ON \mathcal{A}_I^* -SETS, \mathcal{C}_I -SETS, \mathcal{C}_I^* -SETS AND DECOMPOSITIONS OF CONTINUITY IN IDEAL TOPOLOGICAL SPACES

$\mathbf{B}\mathbf{Y}$

ERDAL EKICI

Abstract. The aim of this paper is to introduce and study the notions of \mathcal{A}_{I}^{*} -sets, \mathcal{C}_{I} -sets and \mathcal{C}_{I}^{*} -sets in ideal topological spaces. Properties of \mathcal{A}_{I}^{*} -sets, \mathcal{C}_{I} -sets and \mathcal{C}_{I}^{*} -sets are investigated. Moreover, decompositions of continuous functions and decompositions of \mathcal{A}_{I}^{*} -continuous functions via \mathcal{A}_{I}^{*} -sets, \mathcal{C}_{I} -sets and \mathcal{C}_{I}^{*} -sets in ideal topological spaces are established.

Mathematics Subject Classification 2010: 54A05, 54A10, 54C08, 54C10.

Key words: \mathcal{A}_{I}^{*} -set, \mathcal{C}_{I} -set, \mathcal{C}_{I}^{*} -set, pre-*I*-regular set, ideal topological space, decomposition, \star -extremally disconnected ideal space, \star -hyperconnected ideal space, *I*-submaximal ideal space.

1. Introduction and preliminaries

In this paper, \mathcal{A}_{I}^{*} -sets, \mathcal{C}_{I} -sets and \mathcal{C}_{I}^{*} -sets in ideal topological spaces are introduced and studied. The relationships and properties of \mathcal{A}_{I}^{*} -sets, \mathcal{C}_{I} -sets and \mathcal{C}_{I}^{*} -sets in ideal topological spaces are investigated. Futhermore, decompositions of continuous functions and decompositions of \mathcal{A}_{I}^{*} -continuous functions via \mathcal{A}_{I}^{*} -sets, \mathcal{C}_{I} -sets and \mathcal{C}_{I}^{*} -sets in ideal topological spaces are provided.

In the present paper, (X, τ) or (Y, σ) will denote topological spaces with no separation properties assumed. For a subset V of X, let Cl(V) and Int(V) denote the closure and the interior of V, respectively, with respect to the topological space (X, τ) .

An ideal I on a set X is a nonempty collection of subsets of X which satisfies

(1) $V \in I$ and $G \subset V$ implies $G \in I$.

(2) $V \in I$ and $G \in I$ implies $V \cup G \in I$ [13].

174

If I is an ideal on X and $X \notin I$, then $\mathcal{F} = \{X \setminus G : G \in I\}$ is a filter [11]. For an ideal I on (X, τ) , (X, τ, I) is said to be an ideal topological space or briefly an ideal space. Let P(X) be the set of all subsets of X. For an ideal topological space (X, τ, I) , a set operator $(.)^* : P(X) \to P(X)$, which will be said the local function [13] of $G \subset X$ with respect to τ and I, is defined as follows: $G^*(I, \tau) = \{x \in X : H \cap G \notin I \text{ for every } H \in \tau(x)\}$ where $\tau(x) = \{H \in \tau : x \in H\}$. A Kuratowski closure operator $Cl^*(.)$ for a topology $\tau^*(I, \tau)$, said to be the *-topology, finer than τ , is defined by $Cl^*(G) = G \cup G^*(I, \tau)$ [11]. We will briefly write G^* for $G^*(I, \tau)$ and τ^* for $\tau^*(I, \tau)$.

Remark 1. The *-topology is generated by τ and by the filter \mathcal{F} . Also, the family $\{H \cap G : H \in \tau, G \in \mathcal{F}\}$ is a basis for this topology [11].

Lemma 2 ([10]). Let K be a subset of an ideal topological space (X, τ, I) . If N is open, then $N \cap Cl^*(K) \subset Cl^*(N \cap K)$.

Definition 3. A subset K of an ideal topological space (X, τ, I) is called pre-*I*-open [3] (resp. semi-*I*-open [8], α -*I*-open [8], strongly β -*I*open [9], \star -dense [4], t-*I*-set [8], semi*-*I*-open [5, 6]) if $K \subset Int(Cl^*(K))$ (resp. $K \subset Cl^*(Int(K)), K \subset Int(Cl^*(Int(K))), K \subset Cl^*(Int(Cl^*(K))),$ $Cl^*(K) = X, Int(K) = Int(Cl^*(K)), K \subset Cl(Int^*(K))).$

Lemma 4 ([6]). Every semi-I-open set is semi^{*}-I-open in an ideal topological space.

Remark 5. The reverse implication of Lemma 4 is not true in general as shown in [5, 6].

Definition 6. The complement of a pre-*I*-open (resp. semi-*I*-open, α -*I*-open, semi^{*}-*I*-open) set is called pre-*I*-closed [3] (resp. semi-*I*-closed [8], α -*I*-closed [8], semi^{*}-*I*-closed [5, 6]).

Definition 7. The pre-*I*-closure of a subset K of an ideal topological space (X, τ, I) , denoted by $p_I Cl(K)$, is defined as the intersection of all pre-*I*-closed sets of X containing K [6].

Lemma 8 ([6]). For a subset K of an ideal topological space (X, τ, I) , $p_I Cl(K) = K \cup Cl(Int^*(K))$.

Definition 9. A function $f : (X, \tau, I) \to (Y, \sigma)$ is said to be pre-*I*-continuous [3] (resp. α -*I*-continuous [8]) if $f^{-1}(K)$ is pre-*I*-open (resp. α -*I*-open) in X for each open set K in Y.

Definition 10. A subset K of an ideal topological space (X, τ, I) is called

(1) an $\eta\zeta$ -set [14] if $K = L \cap M$, where L is open and M is clopen in X.

(2) locally closed [2] if $K = L \cap M$, where L is open and M is closed in X.

(3) a B_I -set [8] if $K = L \cap M$, where L is open and M is a t-I-set in X. (4) semi-I-regular [12] if K is a t-I-set and semi-I-open in X.

(5) an AB_{I} -set [12] if $K = L \cap M$, where L is open and M is a semi-*I*-regular set in X.

2. \mathcal{A}_{I}^{*} -sets, \mathcal{C}_{I} -sets, \mathcal{C}_{I}^{*} -sets in ideal topological spaces

A subset K of an ideal topological space (X, τ, I) is called pre-*I*-regular if K is pre-*I*-open and pre-*I*-closed in (X, τ, I) .

Definition 11. Let (X, τ, I) be an ideal topological space and $K \subset X$. K is said to be a \mathcal{C}_I^* -set if $K = L \cap M$, where L is an open set and M is a pre-I-regular set in X.

Theorem 12. Let (X, τ, I) be an ideal topological space. Then each C_I^* -set in X is a pre-I-open set.

Proof. Let K be a C_I^* -set in X. It follows that $K = L \cap M$, where L is an open set and M is a pre-*I*-regular set in X. Since M is a pre-*I*-open set, then by Proposition 2.10 of [3], $K = L \cap M$ is a pre-*I*-open set in X.

Remark 13. The converse of Theorem 12 need not be true in general as shown in the following example.

Example 14. Let $X = \{a, b, c, d\}, \tau = \{X, \emptyset, \{a\}, \{a, b\}, \{c, d\}, \{a, c, d\}\}$ and $I = \{\emptyset, \{a\}, \{d\}, \{a, d\}\}$. Then the set $K = \{a, b, c\}$ is a pre-*I*-open set but it is not a C_I^* -set.

Remark 15. In an ideal topological space, every open set and every pre-*I*-regular set is a C_I^* -set. The converse of this implication is not true in general as shown in the following example.

4

Example 16. Let $X = \{a, b, c, d\}$, $\tau = \{X, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}$ and $I = \{\emptyset, \{a\}, \{d\}, \{a, d\}\}$. Then the set $K = \{a, b, c\}$ is a \mathcal{C}_I^* -set but it is not pre-*I*-regular. The set $L = \{a, c, d\}$ is a \mathcal{C}_I^* -set but it is not open.

Remark 17. By Remark 15 and Theorem 12, the following diagram holds for a subset K of an ideal topological space (X, τ, I) :

$$\begin{array}{c} \text{pre-}I\text{-open} \\ \uparrow \\ \text{pre-}I\text{-regular} \implies \mathcal{C}_{I}^{*}\text{-set} \end{array}$$

Definition 18. A subset K of an ideal topological space (X, τ, I) is said to be

(1) a C_I -set if $K = L \cap M$, where L is an open set and M is a pre-I-closed set in X.

(2) an η_I -set if $K = L \cap M$, where L is an open set and M is an α -I-closed set in X.

(3) an \mathcal{A}_{I}^{*} -set if $K = L \cap M$, where L is an open set and $M = Cl(Int^{*}(M))$.

Remark 19. Let (X, τ, I) be an ideal topological space and $K \subset X$. The following diagram holds for K:

$$\begin{array}{rcl} \mathcal{C}_{I}^{*}\text{-set} & \Longrightarrow & \mathcal{C}_{I}\text{-set} \\ & & \uparrow \\ \mathcal{A}_{I}^{*}\text{-set} & \Longrightarrow & \eta_{I}\text{-set} \end{array}$$

The following examples show that these implications are not reversible in general.

Example 20. Let $X = \{a, b, c, d\}, \tau = \{X, \emptyset, \{a\}, \{a, b\}, \{c, d\}, \{a, c, d\}\}$ and $I = \{\emptyset, \{a\}, \{d\}, \{a, d\}\}$. Then the set $K = \{b, c, d\}$ is a \mathcal{C}_I -set and an \mathcal{A}_I^* -set but it is not a \mathcal{C}_I^* -set. The set $L = \{a, b, d\}$ is a \mathcal{C}_I -set but it is not an η_I -set.

Example 21. Let $X = \{a, b, c, d\}, \tau = \{X, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}$ and $I = \{\emptyset, \{a\}, \{d\}, \{a, d\}\}$. Then the set $K = \{d\}$ is an η_I -set but it is not an \mathcal{A}_I^* -set. The set $L = \{a, b, d\}$ is a \mathcal{C}_I^* -set but it is not an η_I -set.

Theorem 22. For a subset K of an ideal topological space (X, τ, I) , the following properties are equivalent:

(1) K is a C_I -set and a semi^{*}-I-open set in X.

(2) $K = L \cap Cl(Int^*(K))$ for an open set L.

Proof. (1) \Rightarrow (2): Suppose that K is a C_I -set and a semi*-*I*-open set in X. Since K is a C_I -set, then we have $K = L \cap M$, where L is an open set and M is a pre-*I*-closed set in X. We have $K \subset M$, so $Cl(Int^*(K)) \subset$ $Cl(Int^*(M))$. Since M is a pre-*I*-closed set in X, we have $Cl(Int^*(M)) \subset$ M. Since K is a semi*-*I*-open set in X, we have $K \subset Cl(Int^*(K))$. It follows that $K = K \cap Cl(Int^*(K)) = L \cap M \cap Cl(Int^*(K)) = L \cap Cl(Int^*(K))$.

 $(2) \Rightarrow (1)$: Let $K = L \cap Cl(Int^*(K))$ for an open set L. We have $K \subset Cl(Int^*(K))$. It follows that K is a semi^{*}-I-open set in X. Since $Cl(Int^*(K))$ is a closed set, then $Cl(Int^*(K))$ is a pre-I-closed set in X. Hence, K is a C_I -set in X.

Theorem 23. For a subset K of an ideal topological space (X, τ, I) , the following properties are equivalent:

- (1) K is an \mathcal{A}_I^* -set in X.
- (2) K is an η_I -set and a semi^{*}-I-open set in X.
- (3) K is a C_I -set and a semi^{*}-I-open set in X.

Proof. (1) \Rightarrow (2): Suppose that K is an \mathcal{A}_{I}^{*} -set in X. It follows that $K = L \cap M$, where L is an open set and $M = Cl(Int^{*}(M))$. This implies $K = L \cap M = L \cap Cl(Int^{*}(M)) \subset Cl(L \cap Int^{*}(M)) = Cl(Int^{*}(L \cap M)) = Cl(Int^{*}(K))$. Thus, $K \subset Cl(Int^{*}(K))$ and hence K is a semi^{*}-I-open set in X. Moreover, by Remark 19, K is an η_{I} -set in X.

(2) \Rightarrow (3): It follows from the fact that every η_I -set is a \mathcal{C}_I -set in X by Remark 19.

(3) \Rightarrow (1): Suppose that K is a C_I -set and a semi*-*I*-open set in X. By Theorem 22, $K = L \cap Cl(Int^*(K))$ for an open set L. We have $Cl(Int^*(Cl(Int^*(K)))) = Cl(Int^*(K))$. It follows that K is an \mathcal{A}_I^* -set in X. \Box

Theorem 24 ([5]). A subset K of an ideal topological space (X, τ, I) is semi^{*}-I-open if and only if $Cl(K) = Cl(Int^*(K))$.

Theorem 25. A subset K of an ideal topological space (X, τ, I) is semi^{*}-I-closed if and only if K is a t-I-set.

Proof. Let K be a semi*-*I*-closed set in X. Then $X \setminus K$ is semi*-*I*-open. By Theorem 24, we have $Cl(X \setminus K) = Cl(Int^*(X \setminus K))$. It follows that $Cl(X \setminus K) = X \setminus Int(K) = Cl(Int^*(X \setminus K)) = X \setminus Int(Cl^*(K))$. Thus, $Int(K) = Int(Cl^*(K))$ and hence K is a t-*I*-set in X. The converse is similar.

Theorem 26. Let (X, τ, I) be an ideal topological space and $K \subset X$. The following properties are equivalent:

- (1) K is an open set.
- (2) K is an α -I-open set and an \mathcal{A}_I^* -set.
- (3) K is a pre-I-open set and an \mathcal{A}_I^* -set.

Proof. (1) \Rightarrow (2): It follows from the fact that every open set is an α -*I*-open set and an \mathcal{A}_I^* -set.

 $(2) \Rightarrow (3)$: It follows from the fact that every α -*I*-open set is pre-*I*-open. $(3) \Rightarrow (1)$: Suppose that *K* is a pre-*I*-open set and an \mathcal{A}_{I}^{*} -set. Since *K* is an \mathcal{A}_{I}^{*} -set, then we have $K = L \cap M$, where *L* is an open set and $M = Cl(Int^{*}(M))$. It follows that $Int(Cl^{*}(M)) \subset Cl^{*}(M) \subset Cl(M) =$ $Cl(Int^{*}(M)) = M$. Since $Int(Cl^{*}(M)) \subset M$, then *M* is a semi^{*}-*I*-closed set. By Theorem 25, *M* is a *t*-*I*-set. Hence, *K* is a *B*_I-set. Since *K* is a *B*_I-set and a pre-*I*-open set, then by Proposition 3.3 of [8], *K* is an open set in *X*.

Theorem 27. Let (X, τ, I) be an ideal topological space and $K \subset X$. The following properties are equivalent:

(1) K is an open set.

(2) K is a C_I^* -set and a semi*-I-open set.

Proof. (1) \Rightarrow (2): It follows from the fact that every open set is a C_I^* -set and a semi^{*}-*I*-open set.

 $(2) \Rightarrow (1)$: Let K be a \mathcal{C}_{I}^{*} -set and a semi^{*}-I-open set. Since K is a \mathcal{C}_{I}^{*} -set, then K is a \mathcal{C}_{I} -set. Since K is a \mathcal{C}_{I} -set and a semi^{*}-I-open set in X, then by Theorem 23, K is an \mathcal{A}_{I}^{*} -set. Moreover, since K is a \mathcal{C}_{I}^{*} -set, then K is a pre-I-open by Theorem 12. Hence, by Theorem 26, K is an open set in X.

Theorem 28. Let (X, τ, I) be an ideal topological space and $K \subset X$. The following properties are equivalent:

(1) K is an open set.

(2) K is an α -I-open set and a C_I^* -set.

(3) K is an α -I-open set and a C_I -set.

Proof. (1) \Rightarrow (2): It is obvious.

 $(2) \Rightarrow (3)$: It follows from the fact that every \mathcal{C}_I^* -set is a \mathcal{C}_I -set.

(3) \Rightarrow (1): Let K be an α -I-open set and a \mathcal{C}_I -set. It follows that K is a semi^{*}-I-open set and a \mathcal{C}_I -set. By Theorem 23, K is an \mathcal{A}_I^* -set. Since K

178

is an α -*I*-open set and an \mathcal{A}_I^* -set, then by Theorem 26, *K* is an open set in *X*.

Definition 29. A subset K of an ideal topological space (X, τ, I) is said to be *gp-I*-open [15] if $N \subset p_I Int(K)$ whenever $N \subset K$ and N is a closed set in X, where $p_I Int(K) = K \cap Int(Cl^*(K))$.

Definition 30. A subset K of an ideal topological space (X, τ, I) is said to be generalized pre-*I*-closed $(gp_I$ -closed) in (X, τ, I) if $X \setminus K$ is gp-*I*-open.

Theorem 31. For a subset K of an ideal topological space (X, τ, I) , K is gp_I -closed if and only if $p_ICl(K) \subset N$ whenever $K \subset N$ and N is an open set in (X, τ, I) .

Proof. Let K be a gp_I -closed set in X. Suppose that $K \subset N$ and N is an open set in (X, τ, I) . Then $X \setminus K$ is gp-I-open and $X \setminus N \subset X \setminus K$ where $X \setminus N$ is closed. Since $X \setminus K$ is gp-I-open, then we have $X \setminus N \subset p_I Int(X \setminus K)$, where $p_I Int(X \setminus K) = (X \setminus K) \cap Int(Cl^*(X \setminus K))$. Since $(X \setminus K) \cap Int(Cl^*(X \setminus K)) = (X \setminus K) \cap (X \setminus Cl(Int^*(K))) = X \setminus (K \cup Cl(Int^*(K)))$, then by Lemma 8, $(X \setminus K) \cap Int(Cl^*(X \setminus K)) = X \setminus (K \cup Cl(Int^*(K))) = X \setminus p_I Cl(K)$. It follows that $p_I Int(X \setminus K) = X \setminus p_I Cl(K)$. Thus, $p_I Cl(K) = X \setminus p_I Int(X \setminus K) \subset N$ and hence $p_I Cl(K) \subset N$. The converse is similar. \Box

Theorem 32. Let (X, τ, I) be an ideal topological space and $V \subset X$. Then V is a C_I -set in X if and only if $V = G \cap p_I Cl(V)$ for an open set G in X.

Proof. If V is a C_I -set, then $V = G \cap M$ for an open set G and a pre-*I*closed set M. But then $V \subset M$ and so $V \subset p_I Cl(V) \subset M$. It follows that $V = V \cap p_I Cl(V) = G \cap M \cap p_I Cl(V) = G \cap p_I Cl(V)$. Conversely, it is enough to prove that $p_I Cl(V)$ is a pre-*I*-closed set. But $p_I Cl(V) \subset M$, for any pre-*I*-closed set M containing V. So, $Cl(Int^*(p_I Cl(V))) \subset Cl(Int^*(M)) \subset M$. It follows that $Cl(Int^*(p_I Cl(V))) \subset \cap_{V \subset M, M \text{ is pre-$ *I* $-closed} M = p_I Cl(V). \Box$

Theorem 33. Let (X, τ, I) be an ideal topological space and $N \subset X$. The following properties are equivalent:

(1) N is a pre-I-closed set in X.

(2) N is a C_I -set and a gp_I -closed set in X.

Proof. (1) \Rightarrow (2): It follows from the fact that any pre-*I*-closed set in X is a C_I -set and a gp_I -closed set in X.

 $(2) \Rightarrow (1)$: Suppose that N is a C_I -set and a gp_I -closed set in X. Since N is a C_I -set, then by Theorem 32, $N = G \cap p_I Cl(N)$ for an open set G in (X, τ, I) . Since $N \subset G$ and N is a gp_I -closed set in X, then $p_I Cl(N) \subset G$. It follows that $p_I Cl(N) \subset G \cap p_I Cl(N) = N$. Thus, $N = p_I Cl(N)$ and hence N is pre-I-closed.

Theorem 34. Let (X, τ, I) be an ideal topological space and $K \subset X$. If K is a C_I -set in X, then $p_I Cl(K) \setminus K$ is a pre-I-closed set and $K \cup (X \setminus p_I Cl(K))$ is a pre-I-open set in X.

Proof. Suppose that K is a C_I -set in X. By Theorem 32, we have $K = L \cap p_I Cl(K)$ for an open set L in X. It follows that $p_I Cl(K) \setminus K = p_I Cl(K) \setminus (L \cap p_I Cl(K)) = p_I Cl(K) \cap (X \setminus (L \cap p_I Cl(K))) = p_I Cl(K) \cap (X \setminus L) \cup (X \setminus p_I Cl(K))) = (p_I Cl(K) \cap (X \setminus L)) \cup (p_I Cl(K) \cap (X \setminus p_I Cl(K))) = (p_I Cl(K) \cap (X \setminus L)) \cup \emptyset = p_I Cl(K) \cap (X \setminus L).$ Thus, $p_I Cl(K) \setminus K = p_I Cl(K) \cap (X \setminus L)$ and hence $p_I Cl(K) \setminus K$ is pre-*I*-closed. Moreover, since $p_I Cl(K) \setminus K$ is a pre-*I*-closed set in X, then $X \setminus (p_I Cl(K) \setminus K) = X \setminus (p_I Cl(K) \cap (X \setminus K)) = (X \setminus p_I Cl(K) \cup K) = (X \setminus p_I Cl(K) \setminus K) = (X \setminus p$

Thus, $X \setminus (p_I Cl(K) \setminus K) = (X \setminus p_I Cl(K)) \cup K$ is a pre-*I*-open set in X. \Box

3. Further properties

180

Definition 35. Let (X, τ, I) be an ideal topological space. (X, τ, I) is said to be pre-*I*-connected if X can not be expressed as the disjoint union of two nonvoid pre-*I*-open sets.

Theorem 36. Let (X, τ, I) be an ideal topological space. The following properties are equivalent:

(1) (X, τ, I) is pre-*I*-connected.

(2) (X, τ, I) can not be expressed as the disjoint union of two nonvoid C_I^* -sets.

Proof. (1) \Rightarrow (2): Suppose that (X, τ, I) can be expressed as the disjoint union of two nonvoid C_I^* -sets. Since any C_I^* -set is a pre-*I*-open set, then (X, τ, I) can be expressed as the disjoint union of two nonvoid pre-*I*-open sets. So, (X, τ, I) is not pre-*I*-connected. This is a contradiction.

(2) \Rightarrow (1): Suppose that (X, τ, I) is not pre-*I*-connected. Then, X can be expressed as the disjoint union of two nonvoid pre-*I*-open sets. It follows that X has a nontrivial pre-*I*-regular subset A. Moreover, A and

 $B = X \setminus A$ are pre-*I*-regular. Then *A* and *B* are C_I^* -sets. Hence, (X, τ, I) can be expressed as the disjoint union of two nonvoid C_I^* -sets. This is a contradiction.

Definition 37. An ideal topological space (X, τ, I) is called *I*-submaximal [1, 7] if every \star -dense subset of X is open.

Theorem 38 ([7]). For an ideal topological space (X, τ, I) , the following properties are equivalent:

(1) X is I-submaximal.

(2) Every pre-I-open set is open.

(3) Every pre-I-open set is semi-I-open and every α -I-open set is open.

Theorem 39. In an I-submaximal ideal space (X, τ, I) , the following properties hold:

(1) Any C_I^* -set is an $\eta\zeta$ -set and an AB_I -set.

(2) Any η_I -set is a locally closed set.

Proof. (1): Suppose that K is a C_I^* -set in X. It follows that $K = L \cap M$, where L is an open set and M is a pre-I-regular set in X. By Theorem 38, M is semi-I-open and semi-I-closed. It follows from Lemma 4 that M is semi-I-open and semi*-I-closed. By Theorem 25, M is semi-I-open and a t-I-set in X. Thus, K is an AB_I -set in X. Furthermore, by Theorem 38, K is an $\eta\zeta$ -set in X.

(2): It follows from Theorem 38.

Definition 40. An ideal topological space (X, τ, I) is said to be \star -hyperconnected [6] if A is \star -dense for every open subset $A \neq \emptyset$ of X.

Theorem 41 ([6]). The following properties are equivalent for an ideal topological space (X, τ, I) :

(1) X is \star -hyperconnected.

(2) A is \star -dense for every strongly β -I-open subset $\emptyset \neq A \subset X$.

Theorem 42. For an ideal topological space (X, τ, I) , the following properties are equivalent:

(1) (X, τ, I) is \star -hyperconnected.

(2) any \mathcal{C}_I^* -set in X is \star -dense.

Proof. (1) \Rightarrow (2): Let K be a C_I^* -set in X. By Theorem 12, K is pre-*I*-open. Since (X, τ, I) is a *-hyperconnected ideal topological space, then by Theorem 41, K is *-dense.

182 ERDAL EKICI	10
-----------------	----

 $(2) \Rightarrow (1)$: Suppose that any \mathcal{C}_I^* -set in (X, τ, I) is \star -dense in X. Since an open set K in X is a \mathcal{C}_I^* -set, then K is \star -dense. Thus, (X, τ, I) is \star hyperconnected.

4. Decompositions of continuity and \mathcal{A}_{I}^{*} -continuity

Definition 43. A function $f: (X, \tau, I) \to (Y, \sigma)$ is said to be

(1) C_I^* -continuous if $f^{-1}(A)$ is a C_I^* -set in X for every open set A in Y. (2) PR_I -continuous if $f^{-1}(A)$ is a pre-*I*-regular set in X for every open

set A in Y.

Remark 44. For a function $f : (X, \tau, I) \to (Y, \sigma)$, the following diagram holds. The reverses of these implications are not true in general as shown in the following example

$$PR_{I}\text{-continuous} \implies \mathcal{C}_{I}^{*}\text{-continuous}$$

Example 45. Let $X = \{a, b, c, d\}, \tau = \{X, \emptyset, \{a\}, \{a, b\}, \{c, d\}, \{a, c, d\}\}$ and $I = \{\emptyset, \{a\}, \{d\}, \{a, d\}\}$. The function $f : (X, \tau, I) \to (X, \tau)$, defined by f(a) = c, f(b) = d, f(c) = a, f(d) = b is pre-*I*-continuous but it is not \mathcal{C}_{I}^{*} -continuous. The identity function $i : (X, \tau, I) \to (X, \tau)$ is \mathcal{C}_{I}^{*} -continuous but it is not PR_{I} -continuous.

Definition 46. A function $f: (X, \tau, I) \to (Y, \sigma)$ is said to be

(1) \mathcal{C}_I -continuous if $f^{-1}(A)$ is a \mathcal{C}_I -set in X for every open set A in Y.

(2) \mathcal{A}_{I}^{*} -continuous if $f^{-1}(A)$ is an \mathcal{A}_{I}^{*} -set in X for every open set A in Y.

(3) η_I -continuous if $f^{-1}(A)$ is an η_I -set in X for every open set A in Y.

Remark 47. For a function $f : (X, \tau, I) \to (Y, \sigma)$, the following diagram holds. The reverses of these implications are not true in general as shown in the following example

 $\mathcal{C}_{I}^{*} ext{-continuous} \implies \mathcal{C}_{I} ext{-continuous}$ \uparrow $\mathcal{A}_{I}^{*} ext{-continuous} \implies \eta_{I} ext{-continuous}$

Example 48. Let $X = \{a, b, c, d\}, \tau = \{X, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}$ and $I = \{\emptyset, \{a\}, \{d\}, \{a, d\}\}$. The function $f : (X, \tau, I) \to (X, \tau)$, defined by

f(a) = b, f(b) = c, f(c) = c, f(d) = a is η_I -continuous but it is not \mathcal{A}_I^* -continuous. The function $g: (X, \tau, I) \to (X, \tau)$, defined by g(a) = b, g(b) = c, g(c) = a, g(d) = c is \mathcal{C}_I^* -continuous but it is not η_I -continuous.

Example 49. Let $X = \{a, b, c, d\}, \tau = \{X, \emptyset, \{a\}, \{a, b\}, \{c, d\}, \{a, c, d\}\}$ and $I = \{\emptyset, \{a\}, \{d\}, \{a, d\}\}$. The function $f : (X, \tau, I) \rightarrow (X, \tau)$, defined by f(a)=b, f(b)=a, f(c)=c, f(d)=d is \mathcal{C}_I -continuous and \mathcal{A}_I^* -continuous but it is not \mathcal{C}_I^* -continuous. The function $g : (X, \tau, I) \rightarrow (X, \tau)$, defined by g(a) = a, g(b) = a, g(c) = b, g(d) = a is \mathcal{C}_I -continuous but it is not η_I -continuous.

Definition 50. A function $f : (X, \tau, I) \to (Y, \sigma)$ is said to be semi^{*}-*I*-continuous if $f^{-1}(V)$ is a semi^{*}-*I*-open set in X for every open set V in Y.

Theorem 51. The following properties are equivalent for a function $f: (X, \tau, I) \to (Y, \sigma)$:

- (1) f is \mathcal{A}_{I}^{*} -continuous.
- (2) f is η_I -continuous and semi^{*}-I-continuous.
- (3) f is C_I -continuous and semi^{*}-I-continuous.

Proof. It follows from Theorem 23.

Theorem 52. The following properties are equivalent for a function $f: (X, \tau, I) \rightarrow (Y, \sigma)$:

- (1) f is continuous.
- (2) f is α -I-continuous and \mathcal{A}_{I}^{*} -continuous.
- (3) f is pre-I-continuous and \mathcal{A}_{I}^{*} -continuous.
- (4) f is semi^{*}-I-continuous and C_I^* -continuous.
- (5) f is α -I-continuous and C_I^* -continuous.
- (6) f is α -I-continuous and C_I -continuous.

Proof. It follows from Theorem 26, 27 and 28. \Box

Acknowledgements. I would like to express my sincere gratitude to the referee.

REFERENCES

 AÇIKGÖZ, A.; YÜKSEL, Ş.; NOIRI, T. – α-I-preirresolute functions and β-Ipreirressolute functions, Bull. Malays. Math. Sci. Soc., 28 (2005), 1–8.

ERDAL H	EKICI
---------	-------

- BOURBAKI, N. Elements of Mathematics. General Topology, Part 1, Hermann, Paris, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1966.
- 3. DONTCHEV, J. Idealization of Ganster-Reilly decomposition theorems, arxiv:math.GN/9901017v1 (1999).
- DONTCHEV, J.; GANSTER, M.; ROSE, D. *Ideal resolvability*, Topology Appl., 93 (1999), 1–16.
- EKICI, E.; NOIRI, T. *-extremally disconnected ideal topological spaces, Acta Math. Hungar., 122 (2009), 81–90.
- EKICI, E.; NOIRI, T. *-hyperconnected ideal topological spaces, An. Ştiinţ. Univ. "Al. I. Cuza" Iaşi. Mat. (N.S.), 58 (2012), 121–129.
- EKICI, E.; NOIRI, T. Properties of I-submaximal ideal topological spaces, Filomat, 24 (2010), 87–94.
- HATIR, E.; NOIRI, T. On decompositions of continuity via idealization, Acta Math. Hungar., 96 (2002), 341–349.
- HATIR, E.; KESKIN, A.; NOIRI, T. On a new decomposition of continuity via idealization, JP J. Geom. Topol., 3 (2003), 53–64.
- HATIR, E.; KESKIN, A.; NOIRI, T. A note on strong β-I-sets and strongly β-Icontinuous functions, Acta Math. Hungar., 108 (2005), 87–94.
- JANKOVIĆ, D.; HAMLETT, T.R. New topologies from old via ideals, Amer. Math. Monthly, 97 (1990), 295–310.
- 12. KESKIN, A.; YUKSEL, S. On semi-I-regular sets, AB_I-sets and decompositions of continuity, R_IC-continuity, A_I-continuity, Acta Math. Hungar., 113 (2006), 227–241.
- KURATOWSKI, K. *Topology*, Vol. I. New edition, revised and augmented. Translated from the French by J. Jaworowski Academic Press, New York-London; Państwowe Wydawnictwo Naukowe, Warsaw, 1966.
- NOIRI, T.; SAYED, O.R. On decomposition of continuity, Acta Math. Hungar., 111 (2006), 1–8.
- 15. NOIRI, T.; RAJAMANI, M.; INTHUMATHI, V. On decompositions of g-continuity via idealization, Bull. Calcutta Math. Soc., 99 (2007), 415–424.

Received: 4. VI.2010 Revised: 27.IV.2011

184

Department of Mathematics, Canakkale Onsekiz Mart University, Terzioglu Campus, 17020 Canakkale, TURKEY eekici@comu.edu.tr

12