (X, \tau, I) \to (Y, \sigma)$, the following diagram holds. The reverses of these implications are not true in general as shown in the following example

> C_I^* -continuous $\implies C_I$ -continuous *⇑* \mathcal{A}_I^* -continuous $\implies \eta_I$ -continuous

Example 48. Let $X = \{a, b, c, d\}, \tau = \{X, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}\$ and $I = \{\emptyset, \{a\}, \{d\}, \{a, d\}\}.$ The function $f : (X, \tau, I) \to (X, \tau)$, defined by $f(a) = b$, $f(b) = c$, $f(c) = c$, $f(d) = a$ is η *I*-continuous but it is not \mathcal{A}_I^* -continuous. The function $g : (X, \tau, I) \to (X, \tau)$, defined by $g(a) = b$, $g(b) = c$, $g(c) = a$, $g(d) = c$ is C_I^* -continuous but it is not η_I -continuous.

Example 49. Let $X = \{a, b, c, d\}, \tau = \{X, \emptyset, \{a\}, \{a, b\}, \{c, d\}, \{a, c, d\}\}\$ and $I = \{\emptyset, \{a\}, \{d\}, \{a,d\}\}\$. The function $f : (X, \tau, I) \rightarrow (X, \tau)$, defined by $f(a)=b, f(b)=a, f(c)=c, f(d)=d$ is C_I -continuous and A_I^* -continuous but it is not C_I^* -continuous. The function $g : (X, \tau, I) \to (X, \tau)$, defined by $g(a) = a$, $g(b) = a, g(c) = b, g(d) = a$ is C_I -continuous but it is not η_I -continuous.

Definition 50. A function $f : (X, \tau, I) \rightarrow (Y, \sigma)$ is said to be semi^{*}-*I*continuous if $f^{-1}(V)$ is a semi^{*}-*I*-open set in *X* for every open set *V* in *Y*.

Theorem 51. *The following properties are equivalent for a function* $f: (X, \tau, I) \rightarrow (Y, \sigma)$:

(1) f *is* A_I^* -continuous.

- (2) f *is* η_I -continuous and semi^{*}-I-continuous.
- (3) f *is* C_I -continuous and semi^{*}-I-continuous.

Proof. It follows from Theorem 23. □

Theorem 52. *The following properties are equivalent for a function* $f: (X, \tau, I) \rightarrow (Y, \sigma)$:

(1) *f is continuous.*

(2) f *is* α -*I*-continuous and A_I^* -continuous.

- (3) f *is pre-I-continuous and* A_I^* -continuous.
- (4) f *is semi*^{*}-*I*-continuous and C_I^* -continuous.
- (5) f *is* α -*I*-continuous and C_I^* -continuous.
- (6) f *is* α -*I*-continuous and C _{*I*}-continuous.

Proof. It follows from Theorem 26, 27 and 28. □

Acknowledgements. I would like to express my sincere gratitude to the referee.

REFERENCES

1. AÇIKGÖZ, A.; YÜKSEL, S.; NOIRI, T. – α -*I*-preirresolute functions and β -*Ipreirressolute functions*, Bull. Malays. Math. Sci. Soc., 28 (2005), 1–8.

- 2. Bourbaki, N. *Elements of Mathematics. General Topology*, Part 1, Hermann, Paris, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1966.
- 3. Dontchev, J. *Idealization of Ganster-Reilly decomposition theorems*, arxiv:math.GN/9901017v1 (1999).
- 4. Dontchev, J.; Ganster, M.; Rose, D. *Ideal resolvability*, Topology Appl., 93 (1999), 1–16.
- 5. Ekici, E.; Noiri, T. *⋆-extremally disconnected ideal topological spaces*, Acta Math. Hungar., 122 (2009), 81–90.
- 6. EKICI, E.; NOIRI, T. **-hyperconnected ideal topological spaces*, An. Stiint_s. Univ. "Al. I. Cuza" Iaşi. Mat. (N.S.), 58 (2012), 121-129.
- 7. Ekici, E.; Noiri, T. *Properties of I-submaximal ideal topological spaces*, Filomat, 24 (2010), 87–94.
- 8. Hatir, E.; Noiri, T. *On decompositions of continuity via idealization*, Acta Math. Hungar., 96 (2002), 341–349.
- 9. Hatir, E.; Keskin, A.; Noiri, T. *On a new decomposition of continuity via idealization*, JP J. Geom. Topol., 3 (2003), 53–64.
- 10. Hatir, E.; Keskin, A.; Noiri, T. *A note on strong β-I-sets and strongly β-Icontinuous functions*, Acta Math. Hungar., 108 (2005), 87–94.
- 11. JANKOVIĆ, D.; HAMLETT, T.R. *New topologies from old via ideals*, Amer. Math. Monthly, 97 (1990), 295–310.
- 12. Keskin, A.; Yuksel, S. *On semi-I-regular sets, AB^I -sets and decompositions of continuity,* $R_I C$ -*continuity,* A_I -*continuity,* Acta Math. Hungar., 113 (2006), 227–241.
- 13. Kuratowski, K. *Topology*, Vol. I. New edition, revised and augmented. Translated from the French by J. Jaworowski Academic Press, New York-London; Państwowe Wydawnictwo Naukowe, Warsaw, 1966.
- 14. Noiri, T.; Sayed, O.R. *On decomposition of continuity*, Acta Math. Hungar., 111 $(2006), 1–8.$
- 15. Noiri, T.; Rajamani, M.; Inthumathi, V. *On decompositions of g-continuity via idealization*, Bull. Calcutta Math. Soc., 99 (2007), 415–424.

Received: 4.VI.2010 Department of Mathematics, Revised: 27.IV.2011 Canakkale Onsekiz Mart University, Terzioglu Campus, 17020 Canakkale, TURKEY eekici@comu.edu.tr