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1. Introduction and preliminary

Regularity is a very important continuity property. It connects measure
theory and topology, approximating general Borel sets by more tractable
sets, such as compact and/or open sets.

In the last years, many authors studied different problems and appli-
cations of continuity properties, especially regularity, in order to obtain
Alexandroff and Lusin type theorems, in convergence problems for Cho-
quet integrals (see Dinculeanu [3] for real normed space-valued measures,
Belley and Morales [2], Asahina, Uchino and Murofushi [1], Jiang
and Suzuki [14], Pap [23], Ha and Wang [12], Li and Yasuda [19], Li,
Yasuda and Song [20], Narukawa [21], Narukawa, Murofushi and
Sugeno [22], Song and Li [28], Wu and Ha [29], Wu and Wu [30] for
fuzzy measures, Kawabe [15-18] for Riesz space-valued measures etc.).
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In the set-valued case, different results were obtained by Guo and
Zhang [11],Gavriluţ [4-9], Precupanu [24, 25], Precupanu, Gavriluţ
andCroitoru [26], Precupanu andGavriluţ [27], Zhang andGuo [31],
Zhang and Wang [32] and many others).

In this paper, we continue the study [10] concerning different abstract
regularities in Hausdorff topology for fuzzy (i.e., monotone) set multifunc-
tions. The relationships among these types of regularity and other proper-
ties of continuity (such as, increasing/decreasing convergence, (S)-fuzziness,
order continuity) are presented and a set-valued Alexandroff type theorem
is obtained.

2. Terminology and notations

Let T be an abstract set, C a ring of subsets of T , X a real normed space
with the origin 0, P0(X) the family of all nonvoid subsets of X,Pf (X)
the family of closed, nonvoid sets of X, Pbf (X) the family of all bounded,
closed, nonvoid sets of X and h the Hausdorff pseudometric on Pf (X).

By [13], h(M,N) = max{e(M,N), e(N,M)}, for every M,N ∈ Pf (X),
where e(M,N) = supx∈M d(x,N) is the excess of M over N . On Pbf (X),
h becomes a metric.

We denote |M | = h(M, {0}), for every M ∈ Pf (X).
If X is complete, then the same is Pf (X). We observe that e(N,M) =

h(M,N), for everyM,N ∈ Pf (X), withM ⊆ N . Also, e(M,N) ≤ e(M,P ),
for every M,N,P ∈ Pf (X), with P ⊆ N and e(M,P ) ≤ e(N,P ), for every
M,N,P ∈ Pf (X), with M ⊆ N. We denote by N the set of all naturals,
by R the set of all real numbers and by R+ the set [0,∞). Also, by cA we
usually mean T\A, where A ⊂ T.

Let us first recall from [10] the following notions:

Definition 2.1. A set multifunction µ : C → Pf (X) is said to be:

I) increasing convergent (with respect to h) if limn→∞ h(µ(An), µ(A))=0,
for every increasing sequence of sets (An)n∈N⊂C, with An↗A ∈ C.

II) decreasing convergent (with respect to h) if limn→∞ h(µ(An), µ(A)) =
0, for every decreasing sequence of sets (An)n∈N⊂C, with An↘A ∈ C.

III) i) fuzzy (or, monotone) if µ(A)⊆µ(B), for every A,B∈C, with A⊆B.

ii) fuzzy in the sense of Sugeno (briefly, (S)-fuzzy) if it is fuzzy,
increasing convergent, decreasing convergent and µ(∅) = {0}.
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IV) exhaustive (with respect to h) if limn→∞ |µ(An)| = 0, for every pair-
wise disjoint sequence of sets (An)n∈N ⊂ C.

V) order continuous (with respect to h) if limn→∞ |µ(An)| = 0, for every
sequence of sets (An)n∈N ⊂ C, with An ↘ ∅.

VI) autocontinuous from above if for every A ∈ C and every (Bn)n∈N ⊂ C,
with limn→∞ |µ(Bn)| = 0, we have limn→∞ h(µ(A ∪Bn), µ(A)) = 0.

VII) uniformly autocontinuous if for every A ∈ C and every ε > 0, there is
δ(ε) > 0 so that for every B ∈ C, with |µ(B)| < δ, we have h(µ(A ∪
B), µ(A)) < ε.

VIII) i) null-additive if µ(A∪B)=µ(A), for every A,B∈C, with µ(B)={0}.

ii) null-null-additive if µ(A ∪ B) = {0}, for every A,B ∈ C, with
µ(A) = µ(B) = {0}.

IX) single asymptotic null-additive if for every A ∈ C with µ(A) = {0}
and every sequence (Bn)n∈N ⊂ C, with limn→∞ |µ(Bn)| = 0, we have
limn→∞ |µ(A ∪Bn)| = 0.

X) asymptotic null-additive if for every sequences (An)n∈N, (Bn)n∈N ⊂ C,
with limn→∞ |µ(An)| = limn→∞ |µ(Bn)| = 0, we have limn→∞ |µ(An∪
Bn)| = 0.

All over the paper, unless stated otherwise, µ : C → Pf (X) is supposed
to be a fuzzy (i.e., monotone) set multifunction, with µ(∅) = {0}.

We shall need the following notions and results from [10]:

Definition 2.2. We say that µ has the pseudometric generating property
(briefly, PGP) if for every ε > 0, there is δ(ε) > 0 so that for every A,B ∈ C,
with |µ(A)| < δ and |µ(B)| < δ, we have |µ(A ∪B)| < ε.

Definition 2.3. i) A double sequence {Am,n}(m,n)∈N2 ⊂ C is called a
µ-regulator if:

(R1) Am,n ⊃ Am,n′ , whenever m,n, n′ ∈ N and n ≤ n′;

(R′
2) µ(

∩∞
n=1Am,n) = {0}, for any m ∈ N.
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ii) µ is said to fulfil condition (E′) if for any ε > 0 and any µ-regulator
{Am,n}(m,n)∈N2 ⊂ C, there exists an increasing sequence {ni}i∈N of naturals
such that |µ(

∪∞
i=1Ai,ni)| < ε.

Remark 2.4. i) If µ is asymptotic null-additive, then it is single asymp-
totic null-additive. If µ is single asymptotic null-additive, then it is null-
null-additive.

ii) If µ is autocontinuous from above, then µ is asymptotic null-additive.

iii) If C is a σ-ring and µ is fuzzy, increasing convergent and autoconti-
nuous from above, then µ has PGP.

iv) a) Any autocontinuous from above order continuous set multifunction
is increasing convergent and decreasing convergent.

b) Any decreasing convergent set multifunction is order continuous.
Consequently, if µ is fuzzy and autocontinuous from above, then
µ is (S)-fuzzy if and only if it is order continuous.

v) Let µ be (S)-fuzzy. Then µ fulfils condition (E’) if and only if it is
null-null-additive.

Let M,N ⊂ P(T ) be two arbitrary nonvoid families of subsets of T.
As we saw in [10], for the consistency of the following notions, one may

place itself in one of the following situations:
(i) T is a Hausdorff space, C is the Borel σ-algebra B̃ generated by the

open sets of T , M = F , the family of closed subsets of T and N = D, the
family of open subsets of T or M = K, the family of compact subsets of T
and N = D;

(ii) T is, particularly, a locally compact Hausdorff space, C is B0 (res-
pectively, B′

0) - the Baire δ-ring (respectively, σ-ring) generated by compact
sets, which are Gδ (i.e., countable intersections of open sets) or C is B
(respectively, B′) - the Borel δ-ring (respectively, σ-ring) generated by the
compact sets of T , M = K and N = D. Note that B0 ⊂ B, B0 ⊂ B′

0,
B′
0 ⊂ B′ and B ⊂ B′.

According to the usage of M and N , F and D or K and D, it will be
understood that we place ourselves, respectively, in the general situation,
situation (i)/(ii) or situation (ii) (we remark that in situation (i) we may
have F and D or K and D and in situation (ii) we may have K and D).



5 ALEXANDROFF THEOREM IN HAUSDORFF TOPOLOGY 241

We shall particularly study situation (i) when T is a locally compact
Hausdorff space.

Definition 2.5. I) A set A ∈ C is said to be:

(i) RM,N -regular if for every ε > 0, there are M ∈ M ∩ C,M ⊂ A and
N ∈ N ∩ C, N ⊃ A so that e(µ(N), µ(M)) < ε.

(ii) RM-regular if for every ε > 0, there exists M ∈ M ∩ C,M ⊂ A so
that e(µ(A), µ(M)) < ε.

(iii) RN -regular if for every ε > 0, there exists N ∈ N ∩ C, N ⊃ A such
that e(µ(N), µ(A)) < ε.

(iv) R′
M,N -regular if for every ε > 0, there are M ∈ M ∩ C,M ⊂ A and

N ∈ N ∩ C, A ⊂ N so that |µ(N\M)| < ε.

(v) R′
M-regular if for every ε > 0, there is M ∈ M ∩ C,M ⊂ A so that

|µ(A\M)| < ε.

(vi) R′
N -regular if for every ε > 0, there is N ∈ N ∩ C, A ⊂ N such that

|µ(N\A)| < ε.

II) µ is said to be:

i) RM,N -regular (respectively, RM-regular, RN -regular) if every set A ∈
C is RM,N -regular (respectively, RM-regular, RN -regular).

ii) R′
M,N -regular (respectively, R′

M-regular, R′
N -regular) if every set A ∈

C is R′
M,N -regular (respectively, R′

M-regular, R′
N -regular).

The reader is refered to [10] for various properties and remarks concern-
ing abstract types of regularity.

3. Set-valued Alexandroff type theorem

In this section, we establish different relationships among regularities and
other properties of continuity:

Proposition 3.1. Suppose T is a Hausdorff space.

i) If C is a σ-ring and µ is RK-regular, then µ is increasing convergent
on D ∩ C.
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ii) If C is a δ-ring and µ is RD-regular, then µ is decreasing convergent
on K ∩ C.

Proof. i) Let (Dn)n, D ⊂ D ∩ C be so that Dn ↗ D. Obviously,
e(µ(Dn), µ(D)) = 0, for every n ∈ N. Because µ is RK-regular, for every
ε > 0, there is K ∈ K ∩ C,K ⊂ D so that e(µ(D), µ(K)) < ε. Since
K ⊂ D =

∪∞
n=1Dn, there is n0 ∈ N so that K ⊂ Dn0 . Consequently, for

every n ≥ n0,

e(µ(D), µ(Dn)) ≤ e(µ(D), µ(K)) + e(µ(K), µ(Dn0)) + e(µ(Dn0), µ(Dn))

= e(µ(D), µ(K)) < ε,

so h(µ(D), µ(Dn)) < ε, for every n ≥ n0, which means that µ is increasing
convergent on D ∩ C.

ii) Let (Kn)n,K ⊂ K∩C be so thatKn ↘ K. Obviously, e(µ(K), µ(Kn))
= 0, for every n ∈ N. Because µ is RD-regular, for every ε > 0, there is
D ∈ D ∩ C,K ⊂ D so that e(µ(D), µ(K)) < ε.

We demonstrate that there exists n0 ∈ N so that K ⊂ Kn0 ⊂ D. For
this, we suppose that Kn ∩ cD ̸= ∅, for every n ∈ N. Since Kn ∩ cD is
compact, for every n ∈ N and

∩p
i=1Ki∩cD = Kp∩cD ̸= ∅, for every p ∈ N,

then
∩∞

i=1Ki ∩ cD ̸= ∅. Consequently, ∅ ̸=
∩∞

i=1Ki ∩ cD = K ∩ cD = ∅,
which is a contradiction. Then, for every n ≥ n0,

e(µ(Kn), µ(K)) ≤ e(µ(Kn), µ(Kn0)) + e(µ(Kn0), µ(D)) + e(µ(D), µ(K))

= e(µ(D), µ(K)) < ε,

so, finally, h(µ(Kn), µ(K)) < ε, for every n ≥ n0, which says that µ is
decreasing convergent on K ∩ C. �

Remark 3.2. In the above theorem, C can be, for instance, the σ-
algebra B̃ or, if T is, moreover, locally compact, in i) C can be the σ-ring
B′ or B′

0 and in ii) C can be the δ-ring B or B0.

If C is B̃ or B′ (B′
0, respectively) - in case when T is locally compact and

µ is RK,D-regular, then µ is increasing convergent on D ∩ C and decreasing
convergent on K ∩ C.

In the following Alexandroff type result, we prove that, if, moreover, µ
is autocontinuous from above and R′

K-regular, then µ is, moreover, order
continuous, hence increasing convergent and decreasing convergent on C,
not only increasing convergent on D ∩ C/decreasing convergent on K ∩ C.
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Theorem 3.3 (Alexandroff type theorem). If µ : C → Pf (X) is auto-
continuous from above and R′

K-regular, then µ is order-continuous.

Proof. Let (An)n ⊂ C be such that An ↘ ∅.
Since µ is R′

K-regular, for every n ∈ N, there is an increasing se-
quence (Kn,m)m ⊂ K ∩ C so that for every m ∈ N, Kn,m ⊂ An and
limm→∞ |µ(An\Kn,m)| = 0.

Since limm→∞ |µ(A1\K1,m)|=0, there is m1 ∈ N so that |µ(A1\K1,m1)|<
ε
21
. Because limm→∞ |µ(A2\K2,m)| = 0 and µ is autocontinuous from above,

limm→∞ h(µ((A1\K1,m1)∪(A2\K2,m)), µ(A1\K1,m1)) = 0, so, there is m2 ∈
N such that |µ((A1\K1,m1)∪(A2\K2,m2))| ≤ h(µ((A1\K1,m1)∪(A2\K2,m2)),
µ(A1\K1,m1))+ |µ(A1\K1,m1)| < ε

21
+ ε

22
. Recurrently, there is an increasing

sequence of naturals (mk)k so that for every p ∈ N, |µ(
∪p

i=1(Ai\Ki,mi))| <∑p
i=1

ε
2i
.

Since
∩∞

i=1Ai = ∅,
∩∞

i=1Ki,mi = ∅, so there is i0 ∈ N such that∩i0
i=1Ki,mi = ∅. Consequently, for every i ≥ i0, |µ(Ai)| ≤ |µ(Ai0)| ≤

|µ(
∪i0

i=1(Ai\Ki,mi))| <
∑i0

i=1
ε
2i

< ε, so limi→∞ |µ(Ai)| = 0 and this means
µ is order continuous. �

By Theorem 3.32 and Remark 2.4 iv), we get:

Corollary 3.4. If µ : C → Pf (X) is autocontinuous from above and
R′

K-regular, then µ is (S)-fuzzy.

Remark 3.5. In Theorem 3.3 and Corollary 3.4, C can be, for instance,
B̃,B,B0,B′ or B′

0 etc.

Theorem 3.6. If C is a σ-ring and µ : C → Pf (X) is decreasing con-
vergent, RK-regular and has PGP, then µ is R′

K,D-regular.

Proof. We observe that, since µ is decreasing convergent, then, by
Remark 2.5 iv), µ is exhaustive.

We suppose that, on the contrary, there exists A0 ∈ C and ε0 > 0 so
that, for every K ∈ K∩C and every D ∈ D∩C, with K ⊂ A0 ⊂ D, we have
|µ(D\K)| ≥ ε0.

We fix such arbitrary sets K0 and D0.
Since µ has PGP, then for ε0 > 0, there is δ0(ε) > 0 so that for every

A,B ∈ C, with |µ(A)| < δ0 and |µ(B)| < δ0, we have |µ(A ∪ B)| < ε0.
Because µ is RK−regular, forD0\A0 there is C

′
1 ∈ K∩C so that C ′

1 ⊂ D0\A0

and e(µ(D0\A0), µ(C
′
1)) <

δ0
3 .
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Analogously, for A0\K0 there is C ′′
1 ∈ K ∩ C so that C ′′

1 ⊂ A0\K0 and
e(µ(A0\K0), µ(C

′′
1 )) <

δ0
3 .

We denoteD1 = D0\C ′
1 andK1 = K0∪C ′′

1 . ThenD1 ∈ D∩C, K1 ∈ K∩C
and K1 ⊂ A0 ⊂ D1. Therefore, |µ(D1\K1)| ≥ ε0. By induction we obtain
the existence of two sequences (C ′

n)n∈N, (C
′′
n)n∈N ⊂ K∩C of pairwise disjoint

sets such that for every n ∈ N, C ′
n+1 ⊂ Dn\A0, C

′′
n+1 ⊂ A0\Kn and

e(µ(Dn\A0), µ(C
′
n+1)) <

δ0
3
, e(µ(A0\Kn), µ(C

′′
n+1)) <

δ0
3
.

Also, for every n ∈ N, Dn+1 = Dn\C ′
n+1, Kn+1 = Kn ∪ C ′′

n+1 and Kn ⊂
A0 ⊂ Dn, so, |µ(Dn\Kn)| ≥ ε0.

Since µ is exhaustive, then limn→∞ |µ(C ′
n)| = limn→∞ |µ(C ′′

n)| = 0, so
there is n0(ε0) such that |µ(C ′

n)| < δ0
3 and |µ(C ′′

n)| < δ0
3 , for every n ≥

n0(ε0). Consequently,

|µ(Dn0\A0)| ≤ e(µ(Dn0\A0), µ(C
′
n0+1)) + |µ(C ′

n0
)| < 2δ0

3
< δ0,

|µ(A0\Kn0)| ≤ e(µ(A0\Kn0), µ(C
′′
n0+1)) + |µ(C ′′

n0
)| < 2δ0

3
< δ0,

whence |µ(Dn0\Kn0)| < ε0, which is a contradiction. �

By Theorem 3.6, Remark 2.4 iii) and by Theorems 3.3 ii) and 3.5 i) from
[10], we get the following:

Corollary 3.7. If C is a σ-ring and µ : C → Pf (X) is (S)-fuzzy and
autocontinuous from above, then i) µ is RK-regular ⇔ ii) µ is R′

K-regular
⇔ iii) µ is R′

K,D-regular.

Remark 3.8. In Theorem 3.6 and Corollary 3.7, C can be, for instance,
B̃,B′ or B′

0 etc.

In what follows, we present two situations under which the entire space
T is R′

K-regular (and, consequently, also, R
′
K,D-regular).

Theorem 3.9. If C is a σ-ring, (T, d) is a complete separable metric
space and µ : C → Pf (X) fulfils (E′), then T is R′

K-regular.

Proof. Let {tk}k∈N be a countable dense subset of T. For every n, k ∈ N,
we consider Tn(tk) = {t ∈ T ; d(t, tk) ≤ 1

n} and for every n,m ∈ N, we denote
An,m = T\(

∪m
k=1 Tn(tk)).
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We observe that, for every n ∈ N, An,m ↘
m→∞

∅, so, since µ fulfils (E’),

there is an increasing sequence (jni)i ⊂ N so that limi→∞ |µ(
∪∞

n=1An,jni
)| =

0. For every i ∈ N, we denote Bi =
∩∞

n=1

∪jni
k=1 Tn(tk). Obviously, for every

i ∈ N, Bi is closed and totally bounded in the complete metric space T , so,
it is compact.

It remains to establish that limi→∞ |µ(T\Bi)| = 0. Indeed, since for

every i ∈ N, T\Bi =
∪∞

n=1(T\(
∪jni

k=1 Tn(tk))) =
∪∞

n=1An,jni
, the conclusion

follows. �

By Remark 2.4 v) and Theorem 3.9, we obtain the following:

Corollary 3.10. If C is a σ-ring, (T, d) is a complete separable metric
space and µ : C → Pf (X) is (S)-fuzzy and null-null-additive, then T is
R′

K-regular.

Theorem 3.11. If C is a σ-ring, (T, d) is a locally compact separable
metric space and µ : C → Pf (X) is R′

F -regular, decreasing convergent and
fulfils condition (E′), then T is R′

K-regular.

Proof. Since (T, d) is a locally compact separable metric space, then
T =

∪∞
n=1Bn, where for every n ∈ N, Bn is a relatively compact, open

set. Since µ is R′
F -regular, then for every n ∈ N, there exists an increa-

sing sequence (Fn,m)m ⊂ F ∩ C so that for every m ∈ N, Fn,m ⊂ Bn

and limm→∞ |µ(Bn\Fn,m)| = 0. Because for every n ∈ N, Bn\Fn,m ↘
m→∞∩∞

m=1(Bn\Fn,m) and µ is decreasing convergent, then |µ(
∩∞

m=1(Bn\Fn,m))|
= 0, so, for every n ∈ N, µ(

∩∞
m=1(Bn\Fn,m)) = {0}.

Since µ fulfils (E’), for every n ∈ N, there exists an increasing sequence
of naturals (mnl

)l such that liml→∞ |µ(
∪∞

n=1(Bn\Fn,mnl
))| = 0. For every

l ∈ N, we denote Cl = T\(
∪∞

n=1 Fn,mnl
). Then Cl ⊆

∪∞
n=1(Bn\Fn,mnl

), so
liml→∞ |µ(Cl)| = 0. Now, for every l, s∈N we denote Cl,s=T\(

∪s
n=1 Fn,mnl

).
Since for every l ∈ N, Cl,s ↘

s→∞
Cl and µ is decreasing convergent, then for

every ε > 0 and every l ∈ N, there is s0(l)∈N so that h(µ(Cl,s0(l)), µ(Cl))<
ε
2l
.

Since liml→∞ |µ(Cl)| = 0, then

lim
l→∞

|µ(T\(
s0(l)∪
n=1

Fn,mnl
))| = lim

l→∞
|µ(Cl,s0(l))| = 0.
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For every l ∈ N, we denoteRl =
∪s0(l)

n=1 Fn,mnl
. Evidently, liml→∞ |µ(T\Rl)| =

0. Since liml→∞ |µ(T\Rl)| ≤ liml→∞ |µ(T\Rl)|, then liml→∞ |µ(T\Rl)| = 0,
where Rl denotes the closure of Rl. Also, for every l ∈ N, we have Rl ⊆∪s0(l)

n=1 Bn =
∪s0(l)

n=1 Bn, so Rl is compact. If (Rl)l is increasing, the proof
finishes. If (Rl)l is not increasing, for every p ∈ N, we denote R′

p =
∪p

l=1Rl.
Then for every p ∈ N, (R′

p)p is an increasing sequence of compact sets and

limp→∞ |µ(T\R′
p)| ≤ limp→∞ |µ(T\Rp)| = 0. �

Remark 3.12. In Theorem 3.9, Corollary 3.10 and Theorem 3.11, C
can be, for instance, B̃, and in Theorem 3.9 and Corollary 3.10, C can also
be B′ or B′

0.

By Remark 2.4 i), Theorem 3.9 and by Proposition 4.7 from [10], we
get:

Corollary 3.13. Suppose (T, d) is a complete separable metric space
and µ : B̃ → Pf (X) is (S)-fuzzy and asymptotic null-additive. Then µ is
R′

F ,D-regular if and only if µ is R′
K,D-regular.

Also, by Remark 2.4 i), Theorem 3.11 and by Theorem 3.3 ii) and Propo-
sition 4.7 from [10], we have:

Corollary 3.14. Suppose (T, d) is a locally compact separable metric
space and µ : B̃ → Pf (X) is (S)-fuzzy and asymptotic null-additive. Then
µ is R′

F ,D-regular if and only if µ is R′
K,D-regular.

By Remark 2.4 ii), Corollary 3.13, Corollary 3.14, Corollary 3.7 and
Remark 3.8 and also by Theorems 3.3 i) and 3.5 iii) from [10], we have:

Corollary 3.15. Suppose (T, d) is a complete separable metric space
or a locally compact separable metric space and µ : B̃ → Pf (X) is (S)-
fuzzy and autocontinuous from above. Then i) µ is R′

F ,D-regular ⇔ ii) µ
is R′

K,D-regular ⇔ iii) µ is RK,D-regular ⇔ iv) µ is R′
K-regular ⇔ v) µ is

RK-regular.

By Corollary 3.15, Remark 2.4 ii) and by Corollary 4.1 from [10], we
immediately have:

Corollary 3.16. In the conditions of Corollary 3.15, i) ⇔ ii) ⇔ iii)
⇔ iv) ⇔ v) ⇔ vi) µ is R′

F -regular ⇔ vii) µ is R′
D-regular.
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Theorem 3.17. Suppose C is the σ-ring generated by a family S of
subsets of T and µ : C → Pf (X) is null-null-additive and (S)-fuzzy.

If M = F (M = K, respectively), S ⊂ M and every set A ∈ S is
R′

D-regular, then µ is R′
M,D-regular.

Proof. Let A = {A ∈ C;A is R′
M,D-regular}. We prove that A = C.

We observe that, since S ⊂ M and every set A ∈ S is R′
D-regular, then

A is also R′
M,D-regular, so S ⊂ A.

We demonstrate that A is a σ−ring.
If A1, A2 ∈ A, there are two sequences (M1

n), (M
2
n) ⊂ M∩ C and two se-

quences (D1
n), (D

2
n) ⊂ D∩ C so that for every n ∈ N, M1

n ⊂ A1 ⊂ D1
n,M

2
n ⊂

A2 ⊂ D2
n, limn→∞ lim|µ(D1

n\M1
n)| = 0 and limn→∞ |µ(D2

n\M2
n)| = 0. By

Corollary 2.4 from [10] µ is, equivalently, asymptotic null-additive, so we
also have limn→∞ |µ((D1

n\M1
n)∪µ(D2

n\M2
n))| = 0. Because for every n ∈ N,

D1
n\M2

n ∈ D∩ C, M1
n\D2

n ∈ M∩ C, M1
n\D2

n ⊂ A1\A2 ⊂ D1
n\M2

n and

|µ((D1
n\M2

n)\(M1
n\D2

n))| ≤ |µ((D1
n\M1

n) ∪ µ(D2
n\M2

n))|,

then A1\A2 ∈ A.
Now, let (An)n ⊂ A be so that An ↗ A. Since (An)n ⊂ A, then for

every n ∈ N, there is an increasing sequence (Mn,m)m ⊂ M∩ C and a
decreasing sequence (Dn,m)m ⊂ D∩ C so that for every m ∈ N, Mn,m ⊂
An ⊂ Dn,m and limm→∞ |µ(Dn,m\Mn,m)| = 0. For every n ∈ N, we denote
Nn =

∩∞
m=1(Dn,m\Mn,m). Because for any n ∈ N, (Dn,m)m is decreasing

and (Mn,m)m is increasing, thenDn,m\Mn,m ↘
m→∞

Nn. Since µ is decreasing

convergent, we have limm→∞ h(µ(Dn,m\Mn,m), µ(Nn)) = 0. Because for
every n ∈ N, limm→∞ |µ(Dn,m\Mn,m)| = 0 and for any m,n ∈ N,

|µ(Nn)| ≤ h(µ(Dn,m\Mn,m), µ(Nn)) + |µ(Dn,m\Mn,m)|,

by passing m to the limit, we have that for any n ∈ N, |µ(Nn)| = 0, so
µ(Nn) = {0}.

Consequently, because µ is null-null-additive and (S)-fuzzy, then µ fulfils
condition (E’), so, for each n ∈ N, there is a sequence of naturals (knl

)l such
that liml→∞ |µ(

∪∞
n=1(Dn,knl

\Mn,knl
))| = 0.

Since for every l ∈ N,

{0} ⊆ µ((

∞∪
n=1

(Dn,knl
)\(

∞∪
n=1

Mn,knl
))) ⊆ µ(

∞∪
n=1

(Dn,knl
\Mn,knl

)),
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we get that liml→∞ |µ((
∪∞

n=1Dn,knl
)\(

∪∞
n=1Mn,knl

))| = 0. For every l ∈ N,
we denote Rl = (

∪∞
n=1Dn,knl

)\(
∪∞

n=1Mn,knl
) and for every p ∈ N, we

denote Sl,p = (
∪∞

n=1Dn,knl
)\(

∪p
n=1Mn,knl

). So, we have liml→∞ |µ(Rl)| = 0
and for every l ∈ N, Sl,p ↘

p→∞
Rl, hence, by the decreasing convergence of

µ, limp→∞ h(µ(Sl,p), µ(Rl)) = 0.
Consequently, for every l ∈ N, there is pl ∈ N so that h(µ(Sl,pl), µ(Rl)) <

ε
2 . Because liml→∞ |µ(Rl)| = 0, then liml→∞ |Sl,pl)| = 0. Finally, since for
every l ∈ N,

∪pl
n=1Mn,knl

⊂
∪∞

n=1An = A ⊂
∪∞

n=1Dn,knl
,
∪∞

n=1Dn,knl
∈

D∩ C and
∪pl

n=1Mn,knl
∈ M∩ C, then A ∈ A.

Consequently, A is a σ-ring, so, the conclusion immediately follows. �

Remark 3.18. With the notations from the above theorem, if:

(i) T is a metric space, C = B̃ and S = F = M or

(ii) T is a locally compact Hausdorff space, C = B′
0,S is the family of all

compact, Gδ-sets of T and M = K and if µ : C → Pf (X) is decreasing
convergent, then every set A ∈ S is R′

D-regular.

Indeed, in both situations (i) or (ii), if A ∈ S is arbitrary, there is a de-
creasing sequence (Dn)n ⊂ D∩ C so that Dn ↘ A. Because µ is decreasing
convergent, by Example 3.12 ii) from [10], we get that A is R′

D-regular.

By Theorem 3.17 and Remark 3.18, we have:

Corollary 3.19. i) If T is a metric space and µ : B̃ → Pf (X) is (S)-
fuzzy and null-null-additive, then µ is R′

F ,D-regular.
ii) If T is a locally compact Hausdorff space and µ : B′

0 → Pf (X) is
(S)-fuzzy and null-null-additive, then µ is R′

K,D-regular.

By Remark 2.4 ii) and iv), Corollary 3.19 i), Corollary 3.15 and Theorem
3.3, we get:

Corollary 3.20. Suppose (T, d) is a complete separable metric space or
a locally compact separable metric space and µ : B̃ → Pf (X) is autoconti-
nuous from above. Then i) µ is R′

F ,D-regular ⇔ ii) µ is R′
K,D-regular ⇔

iii) µ is RK,D-regular ⇔ iv) µ is R′
K-regular ⇔ v) µ is RK-regular ⇔ vi)

µ is (S)-fuzzy ⇔ vii) µ is order continuous.

By Theorem 3.3, Remark 2.4 iv) and Corollary 3.19 ii) and also by
Theorem ii) from [10], we have:
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Corollary 3.21. If T is a locally compact Hausdorff space and µ : B′
0 →

Pf (X) is autocontinuous from above, then µ is R′
K,D-regular if and only if

it is order continuous (if and only if it is (S)-fuzzy).

By Corollary 3.21, Corollary 3.7 and Remark 3.8, we get:

Corollary 3.22. Suppose T is a locally compact Hausdorff space and
µ : B′

0 → Pf (X) is autocontinuous from above. Then i) µ is (S)-fuzzy ⇔
ii) µ is order continuous ⇔ iii) µ is R′

K,D-regular ⇔ iv) µ is R′
K-regular

⇔ v) µ is RK-regular.

4. Concluding remarks

In this paper, the study of abstract regularity in the fuzzy set-valued case
is furthered in order to obtain concrete applications in problems concerning
continuity properties. Especially, a set-valued Alexandroff type theorem is
obtained.

We shall apply this study concerning abstract regularity in further re-
searches, for instance, in order to obtain an abstract set-valued Lusin type
theorem under classical measurability.
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