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Abstract. In this paper, we investigate the general solution and the generalized
stability for the quartic, cubic and additive functional equation (briefly, QCA—functional
equation)

fx+ky) + fz = ky) = K*f(z +y) + K*f(z —y)
+ (K = DK S (y) + K (~y) - 2f(2)),
for any k € Z — {0, %1} in Menger probabilistic normed spaces.
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1. Introduction and preliminaries

In 1942, MENGER [39] introduced the notion of a probabilistic metric
space. Since then, the theory of probabilistic metric spaces has developed
by many authors in many directions (see [4], [48]). The idea of Menger was
to use the distribution functions instead of non-negative real numbers as
values of the metric. The notion of a probabilistic metric space corresponds
to situations when we do not know exactly the distance between two points,
but we know probabilities of possible values of this distance. A probabilistic
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generalization of metric spaces appears to be interested in the investigation
of physical quantities, physiological thresholds and some other fields. It is
also of fundamental importance in probabilistic functional analysis.

On the other hand, in 1962, SERSTNEV [49] introduced the concept of
a probabilistic normed space introduced by means of a definition that was
closely modelled on the theory of (classical) normed spaces and used to
study the problem of best approximation in statistics.

In the sequel, we adopt the usual terminology, notation and conventions
of the theory of probabilistic normed spaces used in [1, 2, 4, 18, 19, 48].

Throughout this paper, let AT is the space of distribution functions,
that is,

AT ={F:RU{-00,00} = [0,1] : F is left-continuous,
non-decreasing on R, F(0) =0 and F(+o0) =1}

and a subset DT of AT is defined by DT = {F € A" : [” F(+c0) = 1},
where [~ f(z) denotes the left limit of the function f at the point z. The
space AT is partially ordered by the usual point-wise ordering of functions,
ie., FF < G if and only if F(t) < G(¢) for all ¢ € R. The maximal element
of AT with order < is the distribution function given by

0 - [0 ift <0,
E =
0 1, ift>0.

Definition 1.1 ([48]). A mapping T : [0, 1] x [0, 1] — [0, 1] is a continu-
ous triangular norm (briefly, a continuous ¢t-norm) if 7" satisfies the following
conditions:

(a) T is commutative and associative;

(b) T is continuous;

(¢) T(a,1) = a, for all a € [0,1];

(d) T(a,b) < T(c,d) whenever a < ¢ and b < d, for all a,b,c,d € [0,1].

Two typical examples of continuous ¢t-norms are Tp(a, b) = ab, Tys(a,b) =
min(a, b).

Recall that, if T"is a t-norm and {z, } is a sequence in [0, 1], then 7" z;
is defined recurrently by

o1
Tiywi = ou 1 nne=a
T(T s, ), ifn>2

and T7° z; is defined by T2% i (see [32, 33]) .
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Definition 1.2. A Menger probabilistic normed spaces (briefly, Menger
PN-space) is a triple (X, A,T), where X is a vector space, T' is a conti-
nuous ¢t-norm and A is a mapping from X into DT satisfying the following
conditions hold:

(PN1) A,(0) =0, for all x € X;

(PN2) Ay(t) = eo(t), for all t > 0 if and only if x = 0;

(PN3) Aqs(t) = Ap(iL), for all z € X, a # 0 and t > 0;

laf

(PN4) Apyy(t +5) > T(Az(t), Ay(s)), for all z,y € X and t,s > 0.

Clearly, every Menger PN-space is probabilistic metric space having a
metrizable uniformity on X if sup, ., T'(a,a) = 1.

Definition 1.3. Let (X, A,T) be a Menger PN-space.

(1) A sequence {z,} in X is said to be convergent to a point x € X
(write x,, — x as n — o) if, for any € > 0 and A > 0, there exists a positive
integer N such that Ay, _»(e) > 1 — X\ whenever n > N.

(2) A sequence {z,} in X is called a Cauchy sequence if, for any € > 0
and A > 0, there exists a positive integer N such that Ay, _z, (6) > 1 — A
whenever n > m > N.

(3) A Menger PN-space (X, A, T) is said to be complete if every Cauchy
sequence in X is convergent to a point in X.

Theorem 1.4. If (X,A,T) is a Menger PN-space and {x,} is a se-
quence such that x, — x, then lim, o Ay, (t) = Az (t).

A basic question in the theory of functional equations is as follows:

“When is it true that a function which approximately satisfies a func-
tional equation must be close to an exact solution of the equation?”

If the problem has a solution, we say that the equation is stable. In 1940,
the first stability problem concerning group homomorphisms was raised
by UrLAaM [50] and, in 1941, the stability problem affirmatively solved by
HYERS [34]. Since then, the result of Hyers was generalized by AOK1 [3] for
approximate additive function in 1950 and by RAssiAs [44] for approximate
linear functions by allowing the difference Cauchy equation || f(z+y)—f(x)—
f(y)|| to be controlled by (||z||P+||y||”) in 1978. Because of a lot of influence
of Ulam, Hyers and Rassias on the development of stability problems of
functional equations, the stability phenomenon proved by Rassias is called
the Hyers-Ulam-Rassias stability (see also [5, 22, 35, 37, 41, 42, 43, 45, 46]).
In 1994, a generalization of Rassias theorem was obtained by GAVRUTA [21],
who replaced e(||z||P + ||y||”) by the general control function ¢(x,y).
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In 2002, JuN and KM [36] introduced the following functional equation

(1.1) fRr+y)+ f(2x —y) =2f(z +y) +2f(v —y) + 12f(z)

and established the general solution and the generalized Hyers-Ulam-Rassias
stability for functional equation (1.1). They proved that a function f be-
tween two real vector spaces X and Y is a solution of the equation (1.1) if
and only if there exists a unique function C': X x X x X — Y such that
f(z) = C(z,z,x) for all z € X and, moreover, C is symmetric for each fixed
one variable and is additive for fixed two variables. In fact, the function C
is given by

Lyt )+ fle—y—2) - flety—2) - fle—y+2),

C(ﬂ?,y, Z) = ﬂ

for all z,y, 2 € X. Obviously, the function f(z) = cx® satisfies the functional
equation (1.1) and so it is natural to call the equation (1.1) the cubic func-
tional equation. Every solution of the cubic functional equation is called a
cubic function. In 2005, Lee et al. [38] considered the following functional
equation

(1.2) fQRr+y)+fQ2r—y)=4f(z+y)+4f(z —y) +24f(z) - 6f(y).

In fact, they proved that a function f between two real vector spaces X
and Y is a solution of the equation (1.2) if and only if there exists a unique
symmetric bi-quadratic function By : X x X — Y such that f(z) =
By (z,x) for all z € X. In fact, the bi-quadratic function Bj is given by

Bo(a,y) = 15 (f(z +9) + Flw — ) — 2f(x) — 2f())

for all z,y € X. It is easy to show that the function f(z) = da* satisfies the
functional equation (1.2), which is called the quartic functional equation.

In 2008, NAJATI and ZAMANI [40] obtained the generalized Hyers-Ulam-
Rassias stability for a mixed type of cubic and additive functional equation.
In addition, in 2009, ESHAGHI GORDJI and KHODAEI [20] established the
general solution and investigated the Hyers-Ulam-Rassias stability for a
mixed type of cubic, quadratic and additive functional equation (briefly,
AQC—functional equation) with f(0) = 0,

(1.3) f(z+ky)+ flx—ky) =k fx+y) +flz—y) +2(1 - k) f(z)
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in quasi-Banach spaces, where k is nonzero integer numbers with k # +1.
Obviously, the function f(x) = ax + bx?+ cx3 is a solution of the functional
equation (1.3). For other mixed type functional equations, see [6]-[20] and
[23]-[31].

In 2009, SHAKERI ET AL. [47] proved the stability of cubic functional
equation in Menger PN-spaces.

In this paper, we deal with the following functional equation derived
from additive, cubic and quartic functions

fle+ky)+ fl@—ky) =k f(z+y) + B f(z—y)
+ (B = 1) (K f(y) + K> f(—y) — 2f (2)),

for fixed integers k with k # 0,+1. It is easy to see that the function
f(z) = az + baz® + cx? is a solution of the functional equation (1.4). The
main purpose of this paper is to establish the general solution of the equation
(1.4) and to investigate the generalized stability for the equation (1.4) in
Menger probabilistic normed spaces.

(1.4)

2. Generalized mixed type quartic, cubic and additive func-
tional equation

In this section, we establish the general solution of the equation (1.4).

Theorem 2.1. Let X and Y be vector spaces. A function f : X —Y
whit f(0) = 0 satisfies the equation (1.4) for all x,y € X if and only if there
exist a unique symmetric bi-quadratic function B : X x X — Y, a unique
function C : X x X x X — Y and a unique additive function A: X —Y
such that

f(z) = B(z,z) + C(x,z,x) + A(x),

for allx € X and C is symmetric for each fized one variable and is additive
for fized two variables.

Proof. Let f satisfies the equation (1.4). We decompose f into the
even part and odd part by putting

1

folw) = 5(F@) + F(2)). fole) = 3(F@) — F(~)), Var € X.

It is clear that f(x) = fe(z) + fo(x) for all z € X. It is easy to show that
the functions f. and f, satisfy the equation (1.4).
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Now, we show that the function f. : X — Y is quartic. In fact, it follows
from the equation (1.4) that

fe(x + ky) + fe(x - ky) = kae(x +y) + k'Qfe(x - y)

(21) +2(1—k‘2)f6($)+2k2(k2_1)fe(y)’ Vo,y € X.

Letting z = y = 0 in (2.1), we have f(0) = 0. Putting x = 0 in (2.1), we
get

(2.2) felky) = k*fe(y), Yy € X.

Replacing = by 2z in (2.1), we get

fo(22 4+ ky) + fo(22 — ky) = K2 fo(22 4+ y) + K2 fo(22 — y)

(23) +2(1 = k) fe(22) + 2k*(K* — 1) fe(y), Yo,y € X.

If we put y = x+vy in the equation (2.1) and then y = x — y in the equation
(2.1) again, then it follows from the evenness of f. that

felk(z +y) + ) + folk(z +y) — 2) = K> (22 + y) + k* fe(y)
(2.4) +2(1 — k) fo(z) + 2K*(K* — 1) fo(z 4+ ¥)

folk(z —y) +2) + folk(z —y) — 2) = k2 fo(22 — y) + K fo(y)

(2.5) i 2(1 . kQ)fe(iL') + 2k2(k2 _ 1)fe(x — y), Vo,y € X.

Adding the equations (2.4) and (2.5), we have

felk(z+y)+ )+ fe(k(z+y) —x)
+ fe(kb(z —y) + ) + fe(k(z —y) — )

(2.6) = K o2z +y) + K fo(22 — y) + 2K fe(y) + 4(1 — k%) fe()
+ 2B (K* — 1) (fe(z +y) + fe(z —y)), Va,y € X.

Interchanging x with y in (2.1) and using the evenness of f,, we obtain

fe(kl'+y) + fe(kl' - y) = k2fe($+y) + k«'Qfe(l' - y)

B0 LR E - )+ 20 - ), Yy € X.
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We substitute y = = + ky in (2.7) and then y = x — ky in (2.7) and use
(2.2), we obtain

(2.8)  fe(k(z+y) + ) + fe(k(z —y) — x)
=k? fe(2x + ky) +KO fo(y) 4262 (K* — 1) fe(2)+2(1 — k?) fo(x + ky)

and
felk(x —y) + ) + fe(k(z +y) — x)

(2.9) =k2f.(2z — ky) + kS fo(y) + 2K%(K? — 1) fo(2)
+2(1 — k) fo(x — ky), Yo,y € X.

Adding the equations (2.8) and (2.9), we have

fe(k(z +y) + ) + fe(k(z +y) — )
+ fe(k(z —y) + 2) + fe(k(z — y) — )

(2.10) = k2fo(22 4 ky) + K2 fo (22 — ky) + 2kS fo(y) + 4K2(K* — 1) fo(z)
+2(1 — E*)(fe(x + ky) + fo(z — ky)), Vz,y € X.

It follows from the equations (2.1), (2.3), (2.6) and (2.10) that

feRr +y) + fe(2z —y)
= 4(]06(3j + y)+fe(x - y))+2fe(2x)_8fe(x)_6fe(y)v V:L‘,y € X.

Letting y = = in (2.11), we have f.(3z) = 6f.(2x) — 15fc(z) and letting
y =2z in (2.11), we have f.(4x) = 20f.(22) — 64 fc(z). Thus, by induction,
we get

(2.11)

m m2 —
212)  fulma) =" 2 o 4

m?2(4 —m?)

3 fe($)7

for each fixed integer m # 0,£1,+2 and x € X. But, k£ # 0,£1 and,
also if & = £2, then it follows from the equation (2.7) that f. is quartic.
Otherwise, if we use the equation (2.12) for m = k and the equation (2.2),
then we obtain f.(2z) = 16 f.(z) and so it follows from the equation (2.11)
that

fe(2$+y)+fe(2$_y) = 4fe($+y)+4fe($_y)+24fe(x)_6fe(y)avx7y € X.
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This shows that f. is quartic and so there exists a unique symmetric bi-
quadratic function B : X x X — Y such that

(2.13) fe(x) = B(x,z), Vre X.

On the other hand, we show that the function f, : X — Y is cubic-
additive. In fact, it follows from the equation (1.4) that

Fol@ + ky) + folx — ky) = K fo(x +y) + K fo(z — y) +2(1 — k2) fo(x)

for all x,y € X. By the same method as in Lemma 2.2 of [20], we can show
that f, is cubic-additive. Therefore, it follows that

(2.14) folx) = C(z,z,z) + A(x), Vx € X,

C is symmetric for each fixed one variable and is additive for fixed two
variables and A is additive. Hence, from the equations (2.13) and (2.14), it
follows that

f(z) = fe(z) + folx) = B(z,z) + C(z,z,x) + A(z), Yz € X.

Conversely, let f(x) = B(z,x) + C(z,z,2z) + A(z) for all z € X, where
the function B is symmetric bi-quadratic, C' is symmetric for each fixed one
variable and is additive for fixed two variables and A is additive. By a simple
computation, we can show that the functions =z — B(z,x), v — C(z,z,x)
and x — A(x) satisfy the functional equation (1.4). Therefore, the function
f satisfies the equation (1.4). This completes the proof. O

3. Generalized stability in Menger probabilistic normed spaces

In this section, we investigate the stability problem of the functional
equation (1.4).
Let X be a real linear space and (Y, A,T) be a complete Menger PN-
space. Now, we define a difference operator Af : X x X — Y by

Af(z,y) = flx+ky) + fla—ky) — K fla+y) — kK flz—y)
— (K = 1)(K*f(y) + K> f(—y) — 2f(x)), Vz,y € X,

where f: X — Y is a mapping.



9 QCA-FUNCTIONAL EQUATIONS 307

Theorem 3.1. Let & : X? — DT (&(w,y) is denoted by &) be a
function such that

(3.1) lim Epm oy (K1) = 1

m
and

k4(m+€)
(32)  lim T2, (goykm%lx(wt)) =1, Vo€ X,t>0.

Suppose that an even function f : X — Y whit f(0) = 0 satisfies the
nequality

(3.3) Anf(ag) () > Eny(t), Yo,y € X, 1> 0.

Then there exists a unique quartic function @@ : X — 'Y such that

LAe
(3.4) Af(m)—Q(gc) (t) > Tgo:ol (ﬁo’ke_lx (Ft)), Va:,y S X,t > 0.

Proof. Setting x = 0 in (3.3) and using f(0) = 0, the evenness of f, we
obtain

(3.5) Ao (ry) -2kt (t) = Eoy(t), Vy € X, 1> 0.
Replacing y by z in (3.5), we have

(3.6) (t) > &0 (2kY) > & - (k*t), Vo€ X,t>0.

Arte sy
If we replace x by k‘z in (3.6), we have

(37) Af(lirlz) -~ f(kzz) (t) Z 5071681 (2k4(€+1)t)

LAFT) LAL

for all x € X, t > 0 and ¢ € N. Thus it follows from (3.7) and (PNy4) that

Aguza g, () =T (Aﬂ:i;w_%@ (;)’Afff)m) (%))
> T(€o ke (K1), &0,0(K*))
>T <§0,k:p (kjt> ; §o,x(k4t)>
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and
Af%)fﬂx)(t) > T(AM,M(%>’Af(’“”)—f( )(%))
ZT(T(Af(:ls stz (4) A suze f(fm(g)) Ao iy )(;»
(oo () e () 00
(1o () () )
T (0.0 (KD, T (o p20 (- )fom( t)

k‘12 )
(600 (K40, (60 () 100 ("’wt))

:T(T(fo@(k‘lt))io,kx(k; )) §0,k20 (kft»’

for all x € X and ¢ > 0 and so

>

v

T

k4€
(3.8) Af(k'mgc) fw )( ) > T2 (§O7k4—1x (FQ), Ve e X,t>0.

In order to prove the convergence of the sequence {f %ﬂx) }, if we replace

with & in (3.8), then we get

k4(m’+€)
m
A ygmint sy gty (1) 2 T2 (& e, () ) Vo € Xot >0,

rd(m+m/) r4Am/

Since the right hand side of the inequality tends to 1 as m’ and m tend
to infinity, the sequence {f (]fijf) Therefore, one
can define the function @ : X — Y by Q(z) := limpe0 71 f (k™) for
all z € X. Now, if we replace x,y with k™x, K™y in (3.3), respectively, it

follows that

(3.9) A sy (1) 2 Epmg oy (K1), Va,y € z,t > 0.

dm
By letting m — oo in (3.9), we find that Axg(e,y)(t) = 1 for all £ > 0,
which implies AQ(z,y) = 0 and so @ satisfies the functional equation (1.4).
Hence, by Theorem 2.1, the function @ : X — Y is quartic. To prove (3.4),
if we take the limit as m — oo in (3.8), then we can get (3.4).
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Finally, to prove the uniqueness of the quartic function @ subject to
(3.4), let us assume that there exists a quartic function @’ which satisfies
(3.4). Since Q(k™z) = k*™Q(x) and Q' (k™z) = k*™Q'(x) for all z € X
and m € N, it follows from (3.4) that

k4m k4m
(3.10) ZT(AQ(kmxH(kmx)( 5 ) Agma) - Q’(kmx)<7t>>

2T <T40:°1 <§o,km+f—1x (lwt) ) ) <§0,km+4—1z (wt) ) ) :

for all z € X and ¢t > 0. By letting m — oo in (3.10), we find that Q = Q.
This completes the proof. O

Theorem 3.2. Let £ : X2 — DT be a function such that
(3.11) lim T'(Egmy gmy (2™t), Egmy gmy (27 4)) = 1
m—oQ
and
(3.12) lim 7% (Toerm-1,(2™ ) =1, Vo € X,t >0,
m—0o0

where

0= (0 (0 () S (50,
(e (i (0
(
[

S

N

£2x21<k2_1 ) £x3z(lf2(li;nt)))7
2(1.2 _
T ( (5&0:{:( ) g(kfl)x,:p <k(k251)t))7

k2(k? — 1) k2(k? —1) k2 —1
T(&(IC-FI)LU,I (Tt) ) ga:,Z:r (Tt) ) > ) 52:]0,90 (Tt> ) > )
for all x € X and t > 0. Suppose that an odd function f : X —'Y satisfies
(3.3) for all xz,y € X and t > 0. Then the limit

Az) = lim — (f2"*'z) —8f(2"x))

exists for allxz € X and A: X — Y is a unique additive function satisfying

(3.13) Afa)-sf@)-A@) (1) = T2 (Tye-1,(1)), Yo € X, 1> 0.
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Proof. It follows from (3.3) and the oddness of f that

(3.14) A f (k) — f (ky—2) k2 f ()~ k2 f (o —)+2(k2—1) () ()
> &oy(t), Yo,y € X, t > 0.

Putting y = = in (3.14), we have

(3.15) Af((kg1)2)— f((k—1))—k2f(22) +2(k2—1) () (1) = Ewa(t), V@ € Xt > 0.

It follows from (3.15) that

(3.16) A f(2(k+1)2)— F(2(k—1)2)— k2 f (4z)+2(k2— 1) £ (22) (F)
> §21‘,2$(t)7 Vx € X,t > 0.

Replacing = and y by 2z and z in (3.14), respectively, we get

(3.17) A f((k42)2)— F((h—2)2) — k2 f(32) — k2 f(2)+2(k2—1) £ (22) (1)
> ggx@(t), Ve e X,t> 0.

Setting y = 2z in (3.14) gives

(3.18) A f((2h41)2)— F((2k—1)2)— k2 F (32)— k2 f(—a)+2(k2—1) f(22) (T)
> fx,Qa:(t)y Vz € X,t>0.

Putting y = 3z in (3.14), we obtain

(3.19) A f(3h41)2)— F((3k—1)2)— k2 f (4z)— k2 f(—22)+2(k2—1) £ () (F)
> 51,3$(t)7 Vz € th > 0.

Replacing z and y by (k + 1)z and = in (3.14), respectively, we get

(3.20) A f(@hA1)2)— F((—2) =2 F(k42)2)— k2 f (ka)+2(k2—1) f (kD)) (E)
> g(k—i—l)x,ar(t)’ Ve e X,t > 0.

Replacing z and y by (k — 1)z and = in (3.14), respectively, one gets

(3.21) A p((2h—1)2)~ f(2)~ K2 F((k=2)) k2 f (k) +2(k2—1) £ ( (k1)) (E)
> f(k—l)a},x(ﬂ? Ve e X,t > 0.



13 QCA-FUNCTIONAL EQUATIONS 311

Replacing = and y by (2k + 1)z and z in (3.14), respectively, we obtain

(3:22) A p((3ht1)a)— (= (kb 1)2)—k2 F(2(k+ D)) +2(k2— 1) F (2k+ 1)) k2 f(2ka) (F)
2 5(2k+1)1‘,$(t)’ Vx € X,t > O

Replacing = and y by (2k — 1)z and x in (3.14), respectively, we have

(3:23) A ((3k—1)a)—f (~(k—1)a) k2 F(2(k—1)a)+2(k2—1) £ ((2h—1)a)—k? f (2ha) (T)
> Eok—1)wz(t), Vo e X,t>0.

Thus it follows from (3.15), (3.17), (3.18), (3.20) and (3.21) that
Ap(3z)—afa)+5f(x) (1)
k? k2(k? —1)
> T<T (T (5:1:,&0 <¥t> ) §(k71)z,:p (Tt)) )

(3.24) (6 (’fz(’f;—n 1), nne (lﬁ(/ig—l)t)))
K21

Sava("5—t)), YrE Xt >0.
Also, from (3.15), (3.16), (3.18), (3.19), (3.22) and (3.23), we have
A f(4a)—2f (32)—2f (22)+6 () ()
k2 k2(k? —1)
> T<T (T <§I,2$ <?t> 5(2’671)56,93 (Tt> ) ’

B (e (P (B 1)),

T<£(2x,2x (1{322_1t>7§r,3x (ka(kz_l)t)), Vo e X,t> 0.

Finally, by using (3.24) and (3.25), we obtain

A ¢ (42)—10(22)+16f (= t)

)(
>T T( ( (mem( )€<2kz 1xw(k2(k§zx_1)t>>
<€2k+1 :ch( k2 _1) ) 590”6(]{(24—1)75)))’
(6 (S5 e (57 0)),
(r

&a 53
2012
T ((§m< )g(kl)x,x<k(k251)t))v

(3.26) T

~
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s (0] (00

§2x,x(k22;1t))), Vre X,t>0
Let
£ = 1o (oo () (P50,
e (PE D) (FE D)
vy TG )
(7 (5 (55). S ()

T (gree () 6 (8211,

k? —1
f?x,m(Tt))>, Vz € X,t > 0.
Thus (3.26) means that

(3'28) Af(4x)—10f(2m)+16f(m)(t) = Tx(t)v Ve e X, t>0.

Let g : X — Y be a function defined by g(z) := f(2z)—8f(z) forall x € X.

From (3.28), we conclude that
2
which implies that

(329) Ag(28+lz) 79(281) (t) 2 TQ[I(2£+1t),

ol+1 ol

for all z € X, ¢ > 0 and ¢ € N. Thus it follows from (3.29) and (PN4) that

Aggizx)_g(w) (t) > T(Aﬂzijﬂ_@ <§) ’ Ag(iz)*g(ﬂc) (%))

> T(T5(2t), Tu(t)) > T(Toa (1), Tu (1))
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and

Ag(%fﬁfg(x) (t) = T<A9(§—Z’IL@ (%)’A@—g(m) (%))

t t L
> T<T<Ag<§7§z)_g(§7§z> (g)vAg@i;w)_@ (Z))’A@*g@) (§)>

2

> T(T(T22x(2t)v TQQ@ (t))a T:v (t))
> T(T(Ty2p (t), Toz(t)), Tu(t)) = T(T(Ty(t), Ton(t)), T2, (t)), V2 € X, t > 0.

Thus
(3.30) Agemn (1) 2 T (Tye-1,(t), Yo e X,t>0.

In order to prove the convergence of the sequence {Z (g:z) }, if we replace x

with 27z in (3.30), then we have

Ag(2m+m/x) _g(Zm’/x) (t) 2 Tén:ll(j:‘27n/+g_1x(2m t)), VI‘ 6 X, t > 0.

’

om—+m Qm/

Since the right hand side of the inequality tends to 1 as m’ and m tend to
infinity, the sequence {< (g 2)

-} is a Cauchy sequence. Therefore, one can
define the function A : X — Y by A(z) := limy, 00 59(2™x) for all z € X.

Now, if we replace x,y with 2™z, 2™y in (3.3), respectively, then it
follows that

AAg(2mm,2my> (t) = AAf(zmHz,zmHy) _gAf@Ms,2my) (t)
m om 2m

2
t t
(3'31) > T<AAf(2m+1a;,2m+1y) <*)3AAf(2mz,2my) (*))
2m 2 om—3 2

> T(£2m+1x,2m+1y(2m_lt)7 £2m:p,2’”y(2m_4t))¢

forallz,y € X and ¢ > 0. By letting m — oo in (3.31), we have Ax (24 (t) =
1 for all ¢ > 0 and so AA(z,y) = 0. Therefore, A satisfies (1.4). Hence, by
Theorem 2.1 (see Lemma 2.2 in [20]), the function A : X — Y is additive.
To prove (3.13), if we take the limit as m — oo in (3.30), then we can
get (3.13).
Finally, to prove the uniqueness of the additive function A subject to
(3.13), assume that there exists a additive function A" which satisfies (3.13).
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Since A(2Mx) = 2mA(x) and A'(2Mx) = 2MA'(x) for all z € X and m € N,
it follows from (3.13) that

Ap@)—ar(2)(t) = Aaama)—ar@me) (27'1)
(3.32) > T(Ap@ma)—g(ama) (2™ 1), Ag(ama)—ar(2ma) (277 '1))

> T(T2 (Tymee-1,(2™71)), T2y (Tymae—1,(277 1)), VazeX,t>0.
By letting m — oo in (3.32), we get A = A’. This completes the proof. [

Theorem 3.3. Let £ : X2 — D7 be a function such that

(8:33) lim T(Eamp amy (2°78), Eami amy (277 728)) = 1

and

(3.34) lim T2 (Tymae—1,(25™P271) =1, Vo e X,t>0.
m o0

Suppose that an odd function f: X —'Y satisfies (3.3) for all x,y € X and
t > 0. Then the limit

C(r) = lim (f(2m+1:3) —2f(2™x))
exists for all x € X and C : X — Y is a unique cubic function satisfying
(3.35) Ajan)—af @)y (t) = T2y (Toe-1,(2%1)), Yz € X,t >0,

where Ty(t) is defined as in Theorem 3.2.

Proof. By the similar method as in the proof of Theorem 3.2, we can
obtain

Afaa)-10f2e)+16(@) (1) > Tu(t), Vo e X,t>0.

Let h : X — Y be a function defined by h(z) := f(2z) — 2f(z), for all
x € X. Thus (3.28) implies that

Anee) (1) 2 T.(2%t) > T, (2%t), Yz e X,t >0,

23

which implies that

(3.36) Apotttay niotey () > Toey (2304 D)

23(CF1) o3¢
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for all z € X, ¢ > 0 and ¢ € N. Thus it follows from (3.36) and (PN,) that

(337) Ah(me)_h(z) (t) > Tfnll(TQZflcc(th)% Ve e X,t > 0.
23m

In order to prove the convergence of the sequence {h(;;f)

with 27z in (3.37), then we get

}, if we replace x

Aymim sy 'y (8) = T (Tymrse 1, (2 F20)), Vo € Xt > 0.

23(m+m/) 23m/

Since the right hand side of the inequality tends to 1 as m’ and m tend
to infinity, the sequence {h(;;:f)} is a Cauchy sequence. Therefore, one
can define the function C': X — Y by C(z) := lim;, 2P%,LI”L(Q’”:E) for all
r e X.

Now, if we replace z,y with 2™z, 2™y in (3.3), respectively, then it
follows that

Aanemeamy () = A asemtizomity yafemaamy) (1)
23m 23m - 23m

t t
(3'38) Z T(AAf(2erlz,2m+ly) (*>7AAf(2m:v,2my) (2>)

23m 2 23m—1

> T(§2m+1$72m+1y(23m71t), §2m$72my(23m72t)), Va:, (RS X, t>0.

By letting m — oo in (3.38), we find that Axc(z4) () = 1 for allt > 0, which
implies AC(z,y) = 0 and so C satisfies (1.4). Therefore, by Theorem 2.1
(see Lemma 2.2 in [20]), the function C' : X — Y is cubic. The rest of the
proof is similar to the proof of Theorem 3.2. This completes the proof. [

Theorem 3.4. Let £ : X2 — DT be a function satisfies (3.11) for all
z,y € X and t > 0. Suppose that (3.12) for all x € X and t > 0 holds
and an odd function f: X — 'Y satisfies (3.3) for all x,y € X and t > 0.
Then there exists an additive function A : X — Y and a cubic function
C:X —Y such that

(339) Ay ag)—c() (1) =TT (Tyr14(30)), T2y (Tye1,,(3(2°)1))),
for all z € X and t > 0, where Ty(t) is defined as in Theorem 3.2.

Proof. By Theorems 3.2 and 3.3, there exist a unique additive function
A, : X = Y and a unique cubic function C, : X — Y such that

(3.40) A fo2)-8f(x)— o) (8) = T2y (Tye-1,(1))
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and
(3.41) Ajan)—2f@)—Co@) () = T2y (The-1,(2%1)), Vo € Xt > 0.
Thus it follows from (3.40) and (3.41) that

AjayrLag(e)— Lo () 2 T(Ap20) -8 f(@)—0() (31): A p(22)-27 () Co(a) (3))

for all 2 € X and ¢ > 0. Thus we obtain (3.39) by letting A(z) = —%Ag(z)
and C(z) = §Co(x) for all 2 € X. This completes the proof. O

Finally, we are ready to prove the main theorem concerning the stability
problem for the functional equation (1.4) in Menger probabilistic normed

spaces.

Theorem 3.5. Let £ : X? — DV be a function satisfies (3.1) and (3.11)
forall z,y € X and t > 0. Suppose that (3.2) and (3.12) for all x € X and
t > 0 hold and a function f : X — Y satisfies (3.3) for all x,y € X and
t > 0. Furthermore, assume that f(0) = 0 in (3.3), where f is even. Then
there exists an additive function A : X =Y, a cubic function C : X — Y
and a unique quartic function @ : X — 'Y satisfying (1.4) and

Af(@)-A(@)-C@)-Q) ()
1 a0
(oo () 75 e ().

(3.42) T (1 (132 (T, (51) ) T80 (P, (32200 ),

T (125 (Tyror, (1) ), 725 (P, (3220 ) ),
for all x € X,t >0, where Ty(t) is defined as in Theorem 3.2.
Proof. Let f.(z) = 3(f(z) + f(—x)) for all z € X. Then f.(0) =0,
fe(=x) = fe(z) and
Anfuay)(t) = Dasemsarcen (8) = T(Aa sy () Aas-z,-y)(1))
2 T(&ay(t),Ema,—y(t) = T(Cay(t), & y(t)), Yo,y € Xt >0.

Hence, in view of Theorem 3.1, there exist a unique quartic function @ :
X — Y such that
k4€
(3.43) Af()-Q)(t) 2 T(Teozo1 (fo,kﬂ—lz (%t»,
k4€
TEO:OI (£O7k6—1x(Ft>)), Vx € X,t > 0.
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On the other hand, let fo(z) = 3(f(z) — f(—x)) for all z € X. Then
fo(0) = 0, fo(—z) = —fo(x) and, by using the above method, it follows
from Theorem 3.4 that there exist an additive function A : X — Y and a

cubic function C : X — Y such that

Afy(@)-AG)-C@) () =TT (Tyr1,(36)), T2y (Toe-1,(3(2%)1))),
(3.44) T(T2 (UTye-1,(3t)), T (Toe-1,(3(221)))), Vo € X,t > 0.

Hence (3.42) follows from (3.43) and (3.44). This completes the proof. [
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