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1. Introduction

The theory of thermo-microstretch elastic solids was introduced by Erin-

gen [6]. The particles of the solid with microstretch can expand and con-
tract independent of translations and the rotations which they execute.

In the class of nonstandard problems, the backward in time problems
have been initially considered by Serrin [10], who studied the uniqueness of
solutions for the Navier-Stokes equations backward in time. An important
study was made by Ames and Straughan [2] for this class of nonstandard
and improperly posed problems. Ciarletta [5] studied the uniqueness and
continuous dependence problems for the thermoelastic processes backward
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in time. At this hour, the nonstandard problems are intensively studied
and we mention only some of the researchers in this domain: Ames [1,2],
Payne [1,7], Knops [7], Ciarletta [5,4], Chiriţă [3,4], Quintanilla [9],
Straughan [2, 9] and Passarella [8].

In this article we consider the boundary final value problem for the
linear theory of thermo-microstretch elastic solids. The data are given for
the final time t = 0 and we want to study the solution at the previous
moments. By an appropriate change of variable, we transform this problem
into a boundary initial value problem. Using the Lagrange-Brun identities,
we deduce some preliminary results that combined with a method based
on Gronwall’s inequality will be the principal ingredients in obtaining the
uniqueness and the continuous dependence results.

Passarella and Tibullo [8] have demonstrated the uniqueness of so-
lutions for the backward in time problem of the linear theory of thermo-
microstretch elastic materials and the impossibility of the localization in
time of the solution of the corresponding forward in time problem. Our
results concerning the uniqueness of solution extend in a particular case the
uniqueness theorem of Passarella and Tibullo [8] and we also discuss
a different class of problems than the one considered by them. Some esti-
mates that prove the continuous dependence of solution with respect to the
final data are obtained.

2. The boundary final value problem

In this article, we shall denote by Ω ⊂ R
3 the domain occupied by

an anisotropic and inhomogeneous thermo-microstretch elastic solid, whose
boundary surface is ∂Ω. The standard convention of summation over re-
peated suffixes is adopted and a subscript comma denotes the spatial partial
differentiation with respect to the corresponding cartesian coordinate and
a superposed dot denotes differentiation with respect to time. Greek sub-
scripts vary over {1, 2} and Latin subscripts vary over {1, 2, 3}.

We consider the boundary final value problems on the time interval
(−T, 0], T > 0 and T may be infinite. The fundamental system of field
equations consists [6] of the geometric relations

(2.1) eij = uj,i + εjikϕk, κij = ϕj,i, γi = ψ,i on Ω× (−T, 0],

the constitutive equations

tij = Aijrsers +Bijrsκrs +Dijrγr +Aijψ − βijθ,
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(2.2)

mij = Brsijers + Cijrsκrs + Eijrγr +Bijψ − Cijθ,

3πi = Drsiers + Ersiκrs +Dijγj + diψ − ξiθ,

3σ = Arsers +Brsκrs + diγi +mψ − ζθ,

ρη = βrsers + Crsκrs + ξiγi + ζψ + aθ,

qi = kijθ,j in Ω× (−T, 0],

the equations of motion

(2.3)

tji,j + fi = ρüi,

mji,j + εirstrs + gi = Iijϕ̈j ,

πi,i − σ + h = Jψ̈ in Ω× (−T, 0)

and the energy equation

(2.4) ρT0η̇ = qi,i + r in Ω× (−T, 0).

In the above equations we have used the following notations: tij is the
stress tensor, mij is the couple stress tensor, πi is the microstress vector,
σ is the scalar microstress function, η is the specific entropy, ρ is the mass
density (in the reference configuration), fi is the body force, gi is the body
couple, h is the (scalar) body load, r is the heat source density, qi is
the heat flux vector, Iij is the microinertia tensor, J is the microstretch
inertia and εijk is the alternating symbol. The variables of this theory
are: ui the components of the displacement vector, ϕi the components
of the microrotation vector, ψ the microstretch function and θ the varia-
tion of temperature from the uniform reference absolute temperature T0.
We assume the following symmetries for the constitutive coefficients and
the microinertia tensor

(2.5) Aijrs = Arsij, Cijrs = Crsij, Dij = Dji, kij = kji, Iij = Iji.

Considering (2.2), the energy equation can be rewritten in the following
form

(2.6) −βij ėij − Cij κ̇ij − ξiγ̇i − ζψ̇ +
1

T0
qi,i +

1

T0
r = aθ̇ in Ω× (−T, 0).

We consider the boundary-final value problem (P) defined by relations
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(2.1)–(2.3) and (2.6), the final conditions

(2.7)

ui(x, 0) = u0i (x), u̇i(x, 0) = u̇0i (x), ϕi(x, 0) = ϕ0
i (x),

ϕ̇i(x, 0) = ϕ̇0
i (x), ψ(x, 0) = ψ0(x), ψ̇(x, 0) = ψ̇0(x),

θ(x, 0) = θ0(x), x ∈ Ω

and the boundary conditions

(2.8)

ui(x, t) = ũi(x, t) on Σ1 × (−T, 0],

ti(x, t) ≡ tji(x, t)nj(x) = t̃i(x, t) on Σ2 × (−T, 0],

ϕi(x, t) = ϕ̃i(x, t) on Σ3 × (−T, 0],

mi(x, t) ≡ mji(x, t)nj(x) = m̃i(x, t) on Σ4 × (−T, 0],

ψ(x, t) = ψ̃(x, t) on Σ5 × (−T, 0],

π(x, t) ≡ πi(x, t)ni(x) = π̃(x, t) on Σ6 × (−T, 0],

θ(x, t) = θ̃(x, t) on Σ7 × (−T, 0],

q(x, t) ≡ qi(x, t)ni(x) = q̃(x, t) on Σ8 × (−T, 0],

where u0i , u̇
0
i , ϕ

0
i , ϕ̇

0
i , ψ

0, ψ̇0, θ0, ũi, t̃i, ϕ̃i, m̃i, ψ̃, π̃, θ̃ and q̃ are prescribed func-
tions, ni are the components of the outward unit normal vector to the
boundary surface and Σi, i = 1, 2, ..., 8 are subsurfaces of ∂Ω, such that
Σ1 ∪ Σ2 = Σ3 ∪ Σ4 = Σ5 ∪ Σ6 = Σ7 ∪ Σ8 = ∂Ω and Σ1 ∩ Σ2 = Σ3 ∩ Σ4 =
Σ5 ∩ Σ6 = Σ7 ∩ Σ8 = ∅.

We assume that ρ, Iij , J and the constitutive coefficients are continu-
ous and bounded fields on Ω, the constitutive coefficients are continuously
differentiable functions on Ω and

(2.9) ρ(x) ≥ ρ0 > 0, J(x) ≥ J0 > 0, I(x) ≥ I0 > 0,

where I(x) denotes the minimum eigenvalue of Iij(x) and ρ0, J0, I0 are
constants. We say that the internal energy density per unit of volume is a
positive semidefinite quadratic form if

(2.10) W (κ) ≥ 0,

for all κ = {eij , κij , γi, ψ}, where

(2.11)
2W (κ) = Aijrseijers + Cijrsκijκrs +Dijγiγj +mψ2 + 2Bijrseijκrs

+2Dijreijγr + 2Eijrκijγr + 2Aijeijψ + 2Bijκijψ + 2diγiψ.
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We denote by W (t) =W ({eij(x, t), κij(x, t), γi(x, t), ψ(x, t)}). We define

2E(τ1, τ2)=Aijrseij(τ1)ers(τ2)+Cijrsκij(τ1)κrs(τ2)+Dijγi(τ1)γj(τ2)

+mψ(τ1)ψ(τ2) +Bijrs[eij(τ1)κrs(τ2) + eij(τ2)κrs(τ1)]

+Dijr[eij(τ1)γr(τ2)+eij(τ2)γr(τ1)]+Aij [eij(τ1)ψ(τ2)+eij(τ2)ψ(τ1)](2.12)

+Eijr[κij(τ1)γr(τ2)+κij(τ2)γr(τ1)]+Bij [κij(τ1)ψ(τ2)+κij(τ2)ψ(τ1)]

+di[γi(τ1)ψ(τ2) + γi(τ2)ψ(τ1)],

where, for convenience, the dependence on x was suppressed. We can re-
mark that E(t, t) =W (t). If kij is a positive definite tensors, we have

(2.13) kmθ,iθ,i ≤ kijθ,iθ,j ≤ kMθ,iθ,i,

where km and kM are positive constants, related to the minimum and the
maximum eigenvalue (conductivity moduli) for kij .

By using the relations (2.1), (2.2) and (2.11), we obtain

(2.14) tij ėij +mijκ̇ij +3πiγ̇i+3σψ̇ = Ẇ −βij ėijθ−Cijκ̇ijθ− ξiγ̇iθ− ζψ̇θ.

For future convenience, we set

(2.15) δ = sup
Ω

[
1

ρ0
βijβij +

1

I0
CijCij +

1

3J0
ξiξi

] 1

2

> 0,

(2.16)

δ∗ = sup
Ω

[
1

ρ0
βji,jβki,k +

1

I0
(εjikβkj + Cki,k)(εjilβlj + Cli,l)

+
2

3J0
ξi,iξi,i +

2

3J0
ζ2
] 1

2

> 0.

3. The transformed boundary-initial value problem

The aim of this article is to study the uniqueness and the continuous
dependence of the solutions of the boundary-final value problem (P) with
respect to the final data. To do this, we transform (P) into a boundary-
initial value problem using the change of variables: t  −t. Thus, the
boundary-initial value problem (P) is defined by the geometric equations

(3.1) eij = uj,i + εjikϕk, κij = ϕj,i, γi = ψ,i on Ω× [0, T ),
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the constitutive equations

(3.2)

tij = Aijrsers +Bijrsκrs +Dijrγr +Aijψ − βijθ,

mij = Brsijers + Cijrsκrs + Eijrγr +Bijψ − Cijθ,

3πi = Drsiers + Ersiκrs +Dijγj + diψ − ξiθ,

3σ = Arsers +Brsκrs + diγi +mψ − ζθ,

ρη = βrsers + Crsκrs + ξiγi + ζψ + aθ,

qi = kijθ,j in Ω× [0, T ),

the equations of motion

(3.3)

tji,j + fi = ρüi,

mji,j + εirstrs + gi = Iijϕ̈j ,

πi,i − σ + h = Jψ̈ in Ω× (0, T ),

the energy equation

(3.4) βij ėij + Cijκ̇ij + ξiγ̇i + ζψ̇ +
1

T0
qi,i +

1

T0
r = −aθ̇ in Ω× (0, T ),

with the initial conditions

(3.5)
ui(x, 0)=u

0
i (x), u̇i(x, 0)=u̇

0
i (x), ϕi(x, 0)=ϕ

0
i (x), ϕ̇i(x, 0) = ϕ̇0

i (x),

ψ(x, 0) = ψ0(x), ψ̇(x, 0) = ψ̇0(x), θ(x, 0) = θ0(x), x ∈ Ω

and the boundary conditions

(3.6)

ui(x, t)=ũi(x, t) on Σ1 × [0, T ), ti(x, t)=t̃i(x, t) on Σ2 × [0, T ),

ϕi(x, t)=ϕ̃i(x, t) on Σ3 × [0, T ), mi(x, t)=m̃i(x, t) on Σ4 × [0, T ),

ψ(x, t)=ψ̃(x, t) on Σ5 × [0, T ), π(x, t)=π̃(x, t) on Σ6 × [0, T ),

θ(x, t)=θ̃(x, t) on Σ7 × [0, T ), q(x, t)=q̃(x, t) on Σ8 × [0, T ).

By a solution of the boundary-initial value problem (P) we mean an
ordered array $ = [ui, ϕi, ψ, eij , κij , γi, tij ,mij , πi, σ, θ, θ,i, qi] with its com-
ponents continuous on Ω× [0, T ) and satisfying equations (3.1)–(3.6).

In the rest of this section we establish some auxiliary identities concer-
ning the solutions of the boundary-initial value problem (P) with the exter-
nal given dataD = [fi, gi, h, r, u

0
i , u̇

0
i , ϕ

0
i , ϕ̇

0
i , ψ

0, ψ̇0, θ0, ũi, t̃i, ϕ̃i, m̃i, ψ̃, π̃, θ̃, q̃].
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Lemma 3.1. Let $ be a solution of the boundary-initial value problem

(P) corresponding to the external given data D. Then, for all t ∈ [0, T ),
we have

∫

Ω

[
ρu̇i(t)u̇i(t) + Iijϕ̇i(t)ϕ̇j(t) + 3Jψ̇2(t) + 2W (t) + aθ2(t)

]
dv

− 2

∫ t

0

∫

Ω

1

T0
kijθ,i(s)θ,j(s)dvds

=

∫

Ω

[
ρu̇i(0)u̇i(0) + Iijϕ̇i(0)ϕ̇j(0) + 3Jψ̇2(0) + 2W (0) + aθ2(0)

]
dv(3.7)

+ 2

∫ t

0

∫

Ω

[
fi(s)u̇i(s) + gi(s)ϕ̇i(s) + 3h(s)ψ̇(s)−

1

T0
r(s)θ(s)

]
dvds

+ 2

∫ t

0

∫

∂Ω

[
ti(s)u̇i(s)+mi(s)ϕ̇i(s) + 3π(s)ψ̇(s)−

1

T0
q(s)θ(s)

]
dads.

Proof. We deduce from (2.5), (2.14), (3.1) and (3.3) that

1

2

∂

∂s

[
ρu̇i(s)u̇i(s) + Iijϕ̇i(s)ϕ̇j(s) + 3Jψ̇2(s) + 2W (s)

]
= fi(s)u̇i(s)

+ gi(s)ϕ̇i(s)+3h(s)ψ̇(s)+
[
tji(s)u̇i(s)+mji(s)ϕ̇i(s)+3πj(s)ψ̇(s)

]
,j

(3.8)

+ βij ėij(s)θ(s) + Cijκ̇ij(s)θ(s) + ξiγ̇i(s)θ(s) + ζψ̇(s)θ(s).

If we integrate the above relation over Ω× [0, t], t ∈ [0, T ) and then use the
divergence theorem and equivalences from (2.8), we have

∫

Ω
[ρu̇i(t)u̇i(t) + Iijϕ̇i(t)ϕ̇j(t) + 3Jψ̇2(t) + 2W (t)]dv

=

∫

Ω
[ρu̇i(0)u̇i(0) + Iijϕ̇i(0)ϕ̇j(0) + 3Jψ̇2(0) + 2W (0)]dv

+ 2

∫ t

0

∫

Ω
[fi(s)u̇i(s) + gi(s)ϕ̇i(s) + 3h(s)ψ̇(s)]dvds(3.9)

+ 2

∫ t

0

∫

∂Ω
[ti(s)u̇i(s) +mi(s)ϕ̇i(s) + 3π(s)ψ̇(s)]dads

+ 2

∫ t

0

∫

Ω
[βij ėij(s)θ(s)+Cij κ̇ij(s)θ(s)+ξiγ̇i(s)θ(s)+ζψ̇(s)θ(s)]dvds.
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Further, by using the relations (3.2) and (3.4) we deduce

1

2

∂

∂s

[
aθ2(s)

]
=− βij ėij(s)θ(s)−Cij κ̇ij(s)θ(s)−ξiγ̇i(s)θ(s)

− ζψ̇(s)θ(s)−

[
1

T0
qi(s)θ(s)

]

,i

+
1

T0
kijθ,i(s)θ,j(s)−

1

T0
r(s)θ(s)(3.10)

which by integrating over Ω × [0, t], t ∈ [0, T ) and by using the divergence
theorem and the relation (2.8), gives us the identity

∫

Ω
aθ2(t)dv − 2

∫ t

0

∫

Ω

1

T0
kijθ,i(s)θ,j(s)dvds =

∫

Ω
aθ2(0)dv

−2

∫ t

0

∫

Ω

1

T0
r(s)θ(s)dvds− 2

∫ t

0

∫

∂Ω

1

T0
q(s)θ(s)dads(3.11)

−2

∫ t

0

∫

Ω
[βij ėij(s)θ(s)+Cij κ̇ij(s)θ(s)+ξiγ̇i(s)θ(s)+ζψ̇(s)θ(s)]dvds.

Summing the relation (3.9) with (3.11) we obtain the identity (3.7), and so
the proof is complete. �

Lemma 3.2. Let $ be a solution of the boundary-initial value problem

(P) corresponding to the external given data D. Then, for all t ∈ [0, T2 ), we
have

∫

Ω

{
ρu̇i(t)u̇i(t) + Iijϕ̇i(t)ϕ̇j(t) + 3Jψ̇2(t)−

[
2W (t) + aθ2(t)

]}
dv

=

∫

Ω

{
ρu̇i(0)u̇i(2t) + Iijϕ̇i(0)ϕ̇j(2t) + 3Jψ̇(0)ψ̇(2t)

− [2E(0, 2t) + aθ(0)θ(2t)]
}
dv

+

∫ t

0

∫

Ω

{
[fi(t− s)u̇i(t+ s)− fi(t+ s)u̇i(t− s)]

+ [gi(t− s)ϕ̇i(t+ s)− gi(t+ s)ϕ̇i(t− s)](3.12)

+ 3
[
h(t− s)ψ̇(t+ s)− h(t+ s)ψ̇(t− s)

]

+
1

T0
[r(t− s)θ(t+ s)− r(t+ s)θ(t− s)]

}
dvds

+

∫ t

0

∫

∂Ω

{
[ti(t− s)u̇i(t+ s)− ti(t+ s)u̇i(t− s)]
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+ [mi(t− s)ϕ̇i(t+ s)−mi(t+ s)ϕ̇i(t− s)]

+ 3
[
π(t− s)ψ̇(t+ s)− π(t+ s)ψ̇(t− s)

]

+
1

T0
[q(t− s)θ(t+ s)− q(t+ s)θ(t− s)]

}
dads.

Proof. Considering t ∈ [0, T2 ), from (2.5) we have

ρu̇i(t)u̇i(t) + Iijϕ̇i(t)ϕ̇j(t) + 3Jψ̇2(t)

= ρu̇i(0)u̇i(2t) + Iijϕ̇i(0)ϕ̇j(2t) + 3Jψ̇(0)ψ̇(2t)

+

∫ t

0

{
ρ[u̇i(t+ s)üi(t− s)− u̇i(t− s)üi(t+ s)](3.13)

+ Iij[ϕ̇i(t+ s)ϕ̈j(t− s)− ϕ̇i(t− s)ϕ̈j(t+ s)]

+ 3J [ψ̇(t+ s)ψ̈(t− s)− ψ̇(t− s)ψ̈(t+ s)]
}
ds.

Further, using the relations (2.5), (2.12) and (3.1)–(3.4), we deduce that

ρu̇i(t)u̇i(t) + Iijϕ̇i(t)ϕ̇j(t) + 3Jψ̇2(t)−
[
2W (t) + aθ2(t)

]

= ρu̇i(0)u̇i(2t) + Iijϕ̇i(0)ϕ̇j(2t) + 3Jψ̇(0)ψ̇(2t)

− [2E(0, 2t) + aθ(0)θ(2t)]

+

∫ t

0

{
fi(t− s)u̇i(t+ s)− fi(t+ s)u̇i(t− s)

+ gi(t− s)ϕ̇i(t+ s)− gi(t+ s)ϕ̇i(t− s)(3.14)

+ 3
[
h(t− s)ψ̇(t+ s)− h(t+ s)ψ̇(t− s)

]

+
1

T0
[r(t− s)θ(t+ s)− r(t+ s)θ(t− s)]

}
ds

+

∫ t

0

{
tji(t− s)u̇i(t+ s)− tji(t+ s)u̇i(t− s)

+mji(t− s)ϕ̇i(t+ s)−mji(t+ s)ϕ̇i(t− s)

+ 3
[
πj(t− s)ψ̇(t+ s)− πj(t+ s)ψ̇(t− s)

]

+
1

T0
[qj(t− s)θ(t+ s)− qj(t+ s)θ(t− s)]

}

,j

ds, t ∈

[
0,
T

2

)
.

To complete the proof of this lemma, we integrate relation (3.14) over Ω,
use the divergence theorem and the equivalences from (2.8). �
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The identities obtained in this section constitute the essential ingredients
in deducing the uniqueness and continuous dependence results in the next
three sections, for the boundary-initial value problem (P) with respect to
the external given data D.

4. Uniqueness results

The aim of this section is to establish the uniqueness of the solution of
the boundary-initial value problem (P). Passarella and Tibullo [8] have
demonstrated a uniqueness result for the problem we have considered. The
theorems given in this section extend their theorem in the particular case
when meas Σ8 = 0. In what follows, we assume that the symmetry relations
(2.5) are satisfied. We will use the following hypotheses:

(H1) the relation (2.9) holds true and kij is a positive definite tensor (i.e.
the relation (2.13) holds true);

(H2) W is a positive semidefinite quadratic form;

(H3) a(x) ≤ a0 < 0, where a0 is a constant.

These assumptions are reasonable and characterize a certain state
supported by the thermo-microstretch elastic body.

Theorem 4.1. Assume that (H1) and (H2) hold true. Then the boun-

dary-initial value problem (P) has at most one solution.

Proof. We consider $(α) = [u
(α)
i , ϕ

(α)
i , ψ(α), e

(α)
ij , κ

(α)
ij , γ

(α)
i , t

(α)
ij ,m

(α)
ij ,

π
(α)
i , σ(α), θ(α), θ

(α)
,i , q

(α)
i ](α = 1, 2) two solutions of the boundary-initial

value problem (P) corresponding to the same external given data D. The
difference $ = $(1) − $(2) = [ui, ϕi, ψ, eij , κij , γi, tij ,mij , πi, σ, θ, θ,i, qi] is
a solution for the boundary-initial value problem (P) corresponding to the
null external given data.

Relations (3.7) and (3.12), in the context of this theorem, provides us

∫

Ω

[
ρu̇i(t)u̇i(t) + Iijϕ̇i(t)ϕ̇j(t) + 3Jψ̇2(t)

]
dv

=

∫ t

0

∫

Ω

1

T0
kijθ,i(s)θ,j(s)dvds, t ∈

[
0,
T

2

)
.(4.1)
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The assumption that meas Σ8 = 0 and the homogeneous external given
data implies that θ(x, t) = 0 on ∂Ω× [0, T ) and hence we obtain

2

∫ t

0

∫

Ω

[
βij ėij(s)θ(s)+Cij κ̇ij(s)θ(s)+ξiγ̇i(s)θ(s)+ζψ̇(s)θ(s)

]
dvds

= −2

∫ t

0

∫

Ω

{
[βijθ(s)],i u̇j(s)− εjikβijϕ̇k(s)θ(s) + [Cijθ(s)],i ϕ̇j(s)(4.2)

+ [ξiθ(s)],i ψ̇(s)− ζψ̇(s)θ(s)
}
dvds.

The Poincaré inequality (see [5]) gives us

(4.3)

∫

Ω
θ,i(t)θ,i(t)dv ≥ λ

∫

Ω
θ2(t)dv,

where λ > 0 is the minimum eigenvalue of the clamped membrane problem.

On the other hand, by using Schwarz’s inequality, arithmetic-geometric
mean inequality and the relations (2.15)-(2.16), we deduce

2

∫ t

0

∫

Ω

[
βij ėij(s)θ(s)+Cijκ̇ij(s)θ(s)+ξiγ̇i(s)θ(s)+ζψ̇(s)θ(s)

]
dvds

≤

∫ t

0

∫

Ω

{
ε1 + ε2

ε1ε2

[
ρu̇i(s)u̇i(s) + Iijϕ̇i(s)ϕ̇j(s) + 3Jψ̇2(s)

]
(4.4)

+ ε1δ
∗2θ2(s) + ε2δ

2θ,i(s)θ,i(s)

}
dvds, ∀ ε1, ε2 > 0.

Supposing that hypothesis (H1) holds true and considering the relations
(2.9), (2.13), (4.3) and (4.4), we obtain

2

∫ t

0

∫

Ω

[
βij ėij(s)θ(s)+Cij κ̇ij(s)θ(s)+ξiγ̇i(s)θ(s)+ζψ̇(s)θ(s)

]
dvds

≤
ε1 + ε2

ε1ε2

∫ t

0

∫

Ω

[
ρu̇i(s)u̇i(s) + Iijϕ̇i(s)ϕ̇j(s) + 3Jψ̇2(s)

]
dvds(4.5)

+ µ

∫ t

0

∫

Ω

1

T0
kijθ,i(s)θ,j(s)dvds, ∀ ε1, ε2 > 0, t ∈ [0, T ),
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where µ = T0

km
(ε1λ

−1δ∗2 + ε2δ
2) and λ is defined by (4.3). Moreover, from

(4.1) and (4.5), we deduce

2

∫ t

0

∫

Ω

[
βij ėij(s)θ(s)+Cij κ̇ij(s)θ(s)+ξiγ̇i(s)θ(s) + ζψ̇(s)θ(s)

]
dvds

≤
ε1 + ε2

ε1ε2

∫ t

0

∫

Ω

[
ρu̇i(s)u̇i(s) + Iijϕ̇i(s)ϕ̇j(s) + 3Jψ̇2(s)

]
dvds(4.6)

+ µ

∫

Ω

[
ρu̇i(t)u̇i(t) + Iijϕ̇i(t)ϕ̇j(t) + 3Jψ̇2(t)

]
dv, t ∈

[
0,
T

2

)
.

Assuming that hypothesis (H2) holds true, we can conclude from rela-
tions (3.9) and (4.6), with null external given data that

∫

Ω

[
ρu̇i(t)u̇i(t) + Iijϕ̇i(t)ϕ̇j(t) + 3Jψ̇2(t) + 2W (t)

]
dv

≤
ε1 + ε2

ε1ε2

∫ t

0

∫

Ω

[
ρu̇i(s)u̇i(s) + Iijϕ̇i(s)ϕ̇j(s) + 3Jψ̇2(s)

]
dvds(4.7)

+ µ

∫

Ω

[
ρu̇i(t)u̇i(t) + Iijϕ̇i(t)ϕ̇j(t) + 3Jψ̇2(t)

]
dv, t ∈

[
0,
T

2

)
.

Choosing the parameters ε1, ε2 sufficiently small (e.g. ε1 = λkm
3δ∗2T0

and

ε2 =
km

3δ2T0

) we have 1−µ > 0 and hence, from (2.10) and (4.7), we deduce

∫

Ω

[
ρu̇i(t)u̇i(t) + Iijϕ̇i(t)ϕ̇j(t) + 3Jψ̇2(t)

]
dv ≤

ε1 + ε2

(1− µ)ε1ε2

×

∫ t

0

∫

Ω

[
ρu̇i(s)u̇i(s) + Iijϕ̇i(s)ϕ̇j(s) + 3Jψ̇2(s)

]
dvds, t ∈

[
0,
T

2

)
.(4.8)

By means of Gronwall’s inequality, the above relation gives us

(4.9)

∫

Ω

[
ρu̇i(t)u̇i(t) + Iijϕ̇i(t)ϕ̇j(t) + 3Jψ̇2(t)

]
dv = 0, t ∈

[
0,
T

2

)
.

Considering the relation (2.9), we have that all the terms in the integral are
positive and hence, we deduce that

(4.10) u̇i(x, t) = 0, ϕ̇i(x, t) = 0, ψ̇(x, t) = 0 in Ω×

[
0,
T

2

)
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and by taking into account the null initial conditions for $, the relations
(2.13) and (4.1) and the assumption that θ(x, t) = 0 on ∂Ω× [0, T ), we get

(4.11) ui(x, t) = 0, ϕi(x, t) = 0, ψ(x, t) = 0, θ(x, t) = 0 in Ω×

[
0,
T

2

)
.

For the case when T = ∞, the relations (4.11) give us the uniqueness of
solutions of the boundary-initial value problem (P). If T < ∞, we repeat
the procedure of proof on the time interval

[
T
2 , T

)
and we get the relations

(4.11) for Ω ×
[
T
2 ,

3T
4

)
. Continuing this algorithm for extension of the set

on witch we have the uniqueness of solution (P), we obtain the validity of
relations (4.11) over Ω× [0, T ). �

Theorem 4.2. Assume that (H1) and (H3) hold true. Then the boun-

dary-initial value problem (P) has at most one solution.

Proof. The relations (4.1)-(4.6) from the proof of the previous theorem
remain valid because they are obtained under the only hypothesis (H1).
From relation (3.11) with null external given data, we obtain that

∫ t

0

∫

Ω

1

T0
kijθ,i(s)θ,j(s)dvds ≤

∫ t

0

∫

Ω

[
βij ėij(s)θ(s) + Cijκ̇ij(s)θ(s)

+ ξiγ̇i(s)θ(s) + ζψ̇(s)θ(s)
]
dvds, t ∈ [0, T ).(4.12)

Further, using relations (4.1) and (4.5), the above inequality becomes

2

∫ t

0

∫

Ω

1

T0
kijθ,i(s)θ,j(s)dvds≤

ε1+ε2
ε1ε2

∫ t

0

∫ s

0

∫

Ω

1

T0
kijθ,i(z)θ,j(z)dvdzds

+ µ

∫ t

0

∫

Ω

1

T0
kijθ,i(s)θ,j(s)dvds, ∀ ε1, ε2 > 0, t ∈

[
0,
T

2

)
.(4.13)

If we choose parameters ε1, ε2 sufficiently small (e.g ε1 = 2λkm
3δ∗2T0

and ε2 =
2km
3δ2T0

) such that 2− µ > 0, from relation (4.13) we have that

∫ t

0

∫

Ω

1

T0
kijθ,i(s)θ,j(s)dvds ≤

1

2− µ

ε1 + ε2

ε1ε2

×

∫ t

0

∫ s

0

∫

Ω

1

T0
kijθ,i(z)θ,j(z)dvdzds, ∀ ε1, ε2 > 0, t ∈

[
0,
T

2

)
.(4.14)
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By applying Gronwall’s lemma to the above relation, we deduce

(4.15)

∫ t

0

∫

Ω

1

T0
kijθ,i(s)θ,j(s)dvds = 0, t ∈

[
0,
T

2

)
.

Having that kij is a positive definite tensor, the assumption meas Σ8 = 0
and the null external given data, from relations (2.9), (4.1) and (4.15) we
have that

(4.16) ui(x, t) = 0, ϕi(x, t) = 0, ψ(x, t) = 0, θ(x, t) = 0 in Ω×

[
0,
T

2

)
.

Finally, we extend relations (4.16) to Ω × [0, T ) using the same procedure
as at the end of the proof of the previous theorem and so, for hypotheses
(H1) and (H3), we have the uniqueness of solutions of the boundary-initial
value problem (P). �

Remark 4.1. If we assume that (H1), (H2) and (H3) hold true, we
obtain the uniqueness of the solution of the boundary-initial value problem
(P) in Ω× [0, T ), without any procedure of extension.

We can now compare our results with the uniqueness theorem of
Passarella and Tibullo [8]:

- in Theorem 4.1 we extend their result in a particular case: W is
considered a positive semidefinite quadratic form and we had no condition
for a, but we supplementary imposed that meas Σ8 = 0;

- in Theorem 4.2 we discussed a different class of problems than the
one considered by Passarella and Tibullo because we don’t impose any
restriction on W and the condition considered for a is complementary to
the one they considered.

5. Continuous dependence with respect to the final data

In this section, we obtain the continuous dependence with respect to the
final data in the context of the hypotheses (H1), (H2) and (H3). This result
is obtained without imposing any constraining restriction upon the solution.

Theorem 5.1. If $ = [ui, ϕi, ψ, eij , κij , γi, tij,mij , πi, σ, θ, θ,i, qi] is a

solution of the boundary-initial value problem (P) corresponding to the ex-

ternal given data D0 =
[
0, 0, 0, 0, u0i , u̇

0
i , ϕ

0
i , ϕ̇

0
i , ψ

0, ψ̇0, θ0, 0, 0, 0, 0, 0, 0, 0
]
,
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assuming that the hypotheses (H1), (H2) and (H3) hold true, we have the

estimate

(5.1) E(t) +

∫ t

0

∫

Ω

1

T0
kijθ,i(s)θ,j(s)dvds ≤ E(0) exp (Mt), ∀ t ∈ [0, T )

where M > 0 is a constant which depends on T0, km, λ and δ2 defined in the

previous sections and

(5.2) E(t)=

∫

Ω
[ρu̇i(t)u̇i(t) + Iijϕ̇i(t)ϕ̇j(t) + 3Jψ̇2(t) + 2W (t)− aθ2(t)]dv.

Proof. To study the continuous dependence with respect to the ini-
tial data means that the solution of the boundary-initial values problem
(P) do not change significantly when we introduce small perturbations
of initial data. Because the boundary-initial values problem (P) is line-
ar, then the continuous dependence with respect to the initial data is
equivalent to the stability of the null solution. Therefore, we consider
$ = [ui, ϕi, ψ, eij , κij , γi, tij ,mij , πi, σ, θ, θ,i, qi] a solution of the boundary-
initial value problem (P) corresponding to the external given data D0 =
[0, 0, 0, 0, u0i , u̇

0
i , ϕ

0
i , ϕ̇

0
i , ψ

0, ψ̇0, θ0, 0, 0, 0, 0, 0, 0, 0]. Combining (3.9) and
(3.11) in the context of the external given data D0 with (5.2), we have

E(t) + 2

∫ t

0

∫

Ω

1

T0
kijθ,i(s)θ,j(s)dvds = E(0) + 4

∫ t

0

∫

Ω

[
βij ėij(s)θ(s)

+ Cijκ̇ij(s)θ(s) + ξiγ̇i(s)θ(s) + ζψ̇(s)θ(s)
]
dvds, ∀ t ∈ [0, T ).(5.3)

Using Schwarz’s inequality, the arithmetic-geometric mean inequality,
the divergence theorem combined with relations (2.5), (2.9), (2.13), (2.15)–
(2.16) and (4.3), we obtain a convenient approximation for the integral in
the right-hand side of (5.3)

4

∫ t

0

∫

Ω
[βij ėij(s)θ(s) + Cij κ̇ij(s)θ(s) + ξiγ̇i(s)θ(s) + ζψ̇(s)θ(s)]dvds

≤ 2
ε1 + ε2

ε1ε2

∫ t

0

∫

Ω

[
ρu̇i(s)u̇i(s) + Iijϕ̇i(s)ϕ̇j(s) + 3Jψ̇2(s)

]
dvds(5.4)

+
2T0
km

(
ε1δ

∗2λ−1 + ε2δ
2
) ∫ t

0

∫

Ω

1

T0
kijθ,i(s)θ,j(s)dvds.
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for all ε1, ε2 > 0, t ∈ [0, T ), and λ defined by (4.3). To simplify the above
relation, we choose ε1, ε2 and M to be

(5.5) ε1 =
kmλ

4T0δ∗
2 , ε2 =

km

4T0δ2
, M =

8T0
kmλ

(
δ∗2 + λδ2

)

and thus, substituting relation (5.4) in the integral in the right-hand side
of (5.3), we get
(5.6)

E(t) +

∫ t

0

∫

Ω

1

T0
kijθ,i(s)θ,j(s)dvds ≤ E(0)

+M

∫ t

0

∫

Ω

[
ρu̇i(s)u̇i(s) + Iijϕ̇i(s)ϕ̇j(s) + 3Jψ̇2(s)

]
dvds, ∀ t ∈ [0, T ).

Because we work under the hypotheses (H1), (H2) and (H3), we can write
relation (5.6) in the form

E(t) +

∫ t

0

∫

Ω

1

T0
kijθ,i(s)θ,j(s)dvds ≤ E(0)

+M

∫ t

0

{
E(s) +

∫ s

0

∫

Ω

1

T0
kijθ,i(z)θ,j(z)dvdz

}
ds, ∀ t ∈ [0, T ).(5.7)

We can easily observe that we are in the hypotheses of the Gronwall’s lemma
and so the estimate (5.1) holds true and hence the proof is complete. �
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