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Abstract. We consider a complete ε-chainable metric space (X, d) and an infinite
iterated function system (IIFS) formed by an infinite family of (ε, φ)-functions on X.
The aim of this paper is to prove the existence and uniqueness of the attractors of such
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infinite family of uniformly ε-locally strong Meir-Keeler functions.
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1. Introduction

Iterated function systems (IFS) were introduced in their present form by
Hutchinson [10] and popularized by Barnsley [1] and Falconer [6], [7].
Also, infinite iterated function systems (IIFS) were first mention in [25] and
the dimension of the attractors of (IIFS) were studied in [16]. Miculescu
and Mihail [17] studied the shift space associated to attractors of (IIFS),
which are nonempty closed and bounded subsets of complete metric spaces.
Leśniak [14] presented a multivalued approach of infinite iterated function
systems. Other results on infinite iterated function systems were obtained in
[4], [8], [18], [20], [23]. Chiţescu and Miculescu [2] presented an example
of a fractal, generated by Hutchinson’s procedure, embedded in an infinite
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dimensional Banach space. Dumitru and Mihail [3] constructed the shift
space of an IFS consisting of ε-locally Meir-Keeler functions with ε > 0.

In this paper we give the existence and uniqueness of the attractors of
infinite iterated function formed by (ε, φ)-functions, where ε > 0 and φ is
a comparation function, or formed by a family of uniformly strong Meir-
Keeler functions and we prove sufficient conditions for these attractors to
become connected.

For a nonempty set X we will denote by P∗(X) the set of nonempty
subsets of X, by K∗(X) the set of nonempty compact subsets of X and
by B∗(X) the set of nonempty bounded closed subsets of X. We have the
following well known definitions.

Definition 1.1. Let (X, d) be a metric space. The generalized Hausdorff-
Pompeiu semidistance is the application h : P∗(X)×P∗(X) → [0,+∞] de-
fined by h(A,B) = max{d(A,B), d(B,A)} = inf{r ∈ [0,∞] | A ⊂ B(B, r)
andB ⊂ B(A, r)}, where d(A,B) = supx∈A d(x,B)= supx∈A(infy∈B d(x, y)).

In this paper, byK∗(X) or B∗(X) we will refer to (K∗(X), h) or (B∗(X), h).

Definition 1.2. Let (X, d) be a metric space. For a function f : X → X
let us denote by Lip(f) ∈ [0,+∞] the Lipschitz constant associated to f,
which is

Lip(f) = sup
x,y∈X; x ̸=y

d(f(x), f(y))

d(x, y)
.

We say that f is a Lipschitz function if Lip(f) < +∞ and a contraction
if Lip(f) < 1.

Theorem 1.1 ([1]). Let (X, d) be a metric space and h : P∗(X) ×
P∗(X) → [0,∞] the Hausdorff-Pompeiu semidistance. Then:

1) (B∗(X), h) and (K∗(X), h) are metric spaces with (K∗(X), h) closed
in (B∗(X), h).

2) If (X, d) is complete, then (B∗(X), h) and (K∗(X), h) are complete
metric spaces.

3) If (X, d) is compact, then (K∗(X), h) is compact and in this case
B∗(X) = K∗(X).

4) If (X, d) is separable, then (K∗(X), h) is separable.

Proposition 1.1 ([24]). Let (X, dX) be a metric space.

1) If H and K are two nonempty subsets of X then h(H,K) = h(H,K).
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2) If (Hi)i∈I and (Ki)i∈I are two families of nonempty subsets of X
then

h(
∪
i∈I

Hi,
∪
i∈I

Ki) = h(
∪
i∈I

Hi,
∪
i∈I

Ki) ≤ sup
i∈I

h(Hi,Ki).

3) If H and K are two nonempty subsets of X and f : X → X is a
Lipschitz function then h(f(K), f(H)) ≤ Lip(f) · h(K,H).

4) If (Hn)n≥1 ⊂ P(X) is a sequence of sets and H ∈ P(X) is a set such
that hX(H,Hn) → 0, then an element x ∈ X is in H if and only if there
exists xn ∈ Hn such that xn → x.

Definition 1.3. A family of continuous functions (fi)i∈I , fi : X → X
for every i ∈ I, is said to be bounded if for every bounded set A ⊂ X the
set

∪
i∈I fi(A) is bounded.

Definition 1.4. An infinite iterated function system (IIFS) on X con-
sists of a bounded family of continuous functions (fi)i∈I on X and it is
denote by S = (X, (fi)i∈I). When I is finite we obtain the iterated function
systems (IFS).

Definition 1.5. For an (IIFS) S = (X, (fi)i∈I), the fractal operator
FS : B∗(X) → B∗(X) is the function defined by FS(B) =

∪
i∈I fi(B) for

every B ∈ B∗(X).

Remark 1.1. Let S = (X, (fi)i∈I) be an (IIFS). If the functions fi are
contractions, for every i ∈ I with supi∈I Lip(fi) < 1, then the function FS
is a contraction and verifies Lip(FS) ≤ supi∈I Lip(fi) < 1.

Using the Banach’s contraction theorem we can prove the following very
known result:

Theorem 1.2 ([10]). Let (X, d) be a complete metric space and S =
(X, (fi)i∈I) an (IIFS) with (fi)i∈I a bounded family of contractions such
that c = supi∈I Lip(fi) < 1. Then there exists a unique set A(S) ∈ B∗(X)
such that FS(A(S)) = A(S). Moreover, for any H0 ∈ B∗(X) the sequence
(Hn)n≥0 defined by Hn+1 = FS(Hn) is convergent to A(S). For the speed
of the convergence we have the following estimation:

h(Hn, A(S)) ≤ cn

1− c
h(H0,H1).

Definition 1.6. The unique set A(S) ∈ B∗(X) from Theorem 1.2 is
called the attractor of (IIFS).
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Definition 1.7. Let (X, d) be a metric space and (Ai)i∈I be a family
of nonempty subsets of X. The family (Ai)i∈I is said to be connected if
for every i, j ∈ I, there exists (ik)k=1,n ⊂ I such that i0 = i, in = j and
Aik ∩Aik+1

̸= ∅, for every k ∈ {1, . . . , n− 1}.

It is also well-known the following result:

Lemma 1.1. Let (X, d) be a metric space and (Ai)i∈I a connected
family. If Ai is a connected set for every i ∈ I , then

∪
i∈I Ai is connected.

2. Existence and uniqueness of the attractors of (IIFS) formed
by contraction type functions

In this paper we will generalize the notion of infinite iterated function sys-
tem by considering other contraction type functions which form the IIFS,
such as (ε, φ)-functions or strong Meir-Keeler, instead of considering con-
traction functions. For some cases we will prove the existence and unique-
ness of the attractor for these kind of IIFS.

First we start by a remark concerning Theorem 1.2.

Remark 2.1. In the conditions of Theorem 1.2, if we suppose that
c = supi∈I Lip(fi) = 1 we do not obtain the uniqueness of the attractor, as
one can see from the following example:

Example 2.1. We consider the countable iterated function system
S1 = (R, (fn)n∈N∗) where fn : R → R, fn(x) = (1 − 1

n)x, for every
x ∈ R and n ∈ N∗. Let a, b ∈ R such that a ≤ 0 ≤ b. Then the frac-
tal operator FS1 : B∗(R) → B∗(R) satisfies FS1([a, b]) =

∪
n∈N∗ fn([a, b]) =∪

n∈N∗ [a− a
n , b−

b
n ] = [a, b]. Thus the intervals [a, b] with a ≤ 0 ≤ b are all

attractors of S1.

Definition 2.1. A metric space (X, d) is said to be ε-chainable (for
ε > 0 fixed) if, for every a, b ∈ X, there exists an ε-chain from a to b in X,
noted x0, x1, . . . , xn, such that x0 = a, xn = b and d(xi−1, xi) < ε, for all
i ∈ {1, . . . , n}.

Lemma 2.1 ([3]). Let (X, d) be a ε-chainable metric space, ε > 0. Then
(K∗(X), h) is an ε-chainable metric space.
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Definition 2.2. Ametric space (X, d) is said to be uniformly ε-chainable
(for ε > 0 fixed) if, for every M > 0 there is nM,ε ∈ N∗ such that for every
a, b ∈ X with d(a, b) < M , there exist x0, x1, . . . , xn ∈ X, with x0 = a,
xn = b, n ≤ nM,ε and d(xi−1, xi) < ε, for every i ∈ {1, . . . , n}.

Lemma 2.2. Let (X, d) be an uniformly ε-chainable metric space where
ε > 0. Then (B∗(X), h) is ε1-chainable, for every ε1 > ε.

Proof. LetA,B∈B∗(X) be two bounded closed sets such that h(A,B) <
M, where M > 0. For every a ∈ A there is ba ∈ B such that d(a, ba) < M.
Thus one can choose a chain x0(a) = a, x1(a), . . . , xnM (a) = b such that
d(xi(a), xi+1(a)) < ε, for every i ∈ {0, . . . , nM − 1}.

Similar, for every b ∈ B there is ab ∈ A such that d(b, ab) < M.
Thus one can choose a chain y0(b) = ab, y1(b), . . . , ynM (b) = b such that
d(yi(b), yi+1(b)) < ε, for every i ∈ {0, . . . , nM − 1}.

We consider now the sets A0 = A, Ai = {
∪

a∈A xi(a)} ∪ {
∪

b∈B yi(b)}
for i ∈ {1, . . . , nM − 1} and B = AnM . Then

h(Ai, Ai+1)

= h

(
{
∪
a∈A

xi(a)} ∪ {
∪
b∈B

yi(b)}, {
∪
a∈A

xi+1(a)}aA ∪ {
∪
b∈B

yi+1(b)}
)

= h

(
{
∪
a∈A

xi(a)} ∪ {
∪
b∈B

yi(b)}, {
∪
a∈A

xi+1(a)} ∪ {
∪
b∈B

yi+1(b)}
)

= max

{
d

(
{
∪
a∈A

xi(a)} ∪ {
∪
b∈B

yi(b)}, {
∪
a∈A

xi+1(a)} ∪ {
∪
b∈B

yi+1(b)}
)
,

d

(
{
∪
a∈A

xi+1(a)} ∪ {
∪
b∈B

yi+1(b)}, {
∪
a∈A

xi(a)} ∪ {
∪
b∈B

yi(b)}
)}

.

Hence, we have that:

ε > d(xi(a), xi+1(a)) ≥ inf
x∈{

∪
a∈A

xi+1(a)}∪{
∪

b∈B
yi+1(b)}

d(xi(a), x)

= d

(
xi(a), {

∪
a∈A

xi+1(a)} ∪ {
∪
b∈B

yi+1(b)}
)
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and also

ε > d(yi(b), yi+1(b)) ≥ inf
x∈{

∪
a∈A

xi+1(a)}∪{
∪

b∈B

yi+1(b)}
d(yi(b), x)

= d

(
yi(b), {

∪
a∈A

xi+1(a)} ∪ {
∪
b∈B

yi+1(b)}
)
, ∀i ∈ {0, .., nM}.

Thus d({
∪

a∈A xi(a)}∪{
∪

b∈B yi(b)}, {
∪

a∈A xi+1(a)}∪{
∪

b∈B yi+1(b)}) ≤ ε.
Similar d({

∪
a∈A xi+1(a)}∪{

∪
b∈B yi+1(b)}, {

∪
a∈A xi(a)}∪{

∪
b∈B yi(b)}) ≤

ε. Hence h(Ai, Ai+1) ≤ ε < ε1.

By definition we have that Ai is a closed subset of X, for every i ∈
{0, . . . , nM}. We will prove now that Ai is also a bounded set for every
i ∈ {0, . . . , nM}.

Let t1, t2 ∈ A, u1, u2 ∈ B and i ∈ {0, . . . , nM}. Then:

d(xi(t1), xi(t2)) ≤ d(xi(t1), t1) + d(t1, t2) + d(t2, xi(t2))

≤ iε+ diam(A) + iε < ∞,

d(yi(u1), yi(u2)) ≤ d(yi(u1), u1) + d(u1, u2) + d(u2, yi(u2))

≤ (nm − i− 1)ε+ diam(B) + (nM − i− 1)ε < ∞,

d(xi(t1), yi(u1)) ≤ d(xi(t1), t1) + d(t1, u1) + d(u1, yi(u1))

≤ iε+ h(A,B)+diam(A)+diam(B) + (nM − i− 1)ε < ∞.

Thus Ai is a bounded set for every i ∈ {0, . . . , nM}. Hence B∗(X) is ε1-
chainable. �

Remark 2.2. If (X, d) is uniformly ε-chainable, then (B∗(X), h) is not
necessary ε-chainable for an ε > 0, as one can see from the example below:

Example 2.2. We consider the Hilbert space l2(N∗) = {x = (xn)n≥1 |∑
n≥1 x

2
n < ∞} and {e1, . . . , en, ..} an orthonormal base. By definition, the

interval [a, b] = {ta+(1− t)b | t ∈ [0, 1]}. Let x ∈ [ei, ei+1] and y ∈ [ej , ej+1]
with j > i+ 1 > 0. Then d(x, y) =

√
t2 + (1− t)2 + s2 + (1− s)2 ≥ 1 since

α2+(1−α)2 ≥ 1
2 , for every α > 0. Thus, we obtain that inft,s∈[0,1] d(x, y) =

inft,s∈[0,1]
√

t2 + (1− t)2 + s2 + (1− s)2 = 1.

We consider now the space X =
∪

i≥1[ei, ei+1] ⊂ l2(N∗) endowed with

the metric induced by l2(N∗), d(x, y) =
√∑

n≥1(xn − yn)2. ThenX is closed

and bounded. We will prove now that X is uniformly 1-chainable. For
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that let x, y ∈ X such that d(x, y) < M. We have that x ∈ [ei, ei+1] and
y ∈ [ei+k, ei+k+1]. Then

d(x, y) = d(x, ei+1) + (k − 1) + d(ei+k, y) < M,

which implies k < M − 1. Thus, we can take k = [M ] − 1, where [M ] is
the entire part of M, and, so, there exist (xi)i=0,k ⊂ X such that x0 = x,
xk = y and d(xi, xi+1) < 1, for every i ∈ {0, . . . , k}. Thus X is uniformly
1-chainable.

We will prove now that (B∗(X), h) is not 1-chainable. We consider
the following two closed bounded sets of X : A = {e1} and B = X. We
assume that there exist the closed and bounded sets {Ai}i=0,m such that
A0 = A, Am = B and h(Ai, Ai+1) < 1, which implies d(Ai, Ai+1) < 1 and
d(Ai+1, Ai) < 1, for every i ∈ {0, . . . ,m − 1}. For i = 0 : d(e1, A1) < 1
implies d(e1, x) < 1, for every x ∈ A1. Thus A1 ⊂ [e1, e2]. For i = 1 :
d(A1, A2) < 1 implies the existence of yx ∈ A1 such that d(x, yx) < 1, for
every x ∈ A2. Thus A2 ⊂ [e1, e2] ∪ [e2, e3].

Inductively, one can prove that Aj ⊂
∪j

i=1[ei, ei+1], for every j ∈ {1, . . . ,
m−1}. Then h(Am−1, Am) = h(Am−1, X) = ∞ since for x ∈ [em+k, em+k+1]
⊂ X we have that infy∈Am−1 d(x, y) > k which implies:

h(X,Am−1) ≥ d(X,Am−1) = sup
x∈X

inf
y∈Am−1

d(x, y) > k

Since this is true for every k ∈ N∗, we have that h(X,Am−1) = ∞. So
(B∗(X), h) is not 1-chainable.

Definition 2.3. A function φ : [0,∞) → [0,∞) is called a comparation
function if it is an increasing, continuous to the right function satisfying
φ(x) < x, for every x ∈ (0,∞).

Remark 2.3. Let φ : [0,∞) → [0,∞) be a comparation function. Then,
for every nonempty bounded set A ⊂ [0,∞), we have supφ(A) ≤ φ(supA)
and inf φ(A) = φ(inf A).

Definition 2.4. We give some contractive-type conditions. For a func-
tion f : X → X we consider the following conditions:

(1) α-contraction condition: there exists α ∈ [0, 1) such that for x, y ∈ X
we have d(f(x), f(y)) ≤ αd(x, y).

(2) ε-locally contraction condition (where ε > 0): there exists α ∈ [0, 1)
such that for x, y,∈ X with d(x, y) < ε we have d(f(x), f(y)) ≤ αd(x, y).
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(3) φ-function for a comparation function φ: for any x, y ∈ X we have
d(f(x), f(y)) ≤ φ(d(x, y)).

(4) (ε, φ)-function for a comparation function φ (where ε > 0): for every
x, y ∈ X such that d(x, y) < ε we have d(f(x), f(y)) ≤ φ(d(x, y)).

(5) contractive: for every x, y ∈ X, x ̸= y we have d(f(x), f(y)) <
d(x, y).

(6) non-expansive: for every x, y ∈ X we have d(f(x), f(y)) ≤ d(x, y).

(7) strong Meir-Keeler : for each 0 < η there is δ > 0 such that for
x, y ∈ X with d(x, y) < η + δ we have d(f(x), f(y)) < η.

(8) strong ε-locally Meir-Keeler (where ε > 0): for each 0 < η < ε there
is δ > 0 such that for x, y ∈ X with d(x, y) < η+δ we have d(f(x), f(y) < η.

Remark 2.4. a) Condition (1) is equivalent with condition (2) satisfied
for every ε > 0.

b) Condition (3) is equivalent with condition (4) satisfied for every ε > 0.

c) Condition (7) is equivalent with condition (8) satisfied for every ε > 0.

d) Every strong Meir-Keeler function is a φ-function for a comparation
function φ : [0,∞) → [0,∞), φ(r) = sup{d(f(x), f(y))| d(x, y) ≤ r}.

Definition 2.5. A family of functions (fi)i∈I , fi : X → X is said to
be uniformly strong Meir-Keeler, if for every η > 0 there is δ > 0 and λ > 0
such that, for x, y ∈ X with d(x, y) < η+ δ, we have d(fi(x), fi(y)) ≤ η−λ,
for every i ∈ I.

Definition 2.6. A family of functions (fi)i∈I , fi : X → X is said to
be uniformly strong ε-locally Meir-Keeler, if for every η ∈ (0, ε) there is
δ > 0 and λ > 0 such that for x, y ∈ X with d(x, y) < η + δ we have
d(fi(x), fi(y)) ≤ η − λ, for every i ∈ I.

Theorem 2.1. Let (X, d) be a complete metric space and S=(X, (fk)k∈I)
be an (IIFS) on X and FS : B∗(X) → B∗(X) is the function defined by
FS(B) =

∪
i∈I fi(B), for every B ∈ B∗(X). Then the followings are true:

1) If the function fk is a contraction for every k ∈ I such that c =
supi∈I Lip(fi) < 1, then FS is a contraction with Lip(FS) ≤ supk∈I Lip(fk).

2) If the function fk is ε-locally contraction for every k ∈ I such that
c = supi∈I Lip(fi) < 1, then FS is a ε-locally contraction with Lip(FS) ≤
supk∈I Lip(fk).

3) If the function fk is φ-function for every k ∈ I, for a comparation
function φ, then FS is a φ-function.
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4) If the function fk is (ε, φ)-function for every k ∈ I, for a comparation
function φ, then FS is a (ε, φ)-function.

5) If the function fk is contractive for every k ∈ I, then FS is non-
expansive.

Proof. 1) Let A,B ∈ B∗(X). Then:

h(FS(A), FS(B)) = h(
∪
i∈I

fi(A),
∪
i∈I

fi(B)) = h(
∪
i∈I

fi(A),
∪
i∈I

fi(B))

≤ sup
i∈I

h(fi(A), fi(B)) ≤ sup
i∈I

(Lip(fi) · h(A,B)) = c · h(A,B), with c < 1.

So FS is a contraction with Lip(FS) ≤ c = supi∈I Lip(fi) < 1.
2) The point 2) is a particular case of 4).
3) Let A,B ∈ B∗(X). Then:

h(FS(A), FS(B)) = h(
∪
i∈I

fi(A),
∪
i∈I

fi(B)) = h(
∪
i∈I

fi(A),
∪
i∈I

fi(B))

≤ sup
i∈I

h(fi(A), fi(B)) = sup
i∈I

max{d(fi(A), fi(B)), d(fi(B), fi(A))}.

But

d(fi(A), fi(B)) = sup
x∈A

inf
y∈B

d(fi(x), fi(y)) ≤ sup
x∈A

inf
y∈B

φ(d(x, y))

= sup
x∈A

φ( inf
y∈B

d(x, y)) ≤ φ(sup
x∈A

inf
y∈B

d(x, y)) = φ(d(A,B)).

Similar, d(fi(B), fi(A)) ≤ φ(d(B,A)). Thus, because φ is increasing we
have

h(FS(A), FS(B)) ≤ sup
i∈I

max{φ(d(A,B)), φ(d(B,A))}

= φ(max{d(A,B)), d(B,A)}) = φ(h(A,B)).

4) Let A,B ∈ B∗(X) such that h(A,B) < ε. We will prove that

h(FS(A), FS(B)) ≤ φ(h(A,B)).

We have that

h(FS(A), FS(B))=h(
∪
i∈I

fi(A),
∪
i∈I

fi(B))=h(
∪
i∈I

fi(A),
∪
i∈I

fi(B))

≤ sup
i∈I

h(fi(A), fi(B))

= sup
i∈I

{max{sup
x∈A

inf
y∈B

d(fi(x), fi(y)); sup
x∈B

inf
y∈A

d(fi(x), fi(y))}}.
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Because h(A,B) < ε we have that

max{sup
x∈A

inf
y∈B

d(x, y); sup
x∈B

inf
y∈A

d(x, y)} < ε.

This means that supx∈A infy∈B d(x, y) < ε and supx∈B infy∈A d(x, y) < ε
or, infy∈B d(x, y) < ε, ∀x ∈ A and infy∈A d(x, y) < ε, ∀x ∈ B. Thus, for
every x ∈ A, there is an yx ∈ B such that d(x, yx) < ε. So d(f(x), f(yx)) ≤
φ(d(x, yx)) and infy∈B d(f(x), f(y)) ≤ infy∈B;d(x,y)<ε d(f(x), f(y)) ≤
infy∈B;d(x,y)<ε φ(d(x, y)) ≤ infy∈B φ(d(x, y)), for every x ∈ A. This implies
that supx∈A infy∈B d(f(x), f(y)) ≤ supx∈A infy∈B φ(d(x, y)).

In the same way, we get that infy∈A d(f(x), f(y)) ≤ infy∈A φ(d(x, y)),
for every x ∈ B and supx∈B infy∈A d(f(x), f(y)) ≤ supx∈B infy∈A φ(d(x, y)).
Thus we have the followings:

h(FS(A), FS(B)) = sup
i∈I

{max{sup
x∈A

inf
y∈B

d(fi(x), fi(y)); sup
x∈B

inf
y∈A

d(fi(x), fi(y))}

≤ sup
i∈I

{max{sup
x∈A

inf
y∈B

φ(d(x, y)); sup
x∈B

inf
y∈A

φ(d(x, y))}.

Hence

h(FS(A), FS(B)) ≤ sup
i∈I

{max{φ(sup
x∈A

inf
y∈B

d(x, y));φ(sup
x∈B

inf
y∈A

d(x, y))}

≤ sup
i∈I

φ(max{sup
x∈A

inf
y∈B

d(x, y); sup
x∈B

inf
y∈A

d(x, y)})

= sup
i∈I

φ(h(A,B)) = φ(h(A,B)),

which completes the proof.
5) If fk is contractive then Lip(fk) ≤ 1. But from point 1) Lip(FS) ≤

supk∈I Lip(fk) ≤ 1 and thus FS is non-expansive. �

Remark 2.5 ([21, 22]). In the case when X is compact we have the
following results:

a) If fk is contractive for every k ∈ I, then FS is contractive.
b) If fk is contractive for every k ∈ I and I is finite, then fk is a φ-

function with common comparation function for every k ∈ I.
c) The same results also hold on Atsuji spaces. For more details, one

can see [12].

Lemma 2.3 ([21, 22]). Let A,B ∈ B∗(X). Then for each γ > 0 and
a ∈ A there exists b ∈ B, such that d(a, b) ≤ h(A,B) + γ.
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Theorem 2.2. Let (X, d) be a complet space, S = (X, (fi)i∈I) an (IIFS)
and the fractal operator FS : B∗(X) → B∗(X) is the function defined by
FS(B) =

∪
i∈I fi(B), for every B ∈ B∗(X). Then the followings are true:

1) If the family of functions (fi)i∈I is uniformly strong Meir-Keeler, then
FS is a strong Meir-Keeler function.

2) If the family of functions (fi)i∈I is uniformly strong ε-locally Meir-
Keeler, then FS is a strong ε-locally Meir-Keeler function, ε > 0.

Proof. 1) is equivalent to 2) satisfied for every ε > 0.
2) Let ε > 0 and 0 < η < ε. Then there exists δ > 0 such that

for every x, y ∈ X such that d(x, y) < η + δ, we have d(fi(x), fi(y)) ≤
η − λ(ε). Let A,B ∈ B∗(X) and γ > 0 such that h(A,B) + γ < η + δ.
We will prove that h(FS(A), FS(B) < η. We have that h(FS(A), FS(B)) =
h(
∪

i∈I fi(A),
∪

i∈I fi(B)) = h(
∪

i∈I fi(A),
∪

i∈I fi(B))
Let z ∈

∪
i∈I fi(A). Then there exists i ∈ I and x ∈ A such that

z = fi(x). Using Lemma 2.3 there exists y ∈ B such that d(x, y) ≤
h(A,B)+γ < η+δ. Because d(x, y) < η+δ, from the hypothesis we get that
d(fi(x), fi(y)) ≤ η − λ(ε). Then infw∈B d(fi(x), fi(w)) = d(z, fi(B)) ≤ η −
λ(ε). Hence d(z,

∪
j∈I fj(B)) ≤ d(z, fi(B)) ≤ η − λ(ε). As z was arbitrarily

chosen we have d(
∪

j∈I fj(A),
∪

j∈I fj(B)) = supz∈
∪

j∈I fj(A) d(z,
∪

j∈I fj(B))

≤ η−λ(ε). Interchanging the roles of
∪

j∈I fj(A) and
∪

j∈I fj(B) we also ob-
tain that d(

∪
j∈I fj(B),

∪
j∈I fj(A)) ≤ η−λ(ε), and hence h(FS(A), FS(B)) ≤

η − λ(ε) < η. �
The following two results are well-known.

Theorem 2.3 ([22]). Let (X, d) be a complete metric space.
1) If f : X → X is a φ-function, then f has a unique fixed point α and,

for every x0 ∈ X the sequence (f [n](x0))n is convergent to α and moreover
d(f [n](x0), α) ≤ φ[n](d(x0, α)) → 0.

2) If f : X → X is a strong Meir-Keeler function, then f has a unique
fixed point α and for every x0 ∈ X the sequence (f [n](x0))n is convergent to
α and moreover d(f [n](x0), α) ≤ φ[n](d(x0, α)) → 0.

Theorem 2.4 ([26]). Let (X, d) be a complete ε-chainable metric space.
1) If f : X → X is an (ε, φ)-function, then f has a unique fixed point

α and for every x0 ∈ X such that d(x0, α) < ε the sequence (f [n](x0))n is
convergent to α and moreover d(f [n](x0), α) ≤ φ[n](d(x0, α)) → 0.

2) If f : X → X is a strong ε-locally Meir-Keeler function, then f
has a unique fixed point α and, for every x0 ∈ X such that d(x0, α) < ε
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the sequence (f [n](x0))n is convergent to α and moreover d(f [n](x0), α) ≤
φ[n](d(x0, α)) → 0.

Now we can give the existence and uniqueness of the attractors of infinite
iterated function systems containing some contraction type functions.

Theorem 2.5. Let (X, d) be a complete metric space and S=(X, (fi)i∈I)
an (IIFS), where the family of functions (fi)i∈I is bounded and fi : X → X
are φ-functions for every i ∈ I. Then the function FS : B∗(X) → B∗(X),
FS(Y ) =

∪
i∈I fi(Y ) is an φ-function and has a unique fixed point.

Theorem 2.6. Let (X, d) be a complete metric space and S=(X, (fi)i∈I)
an (IIFS), where the family of functions (fi)i∈I is bounded and uniformly
strong Meir–Keeler. Then the function FS : B∗(X) → B∗(X), FS(Y ) =∪

i∈I fi(Y ) is a strong Meir–Keeler function and has a unique fixed point.

Theorem 2.7. Let (X, d) be a complete uniformly ε-chainable metric
space and S = (X, (fi)i∈I) an (IIFS), where the family (fi)i∈I is bounded
and fi : X → X are (ε1, φ)-functions for every i ∈ I, with ε1 > ε > 0. Then
the function FS : B∗(X) → B∗(X), FS(Y ) =

∪
i∈I fi(Y ) is an (ε1, φ)-

function and has a unique fixed point.

Theorem 2.8. Let (X, d) be a complete uniformly ε-chainable metric
space and S = (X, (fi)i∈I) an (IIFS), where the family of functions (fi)i∈I
is a bounded and uniformly strong ε1-locally Meir-Keeler, with ε1 > ε > 0.
Then the function FS : B∗(X) → B∗(X), FS(Y ) =

∪
i∈I fi(Y ) is a strong

ε1-locally Meir-Keeler function and has a unique fixed point.

3. Connectedness of the attactors of (IIFS) formed by con-
traction type functions

In the next section we will prove sufficient conditions for attractors of
(IIFS) formed by contraction type functions to be connected. Some topo-
logical properties of the attractors of IFSs were studied in [9], [13], [19] and
[27]. Also, general aspects of topology can be found in [5]. Next, we will
turn our attention towards the connecteness of the attractors of IIFSs. For
the connectedness of the attractors of (IFS) we have the following important
result:

Theorem 3.1 ([11]). Let (X, d) be a complete metric space, S =
(X, (fk)k=1,n) be an (IFS) with c = maxk=1,n Lip(fk) < 1 and A(S) the
attractor of S. The following are equivalent:
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1) The family (Ai)i=1,n is connected where Ai = fi(A(S)), for all i ∈ I.
2) A(S) is arcwise connected.
3) A(S) is connected.

The following results give a sufficient condition for the connectedness in
the IIFSs’ case.

Theorem 3.2. Let (X, d) be a complete metric space and S = (X, (fi)i∈I)
an (IIFS), where the family (fi)i∈I is bounded and fi : X → X are φ-
functions for every i ∈ I. Let A(S) be the attractor of S and Ij ⊂ I, for
every j ∈ J such that:

1) I =
∪

j∈J Ij .
2)

∪
j∈J Bj is connected, where Bj = A(Sj) is the attractor of Sj =

(X, (fi)i∈Ij ), for every j ∈ J.
Then A(S) is a connected set.

Proof. Let C0 =
∪

j∈J Bj and (Cn)n be a sequence of subsets of X
defined by Cn = FS(Cn−1), for every n ∈ N∗ where FS : B∗(X) → B∗(X),
FS(B) =

∪
i∈I fi(B) for any B ∈ B∗(X). Then FS is a φ-function.

We will prove that Cn ⊂ Cn+1,
∪

n≥1Cn = A(S) and by induction that
Cn is connected for all n. From the basic properties of the connected sets
will result that A(S) is connected.

We prove by induction that Cn ⊂ Cn+1. Thus Bj = FSj (Bj) ⊂ FS(Bj),
for every j ∈ J .

It results that C0 =
∪

j∈J Bj ⊂
∪

j∈J FS(Bj) ⊂ FS(
∪

j∈J Bj) = FS(C0) =
C1. Thus C ⊂ C1 = FS(C0).

By induction, suppose that Cn ⊂ Cn+1. It follows that FS(Cn) ⊂
FS(Cn+1). That is Cn+1 ⊂ Cn+2.

Let D =
∪

n≥1Cn. Because Cn = FS(Cn−1), for every n ∈ N∗ we have
from Theorem 1.2 that Cn → A(S).

Let n0 ∈ N∗ and x ∈ Cn0 . We consider the sequence (xn)n≥n0 defined
by xn = x, for every n ≥ n0. So, for every n ≥ n0 we have that xn ∈ Cn,
because Cn0 ⊂ Cn. Then from Proposition 1.1, point 4), x = limxn ∈
limCn = A(S). Because x was arbitrarily chosen in Cn0 we have that Cn0 ⊂
A(S). Then D =

∪
n≥1Cn ⊂ A(S) and so D ⊂ A(S) = A(S), because A(S)

is closed.
Now, let a ∈ A(S). From Proposition 1.1, point 4), there exists (xn)n≥1

such that xn ∈ Cn ⊂ D =
∪

n≥1Cn for all n ∈ N∗ and xn → a. Then

A(S) ⊂ D and it follows that A(S) = D.
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We prove now that Cn is connected for all n. C0 = C is connected by
hypothesis. Suppose now that Cn is connected for a fixed n > 0. We have
Cn+1 =

∪
i∈I fi(Cn) = C0 ∪ (

∪
i∈I fi(Cn)). To prove that Cn+1 is connected

it is sufficient to prove that C0 ∪ (
∪

i∈I fi(Cn)) is connected, because the
closure of every connected set is connected. We will prove that C0∩fi(Cn) ̸=
∅, for all i ∈ I.

Let i ∈ I =
∪

j∈J Ij . It follows that there exists l(I) ∈ J such that
i ∈ Il(i). Because Bl(i) = A(Sl(i)) ⊂ C0 ⊂ Cn, for every i ∈ I, it results
that fi(Bl(i)) ⊂ fi(Cn). But fi(Bl(i)) ⊂ FSIl(i)

(Bl(i)) = Bl(i) ⊂ C0. Then

∅ ̸= fi(Bl(i)) ⊂ C0 ∩ fi(Cn), for every i ∈ I. Thus, we have proved that the
set C0 ∩ fi(Cn) is nonempty.

Because Cn is connected it results that fi(Cn) is connected and then
from Lemma 1.1, using the fact that C0 ∩ fi(Cn) is nonvoid, it follows that
C0 ∪ (

∪
i∈I fi(Cn)) is connected. With this we have proved that Cn+1 is

connected.

Hence,
∩

n≥0Cn = C0 and Cn are connected for every n ∈ N. This

imply that D =
∪

n≥0Cn is connected ant so A(S) = D is connected. �

Corollary 3.1. Let (X, d) be a complete metric space and S=(X, (fi)i∈I)
an (IIFS), where the family (fi)i∈I is bounded and fi : X → X are φ-
functions for every i ∈ I. Let A(S) be the attractor of S and Ij ⊂ I, for
every j ∈ J such that:

1) I =
∪

j∈J Ij .

2) Bj is connected, where Bj := A(Sj) is the attractor of Sj=(X, (fi)i∈Ij ),
for all j ∈ J.

3) The family of sets (Bj)j∈J is connected.

Then A(S) is a connected set.

Proof. Since (Bj)j∈J is a connected family of connected sets, it follows
from Lemma 1.1 that

∪
j∈J Bj is connected. Therefore, by Theorem 3.2,

A(S) is connected. �

Corollary 3.2. Let (X, d) be a complete metric space and S=(X, (fi)i∈I)
an (IIFS), where the family (fi)i∈I is bounded and fi : X → X are φ-
functions for every i ∈ I. Let A(S) be the attractor of S and Ij ⊂ I, for
every j ∈ J such that:

1) I =
∪

j∈J Ij .

2) Ij are finite for all j ∈ J.



15 ATTRACTORS OF INFINITE ITERATED FUNCTION SYSTEMS 295

3) The families of sets (fi(Bj))i∈Ij are connected, where Bj := A(Sj) is
the attractor of Sj = (X, (fi)i∈Ij ), for all j ∈ J.

4) The family of sets (Bj)j∈J is connected.

Then A(S) is a connected set.

Proof. Since Ij is finite then Sj = (X, (fi)i∈Ij ) is an (IFS). Because
the family (fi(Bj))i∈Ij is connected where Bj = A(Sj) is the attractor of
Sj ,then by Theorem 3.1 we have that Bj is connected. This is true for all
j ∈ J, because j was arbitrarily chosen. Thus

∪
j∈J Bj is connected and by

Theorem 3.2 A(S) is connected. �

Theorem 3.3. Let (X, d) be a complete uniformly ε-chainable metric
space and S = (X, (fi)i∈I) an (IIFS), where the family (fi)i∈I is bounded
and fi : X → X are (ε1, φ)-functions for every i ∈ I, with ε1 > ε > 0. Let
A(S) be the attractor of S and Ij ⊂ I, for every j ∈ J such that:

1) I =
∪

j∈J Ij .

2)
∪

j∈J Bj is connected, where Bj = A(Sj) is the attractor of Sj =
(X, (fi)i∈Ij ), for every j ∈ J.

3) h(Bj , A(S)) ≤ ε, for every j ∈ J.

Then A(S) is a connected set.

Proof. Let C0 =
∪

j∈J Bj and (Cn)n be a sequence of subsets of X
defined by Cn = FS(Cn−1), for every n ∈ N∗ where FS : B∗(X) → B∗(X),
FS(B) =

∪
i∈I fi(B) for any B ∈ B∗(X). Then FS is a (ε1, φ)-function.

We have that h(C0, A(S)) = h(
∪

j∈J Bj , A(S)) ≤ supj∈J h(Bj , A(S)) ≤
ε < ε1. Then h(C1, A(S)) = h(FS(C0), FS(A(S))) ≤ φ(h(C0, A(S))) <
h(C0, A(S)) < ε1.

Suppose now that h(Cn, (A(S))) ≤ φ[n](h(C0, A(S))) < ε1 for some n ∈
N. Then h(Cn+1, (A(S))) ≤ h(FS(Cn), FS(A(S))) ≤ φ(φ[n](h(C0, A(S)))) =
φ[n+1](h(C0, A(S))) < φ(ε1) < ε1. Thus, h(Cn, (A(S))) < ε1 for all n ∈ N
and h(Cn, (A(S))) ≤ φ[n](h(C0, A(S))) → 0. Hence Cn → A(S). From now
on, similar to Theorem 3.2, one can prove that Cn ⊂ Cn+1,

∪
n≥1Cn = A(S)

and Cn is connected for all n ∈ N and that completes the proof. �

Corollary 3.3. Let (X, d) be a complete uniformly ε1-chainable metric
space and S = (X, (fi)i∈I) an (IIFS), where the family (fi)i∈I is bounded
fi : X → X are (ε1, φ)-functions for every i ∈ I, with ε1 > ε > 0. Let A(S)
be the attractor of S and Ij ⊂ I, for every j ∈ J such that:

1) I =
∪

j∈J Ij .
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2) Bj is connected, where Bj :=A(Sj) is the attractor of Sj=(X, (fi)i∈Ij )
for all j ∈ J.

3) The family of sets (Bj)j∈J is connected.
4) h(Bj , A(S)) ≤ ε, for every j ∈ J.
Then A(S) is a connected set.

Proof. Because (Bj)j∈J is a connected family of connected sets, it
follows from Lemma 1.1 that

∪
j∈J Bj is connected. Therefore, by Theorem

3.3, A(S) is connected. �

Corollary 3.4. Let (X, d) be a complete uniformly ε1-chainable metric
space and S = (X, (fi)i∈I) an (IIFS), where the family (fi)i∈I is bounded
fi : X → X are (ε1, φ)-functions for every i ∈ I, with ε1 > ε > 0. Let A(S)
be the attractor of S and Ij ⊂ I, for every j ∈ J such that:

1) I =
∪

j∈J Ij .
2) Ij are finite, for all j ∈ J.
3) The families of sets (fi(Bj))i∈Ij are connected, where Bj := A(Sj) is

the attractor of Sj = (X, (fi)i∈Ij ), for all j ∈ J.
4) The family of sets (Bj)j∈J is connected.
5) h(Bj , A(S)) ≤ ε, for every j ∈ J.
Then A(S) is a connected set.

Proof. Since Ij is finite then Sj = (X, (fi)i∈Ij ) is an (IFS). Because
the family (fi(Bj))i∈Ij is connected, where Bj := A(Sj) is the attractor of
Sj , then by Theorem 3.1 we have that Bj is connected. This is true for all
j ∈ J, because j was arbitrarily chosen, thus

∪
j∈J Bj is connected and by

Theorem 3.3, A(S) is connected. �
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