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Abstract. In this paper, we investigate the general solution and the generalized
stability for the quartic, cubic and additive functional equation (briefly, QCA–functional
equation)

f(x+ ky) + f(x− ky) = k2f(x+ y) + k2f(x− y)

+ (k2 − 1)(k2f(y) + k2f(−y)− 2f(x)),

for any k ∈ Z− {0,±1} in Menger probabilistic normed spaces.
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1. Introduction and preliminaries

In 1942, Menger [39] introduced the notion of a probabilistic metric
space. Since then, the theory of probabilistic metric spaces has developed
by many authors in many directions (see [4], [48]). The idea of Menger was
to use the distribution functions instead of non-negative real numbers as
values of the metric. The notion of a probabilistic metric space corresponds
to situations when we do not know exactly the distance between two points,
but we know probabilities of possible values of this distance. A probabilistic
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generalization of metric spaces appears to be interested in the investigation
of physical quantities, physiological thresholds and some other fields. It is
also of fundamental importance in probabilistic functional analysis.

On the other hand, in 1962, Serstnev [49] introduced the concept of
a probabilistic normed space introduced by means of a definition that was
closely modelled on the theory of (classical) normed spaces and used to
study the problem of best approximation in statistics.

In the sequel, we adopt the usual terminology, notation and conventions
of the theory of probabilistic normed spaces used in [1, 2, 4, 18, 19, 48].

Throughout this paper, let ∆+ is the space of distribution functions,
that is,

∆+ : = {F : R ∪{−∞,∞} → [0, 1] : F is left-continuous,

non-decreasing on R, F (0) = 0 and F (+∞) = 1}

and a subset D+ of ∆+ is defined by D+ = {F ∈ ∆+ : l−F (+∞) = 1},
where l−f(x) denotes the left limit of the function f at the point x. The
space ∆+ is partially ordered by the usual point-wise ordering of functions,
i.e., F ≤ G if and only if F (t) ≤ G(t) for all t ∈ R. The maximal element
of ∆+ with order ≤ is the distribution function given by

ε0(t) =

{
0, if t ≤ 0,

1, if t > 0.

Definition 1.1 ([48]). A mapping T : [0, 1]× [0, 1] → [0, 1] is a continu-
ous triangular norm (briefly, a continuous t-norm) if T satisfies the following
conditions:

(a) T is commutative and associative;
(b) T is continuous;
(c) T (a, 1) = a, for all a ∈ [0, 1];
(d) T (a, b) ≤ T (c, d) whenever a ≤ c and b ≤ d, for all a, b, c, d ∈ [0, 1].

Two typical examples of continuous t-norms are TP (a, b) = ab, TM (a, b) =
min(a, b).

Recall that, if T is a t-norm and {xn} is a sequence in [0, 1], then Tn
i=1xi

is defined recurrently by

Tn
i=1xi =

{
x1, if n = 1,

T (Tn−1
i=1 xi, xn), if n ≥ 2

and T∞
i=nxi is defined by T∞

i=1xn+i (see [32, 33]) .
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Definition 1.2. A Menger probabilistic normed spaces (briefly, Menger
PN-space) is a triple (X,Λ, T ), where X is a vector space, T is a conti-
nuous t-norm and Λ is a mapping from X into D+ satisfying the following
conditions hold:

(PN1) Λx(0) = 0, for all x ∈ X;
(PN2) Λx(t) = ε0(t), for all t > 0 if and only if x = 0;
(PN3) Λαx(t) = Λx(

t
|α|), for all x ∈ X, α ̸= 0 and t > 0;

(PN4) Λx+y(t+ s) ≥ T (Λx(t),Λy(s)), for all x, y ∈ X and t, s ≥ 0.

Clearly, every Menger PN-space is probabilistic metric space having a
metrizable uniformity on X if supa<1 T (a, a) = 1.

Definition 1.3. Let (X,Λ, T ) be a Menger PN-space.
(1) A sequence {xn} in X is said to be convergent to a point x ∈ X

(write xn → x as n → ∞) if, for any ϵ > 0 and λ > 0, there exists a positive
integer N such that Λxn−x(ϵ) > 1− λ whenever n ≥ N .

(2) A sequence {xn} in X is called a Cauchy sequence if, for any ϵ > 0
and λ > 0, there exists a positive integer N such that Λxn−xm(ϵ) > 1 − λ
whenever n ≥ m ≥ N .

(3) A Menger PN-space (X,Λ, T ) is said to be complete if every Cauchy
sequence in X is convergent to a point in X.

Theorem 1.4. If (X,Λ, T ) is a Menger PN-space and {xn} is a se-
quence such that xn → x, then limn→∞ Λxn(t) = Λx(t).

A basic question in the theory of functional equations is as follows:
“When is it true that a function which approximately satisfies a func-

tional equation must be close to an exact solution of the equation?”
If the problem has a solution, we say that the equation is stable. In 1940,

the first stability problem concerning group homomorphisms was raised
by Ulam [50] and, in 1941, the stability problem affirmatively solved by
Hyers [34]. Since then, the result of Hyers was generalized by Aoki [3] for
approximate additive function in 1950 and by Rassias [44] for approximate
linear functions by allowing the difference Cauchy equation ∥f(x+y)−f(x)−
f(y)∥ to be controlled by ε(∥x∥p+∥y∥p) in 1978. Because of a lot of influence
of Ulam, Hyers and Rassias on the development of stability problems of
functional equations, the stability phenomenon proved by Rassias is called
the Hyers-Ulam-Rassias stability (see also [5, 22, 35, 37, 41, 42, 43, 45, 46]).
In 1994, a generalization of Rassias theorem was obtained byGǎvruta [21],
who replaced ε(∥x∥p + ∥y∥p) by the general control function φ(x, y).
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In 2002, Jun and Kim [36] introduced the following functional equation

(1.1) f(2x+ y) + f(2x− y) = 2f(x+ y) + 2f(x− y) + 12f(x)

and established the general solution and the generalized Hyers-Ulam-Rassias
stability for functional equation (1.1). They proved that a function f be-
tween two real vector spaces X and Y is a solution of the equation (1.1) if
and only if there exists a unique function C : X ×X ×X −→ Y such that
f(x) = C(x, x, x) for all x ∈ X and, moreover, C is symmetric for each fixed
one variable and is additive for fixed two variables. In fact, the function C
is given by

C(x, y, z) =
1

24
(f(x+ y + z) + f(x− y − z)− f(x+ y − z)− f(x− y + z)),

for all x, y, z ∈ X. Obviously, the function f(x) = cx3 satisfies the functional
equation (1.1) and so it is natural to call the equation (1.1) the cubic func-
tional equation. Every solution of the cubic functional equation is called a
cubic function. In 2005, Lee et al. [38] considered the following functional
equation

(1.2) f(2x+ y) + f(2x− y) = 4f(x+ y) + 4f(x− y) + 24f(x)− 6f(y).

In fact, they proved that a function f between two real vector spaces X
and Y is a solution of the equation (1.2) if and only if there exists a unique
symmetric bi-quadratic function B2 : X × X −→ Y such that f(x) =
B2(x, x) for all x ∈ X. In fact, the bi-quadratic function B2 is given by

B2(x, y) =
1

12
(f(x+ y) + f(x− y)− 2f(x)− 2f(y)),

for all x, y ∈ X. It is easy to show that the function f(x) = dx4 satisfies the
functional equation (1.2), which is called the quartic functional equation.

In 2008, Najati and Zamani [40] obtained the generalized Hyers-Ulam-
Rassias stability for a mixed type of cubic and additive functional equation.
In addition, in 2009, Eshaghi Gordji and Khodaei [20] established the
general solution and investigated the Hyers-Ulam-Rassias stability for a
mixed type of cubic, quadratic and additive functional equation (briefly,
AQC–functional equation) with f(0) = 0,

(1.3) f(x+ ky) + f(x− ky) = k2f(x+ y) + k2f(x− y) + 2(1− k2)f(x)
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in quasi-Banach spaces, where k is nonzero integer numbers with k ̸= ±1.
Obviously, the function f(x) = ax+ bx2+ cx3 is a solution of the functional
equation (1.3). For other mixed type functional equations, see [6]-[20] and
[23]-[31].

In 2009, Shakeri et al. [47] proved the stability of cubic functional
equation in Menger PN-spaces.

In this paper, we deal with the following functional equation derived
from additive, cubic and quartic functions

f(x+ ky) + f(x− ky) = k2f(x+ y) + k2f(x− y)

+ (k2 − 1)(k2f(y) + k2f(−y)− 2f(x)),
(1.4)

for fixed integers k with k ̸= 0,±1. It is easy to see that the function
f(x) = ax + bx3 + cx4 is a solution of the functional equation (1.4). The
main purpose of this paper is to establish the general solution of the equation
(1.4) and to investigate the generalized stability for the equation (1.4) in
Menger probabilistic normed spaces.

2. Generalized mixed type quartic, cubic and additive func-
tional equation

In this section, we establish the general solution of the equation (1.4).

Theorem 2.1. Let X and Y be vector spaces. A function f : X → Y
whit f(0) = 0 satisfies the equation (1.4) for all x, y ∈ X if and only if there
exist a unique symmetric bi-quadratic function B : X ×X −→ Y, a unique
function C : X ×X ×X −→ Y and a unique additive function A : X → Y
such that

f(x) = B(x, x) + C(x, x, x) +A(x),

for all x ∈ X and C is symmetric for each fixed one variable and is additive
for fixed two variables.

Proof. Let f satisfies the equation (1.4). We decompose f into the
even part and odd part by putting

fe(x) =
1

2
(f(x) + f(−x)), fo(x) =

1

2
(f(x)− f(−x)), ∀x ∈ X.

It is clear that f(x) = fe(x) + fo(x) for all x ∈ X. It is easy to show that
the functions fe and fo satisfy the equation (1.4).
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Now, we show that the function fe : X → Y is quartic. In fact, it follows
from the equation (1.4) that

fe(x+ ky) + fe(x− ky) = k2fe(x+ y) + k2fe(x− y)

+ 2(1− k2)fe(x) + 2k2(k2 − 1)fe(y), ∀x, y ∈ X.
(2.1)

Letting x = y = 0 in (2.1), we have f(0) = 0. Putting x = 0 in (2.1), we
get

(2.2) fe(ky) = k4fe(y), ∀y ∈ X.

Replacing x by 2x in (2.1), we get

fe(2x+ ky) + fe(2x− ky) = k2fe(2x+ y) + k2fe(2x− y)

+ 2(1− k2)fe(2x) + 2k2(k2 − 1)fe(y), ∀x, y ∈ X.
(2.3)

If we put y = x+y in the equation (2.1) and then y = x−y in the equation
(2.1) again, then it follows from the evenness of fe that

fe(k(x+ y) + x) + fe(k(x+ y)− x) = k2fe(2x+ y) + k2fe(y)

+ 2(1− k2)fe(x) + 2k2(k2 − 1)fe(x+ y)(2.4)

and

fe(k(x− y) + x) + fe(k(x− y)− x) = k2fe(2x− y) + k2fe(y)

+ 2(1− k2)fe(x) + 2k2(k2 − 1)fe(x− y), ∀x, y ∈ X.
(2.5)

Adding the equations (2.4) and (2.5), we have

fe(k(x+ y) + x) + fe(k(x+ y)− x)

+ fe(k(x− y) + x) + fe(k(x− y)− x)

= k2fe(2x+ y) + k2fe(2x− y) + 2k2fe(y) + 4(1− k2)fe(x)(2.6)

+ 2k2(k2 − 1)(fe(x+ y) + fe(x− y)), ∀x, y ∈ X.

Interchanging x with y in (2.1) and using the evenness of fe, we obtain

fe(kx+ y) + fe(kx− y) = k2fe(x+ y) + k2fe(x− y)

+ 2k2(k2 − 1)fe(x) + 2(1− k2)fe(y), ∀x, y ∈ X.
(2.7)
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We substitute y = x + ky in (2.7) and then y = x − ky in (2.7) and use
(2.2), we obtain

fe(k(x+ y) + x) + fe(k(x− y)− x)(2.8)

=k2fe(2x+ ky)+k6fe(y)+2k2(k2 − 1)fe(x)+2(1− k2)fe(x+ ky)

and

fe(k(x− y) + x) + fe(k(x+ y)− x)

= k2fe(2x− ky) + k6fe(y) + 2k2(k2 − 1)fe(x)

+ 2(1− k2)fe(x− ky), ∀x, y ∈ X.

(2.9)

Adding the equations (2.8) and (2.9), we have

fe(k(x+ y) + x) + fe(k(x+ y)− x)

+ fe(k(x− y) + x) + fe(k(x− y)− x)

= k2fe(2x+ ky) + k2fe(2x− ky) + 2k6fe(y) + 4k2(k2 − 1)fe(x)(2.10)

+ 2(1− k2)(fe(x+ ky) + fe(x− ky)), ∀x, y ∈ X.

It follows from the equations (2.1), (2.3), (2.6) and (2.10) that

fe(2x+ y) + fe(2x− y)

= 4(fe(x+ y)+fe(x− y))+2fe(2x)−8fe(x)−6fe(y), ∀x, y ∈ X.
(2.11)

Letting y = x in (2.11), we have fe(3x) = 6fe(2x) − 15fe(x) and letting
y = 2x in (2.11), we have fe(4x) = 20fe(2x)− 64fe(x). Thus, by induction,
we get

(2.12) fe(mx) =
m(m2 − 1)

12
fe(2x) +

m2(4−m2)

3
fe(x),

for each fixed integer m ̸= 0,±1,±2 and x ∈ X. But, k ̸= 0,±1 and,
also if k = ±2, then it follows from the equation (2.7) that fe is quartic.
Otherwise, if we use the equation (2.12) for m = k and the equation (2.2),
then we obtain fe(2x) = 16fe(x) and so it follows from the equation (2.11)
that

fe(2x+y)+fe(2x−y) = 4fe(x+y)+4fe(x−y)+24fe(x)−6fe(y),∀x, y ∈ X.
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This shows that fe is quartic and so there exists a unique symmetric bi-
quadratic function B : X ×X −→ Y such that

(2.13) fe(x) = B(x, x), ∀x ∈ X.

On the other hand, we show that the function fo : X → Y is cubic-
additive. In fact, it follows from the equation (1.4) that

fo(x+ ky) + fo(x− ky) = k2fo(x+ y) + k2fo(x− y) + 2(1− k2)fo(x)

for all x, y ∈ X. By the same method as in Lemma 2.2 of [20], we can show
that fo is cubic-additive. Therefore, it follows that

(2.14) fo(x) = C(x, x, x) +A(x), ∀x ∈ X,

C is symmetric for each fixed one variable and is additive for fixed two
variables and A is additive. Hence, from the equations (2.13) and (2.14), it
follows that

f(x) = fe(x) + fo(x) = B(x, x) + C(x, x, x) +A(x), ∀x ∈ X.

Conversely, let f(x) = B(x, x) + C(x, x, x) + A(x) for all x ∈ X, where
the function B is symmetric bi-quadratic, C is symmetric for each fixed one
variable and is additive for fixed two variables and A is additive. By a simple
computation, we can show that the functions x 7→ B(x, x), x 7→ C(x, x, x)
and x 7→ A(x) satisfy the functional equation (1.4). Therefore, the function
f satisfies the equation (1.4). This completes the proof. �

3. Generalized stability in Menger probabilistic normed spaces

In this section, we investigate the stability problem of the functional
equation (1.4).

Let X be a real linear space and (Y,Λ, T ) be a complete Menger PN-
space. Now, we define a difference operator ∆f : X ×X → Y by

∆f(x, y) : = f(x+ ky) + f(x− ky)− k2f(x+ y)− k2f(x− y)

− (k2 − 1)(k2f(y) + k2f(−y)− 2f(x)), ∀x, y ∈ X,

where f : X → Y is a mapping.
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Theorem 3.1. Let ξ : X2 → D+ (ξ(x, y) is denoted by ξx,y) be a
function such that

(3.1) lim
m→∞

ξkmx,kmy(k
4mt) = 1

and

(3.2) lim
m→∞

T∞
ℓ=1

(
ξ0,km+ℓ−1x

(k4(m+ℓ)

2ℓ−1
t
))

= 1, ∀x ∈ X, t > 0.

Suppose that an even function f : X → Y whit f(0) = 0 satisfies the
inequality

(3.3) Λ∆f(x,y)(t) ≥ ξx,y(t), ∀x, y ∈ X, t > 0.

Then there exists a unique quartic function Q : X → Y such that

(3.4) Λf(x)−Q(x)(t) ≥ T∞
ℓ=1

(
ξ0,kℓ−1x

( k4ℓ

2ℓ−1
t
))

, ∀x, y ∈ X, t > 0.

Proof. Setting x = 0 in (3.3) and using f(0) = 0, the evenness of f , we
obtain

(3.5) Λ2f(ky)−2k4f(y)(t) ≥ ξ0,y(t), ∀y ∈ X, t > 0.

Replacing y by x in (3.5), we have

(3.6) Λ f(kx)

k4
−f(x)

(t) ≥ ξ0,x(2k
4t) ≥ ξ0,x(k

4t), ∀x ∈ X, t > 0.

If we replace x by kℓx in (3.6), we have

(3.7) Λ f(kℓ+1x)

k4(ℓ+1)
− f(kℓx)

k4ℓ

(t) ≥ ξ0,kℓx(2k
4(ℓ+1)t)

for all x ∈ X, t > 0 and ℓ ∈ N. Thus it follows from (3.7) and (PN4) that

Λ f(k2x)

k8
−f(x)

(t) ≥ T
(
Λ f(k2x)

k8
− f(kx)

k4

( t

2

)
,Λ f(kx)

k4
−f(x)

( t

2

))
≥ T (ξ0,kx(k

8t), ξ0,x(k
4t))

≥ T
(
ξ0,kx

(k8
2
t
)
, ξ0,x(k

4t)
)
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and

Λ f(k3x)

k12
−f(x)

(t) ≥ T
(
Λ f(k3x)

k12
− f(kx)

k4

( t

2

)
,Λ f(kx)

k4
−f(x)

( t

2

))
≥ T

(
T
(
Λ f(k3x)

k12
− f(k2x)

k8

( t

4

)
,Λ f(k2x)

k8
− f(kx)

k4

( t

2
)
)
,Λ f(kx)

k4
−f(x)

( t

2

))
≥ T

(
T
(
ξ0,k2x

(k12
2

t
)
, ξ0,kx

(k8
2
t
)
, ξ0,x(k

4t
))

≥ T
(
T
(
ξ0,k2x

(k12
4

t
)
, ξ0,kx

(k8
2
t)
)
, ξ0,x(k

4t
))

= T (ξ0,x(k
4t), T (ξ0,k2x(

k12

4
t), ξ0,kx(

k8

2
t)))

= T
(
ξ0,x(k

4t), T (ξ0,kx

(k8
2
t
)
, ξ0,k2x

(k12
4

t
))

= T
(
T
(
ξ0,x(k

4t), ξ0,kx

(k8
2
t)
)
, ξ0,k2x

(k12
4

t
))

,

for all x ∈ X and t > 0 and so

(3.8) Λ f(kmx)

k4m
−f(x)

(t) ≥ Tm
ℓ=1

(
ξ0,kℓ−1x

( k4ℓ

2ℓ−1
t
))

, ∀x ∈ X, t > 0.

In order to prove the convergence of the sequence {f(kmx)
k4m

}, if we replace x

with km
′
x in (3.8), then we get

Λ
f(km+m′

x)

k4(m+m′) − f(km
′
x)

k4m
′
(t) ≥ Tm

ℓ=1

(
ξ0,km′+ℓ−1x

(k4(m′+ℓ)

2ℓ−1
t
))

, ∀x ∈ X, t > 0.

Since the right hand side of the inequality tends to 1 as m′ and m tend
to infinity, the sequence {f(kmx)

k4m
} is a Cauchy sequence. Therefore, one

can define the function Q : X → Y by Q(x) := limm→∞
1

k4m
f(kmx) for

all x ∈ X. Now, if we replace x, y with kmx, kmy in (3.3), respectively, it
follows that

(3.9) Λ∆f(kmx,kmy)

k4m
(t) ≥ ξkmx,kmy(k

4mt), ∀x, y ∈ x, t > 0.

By letting m → ∞ in (3.9), we find that Λ∆Q(x,y)(t) = 1 for all t > 0,
which implies ∆Q(x, y) = 0 and so Q satisfies the functional equation (1.4).
Hence, by Theorem 2.1, the function Q : X → Y is quartic. To prove (3.4),
if we take the limit as m → ∞ in (3.8), then we can get (3.4).
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Finally, to prove the uniqueness of the quartic function Q subject to
(3.4), let us assume that there exists a quartic function Q′ which satisfies
(3.4). Since Q(kmx) = k4mQ(x) and Q′(kmx) = k4mQ′(x) for all x ∈ X
and m ∈ N, it follows from (3.4) that

ΛQ(x)−Q′(x)(t) = ΛQ(kmx)−Q′(kmx)(k
4mt)

≥ T
(
ΛQ(kmx)−f(kmx)

(k4m
2

t
)
,Λf(kmx)−Q′(kmx)

(k4m
2

t
))

(3.10)

≥ T
(
T∞
ℓ=1

(
ξ0,km+ℓ−1x

(k4(m+ℓ)

2ℓ−1
t
))

, T∞
ℓ=1

(
ξ0,km+ℓ−1x

(k4(m+ℓ)

2ℓ−1
t
)))

,

for all x ∈ X and t > 0. By letting m → ∞ in (3.10), we find that Q = Q′.
This completes the proof. �

Theorem 3.2. Let ξ : X2 → D+ be a function such that

(3.11) lim
m→∞

T (ξ2mx,2my(2
mt), ξ2mx,2my(2

m−4t)) = 1

and

(3.12) lim
m→∞

T∞
ℓ=1(T̃2ℓ+m−1x(2

m−1t)) = 1, ∀x ∈ X, t > 0,

where

T̃x(t) = T
(
T
(
T
(
T
(
ξx,2x

(k2
25

t
)
, ξ(2k−1)x,x

(k2(k2 − 1)

24
t
))

,

T
(
ξ(2k+1)x,x

(k2(k2 − 1)

24
t
)
, ξx,x

(k2(k2 − 1)

24
t
)))

,

T
(
ξ2x,2x

(k2 − 1

22
t
)
, ξx,3x

(k2(k2 − 1)

22
t
)))

,

T
(
T
(
T
(
ξx,x

(k2
26

t
)
, ξ(k−1)x,x

(k2(k2 − 1)

25
t
))

,

T
(
ξ(k+1)x,x

(k2(k2 − 1)

25
t
)
, ξx,2x

(k2(k2 − 1)

25
t
)))

, ξ2x,x

(k2 − 1

23
t
)))

,

for all x ∈ X and t > 0. Suppose that an odd function f : X → Y satisfies
(3.3) for all x, y ∈ X and t > 0. Then the limit

A(x) = lim
m→∞

1

2m
(
f(2m+1x)− 8f(2mx)

)
exists for all x ∈ X and A : X → Y is a unique additive function satisfying

(3.13) Λf(2x)−8f(x)−A(x)(t) ≥ T∞
ℓ=1(T̃2ℓ−1x(t)), ∀x ∈ X, t > 0.
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Proof. It follows from (3.3) and the oddness of f that

Λf(ky+x)−f(ky−x)−k2f(x+y)−k2f(x−y)+2(k2−1)f(x)(t)(3.14)

≥ ξx,y(t), ∀x, y ∈ X, t > 0.

Putting y = x in (3.14), we have

(3.15) Λf((k+1)x)−f((k−1)x)−k2f(2x)+2(k2−1)f(x)(t) ≥ ξx,x(t), ∀x ∈ X, t > 0.

It follows from (3.15) that

Λf(2(k+1)x)−f(2(k−1)x)−k2f(4x)+2(k2−1)f(2x)(t)(3.16)

≥ ξ2x,2x(t), ∀x ∈ X, t > 0.

Replacing x and y by 2x and x in (3.14), respectively, we get

Λf((k+2)x)−f((k−2)x)−k2f(3x)−k2f(x)+2(k2−1)f(2x)(t)(3.17)

≥ ξ2x,x(t), ∀x ∈ X, t > 0.

Setting y = 2x in (3.14) gives

Λf((2k+1)x)−f((2k−1)x)−k2f(3x)−k2f(−x)+2(k2−1)f(2x)(t)(3.18)

≥ ξx,2x(t), ∀x ∈ X, t > 0.

Putting y = 3x in (3.14), we obtain

Λf((3k+1)x)−f((3k−1)x)−k2f(4x)−k2f(−2x)+2(k2−1)f(x)(t)(3.19)

≥ ξx,3x(t), ∀x ∈ X, t > 0.

Replacing x and y by (k + 1)x and x in (3.14), respectively, we get

Λf((2k+1)x)−f((−x)−k2f((k+2)x)−k2f(kx)+2(k2−1)f((k+1)x)(t)(3.20)

≥ ξ(k+1)x,x(t), ∀x ∈ X, t > 0.

Replacing x and y by (k − 1)x and x in (3.14), respectively, one gets

Λf((2k−1)x)−f(x)−k2f((k−2)x)−k2f(kx)+2(k2−1)f((k−1)x)(t)(3.21)

≥ ξ(k−1)x,x(t), ∀x ∈ X, t > 0.
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Replacing x and y by (2k + 1)x and x in (3.14), respectively, we obtain

Λf((3k+1)x)−f(−(k+1)x)−k2f(2(k+1)x)+2(k2−1)f((2k+1)x)−k2f(2kx)(t)(3.22)

≥ ξ(2k+1)x,x(t), ∀x ∈ X, t > 0.

Replacing x and y by (2k − 1)x and x in (3.14), respectively, we have

Λf((3k−1)x)−f(−(k−1)x)−k2f(2(k−1)x)+2(k2−1)f((2k−1)x)−k2f(2kx)(t)(3.23)

≥ ξ(2k−1)x,x(t), ∀x ∈ X, t > 0.

Thus it follows from (3.15), (3.17), (3.18), (3.20) and (3.21) that

Λf(3x)−4f(2x)+5f(x)(t)

≥ T
(
T
(
T
(
ξx,x

(k2
24

t
)
, ξ(k−1)x,x

(k2(k2 − 1)

23
t
))

,

T
(
ξ(k+1)x,x

(k2(k2 − 1)

23
t
)
, ξx,2x

(k2(k2 − 1)

23
t
)))

,

ξ2x,x

(k2 − 1

2
t
))

, ∀x ∈ X, t > 0.

(3.24)

Also, from (3.15), (3.16), (3.18), (3.19), (3.22) and (3.23), we have

Λf(4x)−2f(3x)−2f(2x)+6f(x)(t)

≥ T
(
T
(
T
(
ξx,2x

(k2
24

t
)
, ξ(2k−1)x,x

(k2(k2 − 1)

23
t
))

,

T
(
ξ(2k+1)x,x

(k2(k2 − 1)

23
t
)
, ξx,x

(k2(k2 − 1)

23
t
)))

,

T
(
ξ(2x,2x

(k2 − 1

2
t
)
, ξx,3x

(k2(k2 − 1)

2
t
))

, ∀x ∈ X, t > 0.

(3.25)

Finally, by using (3.24) and (3.25), we obtain

Λf(4x)−10f(2x)+16f(x)(t)

≥ T
(
T
(
T
(
T
(
ξx,2x

(k2
25

t
)
, ξ(2k−1)x,x

(k2(k2 − 1)

24
t
))

,

T
(
ξ(2k+1)x,x

(k2(k2 − 1)

24
t
)
, ξx,x

(k2(k2 − 1)

24
t
)))

,

T
(
ξ2x,2x

(k2 − 1

22
t
)
, ξx,3x

(k2(k2 − 1)

22
t)
))

,

T
(
T
(
T
(
ξx,x

(k2
26

t
)
, ξ(k−1)x,x

(k2(k2 − 1)

25
t
))

,

(3.26)
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T
(
ξ(k+1)x,x

(k2(k2 − 1)

25
t
)
, ξx,2x

(k2(k2 − 1)

25
t
)))

,

ξ2x,x

(k2 − 1

23
t
)))

, ∀x ∈ X, t > 0.

Let

T̃x(t) = T
(
T
(
T
(
T
(
ξx,2x

(k2
25

t
)
, ξ(2k−1)x,x

(k2(k2 − 1)

24
t
))

,

T
(
ξ(2k+1)x,x

(k2(k2 − 1)

24
t
)
, ξx,x

(k2(k2 − 1)

24
t
)))

,

T
(
ξ2x,2x

(k2 − 1

22
t
)
, ξx,3x

(k2(k2 − 1)

22
t
)))

,

T
(
T
(
T
(
ξx,x

(k2
26

t
)
, ξ(k−1)x,x

(k2(k2 − 1)

25
t
))

,

T
(
ξ(k+1)x,x

(k2(k2 − 1)

25
t
)
, ξx,2x

(k2(k2 − 1)

25
t
)))

,

ξ2x,x

(k2 − 1

23
t
)))

, ∀x ∈ X, t > 0.

(3.27)

Thus (3.26) means that

(3.28) Λf(4x)−10f(2x)+16f(x)(t) ≥ T̃x(t), ∀x ∈ X, t > 0.

Let g : X → Y be a function defined by g(x) := f(2x)−8f(x) for all x ∈ X.
From (3.28), we conclude that

Λ g(2x)
2

−g(x)
(t) ≥ T̃x(2t) ≥ T̃x(t), ∀x ∈ X, t > 0,

which implies that

(3.29) Λ g(2ℓ+1x)

2ℓ+1 − g(2ℓx)

2ℓ

(t) ≥ T̃2ℓx(2
ℓ+1t),

for all x ∈ X, t > 0 and ℓ ∈ N. Thus it follows from (3.29) and (PN4) that

Λ g(22x)

22
−g(x)

(t) ≥ T
(
Λ g(22x)

22
− g(2x)

2

( t

2

)
,Λ g(2x)

2
−g(x)

( t

2

))
≥ T (T̃2x(2t), T̃x(t)) ≥ T (T̃2x(t), T̃x(t))
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and

Λ g(23x)

23
−g(x)

(t) ≥ T
(
Λ g(23x)

23
− g(2x)

2

( t

2

)
,Λ g(2x)

2
−g(x)

( t

2

))
≥ T

(
T
(
Λ g(23x)

23
− g(22x)

22

( t

4

)
,Λ g(22x)

22
− g(2x)

2

( t

4

))
,Λ g(2x)

2
−g(x)

( t

2

))
≥ T (T (T̃22x(2t), T̃2x(t)), T̃x(t))

≥ T (T (T̃22x(t), T̃2x(t)), T̃x(t)) = T (T (T̃x(t), T̃2x(t)), T̃22x(t)),∀x ∈ X, t > 0.

Thus

(3.30) Λ g(2mx)
2m

−g(x)
(t) ≥ Tm

ℓ=1(T̃2ℓ−1x(t)), ∀x ∈ X, t > 0.

In order to prove the convergence of the sequence {g(2mx)
2m }, if we replace x

with 2m
′
x in (3.30), then we have

Λ
g(2m+m′

x)

2m+m′ − g(2m
′
x)

2m
′

(t) ≥ Tm
ℓ=1(T̃2m

′+ℓ−1x(2
m′
t)), ∀x ∈ X, t > 0.

Since the right hand side of the inequality tends to 1 as m′ and m tend to
infinity, the sequence {g(2mx)

2m } is a Cauchy sequence. Therefore, one can
define the function A : X → Y by A(x) := limm→∞

1
2m g(2mx) for all x ∈ X.

Now, if we replace x, y with 2mx, 2my in (3.3), respectively, then it
follows that

Λ∆g(2mx,2my)
2m

(t) = Λ∆f(2m+1x,2m+1y)
2m

−8
∆f(2mx,2my)

2m
(t)

≥ T
(
Λ∆f(2m+1x,2m+1y)

2m

( t

2

)
,Λ∆f(2mx,2my)

2m−3

( t

2

))
(3.31)

≥ T (ξ2m+1x,2m+1y(2
m−1t), ξ2mx,2my(2

m−4t)),

for all x, y ∈ X and t > 0. By lettingm → ∞ in (3.31), we have Λ∆A(x,y)(t) =
1 for all t > 0 and so ∆A(x, y) = 0. Therefore, A satisfies (1.4). Hence, by
Theorem 2.1 (see Lemma 2.2 in [20]), the function A : X → Y is additive.

To prove (3.13), if we take the limit as m → ∞ in (3.30), then we can
get (3.13).

Finally, to prove the uniqueness of the additive function A subject to
(3.13), assume that there exists a additive function A′ which satisfies (3.13).
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Since A(2mx) = 2mA(x) and A′(2mx) = 2mA′(x) for all x ∈ X and m ∈ N,
it follows from (3.13) that

ΛA(x)−A′(x)(t) = ΛA(2mx)−A′(2mx)(2
mt)

≥ T (ΛA(2mx)−g(2mx)(2
m−1t),Λg(2mx)−A′(2mx)(2

m−1t))(3.32)

≥ T (T∞
ℓ=1(T̃2m+ℓ−1x(2

m−1t)), T∞
ℓ=1(T̃2m+ℓ−1x(2

m−1t))), ∀x∈X, t>0.

By letting m → ∞ in (3.32), we get A = A′. This completes the proof. �

Theorem 3.3. Let ξ : X2 → D+ be a function such that

(3.33) lim
m→∞

T (ξ2mx,2my(2
3mt), ξ2mx,2my(2

3m−2t)) = 1

and

(3.34) lim
m→∞

T∞
ℓ=1(T̃2m+ℓ−1x(2

3m+2ℓ−1t) = 1, ∀x ∈ X, t > 0.

Suppose that an odd function f : X → Y satisfies (3.3) for all x, y ∈ X and
t > 0. Then the limit

C(x) = lim
m→∞

1

23m
(
f(2m+1x)− 2f(2mx)

)
exists for all x ∈ X and C : X → Y is a unique cubic function satisfying

(3.35) Λf(2x)−2f(x)−C(x)(t) ≥ T∞
ℓ=1(T̃2ℓ−1x(2

2ℓt)), ∀x ∈ X, t > 0,

where T̃x(t) is defined as in Theorem 3.2.

Proof. By the similar method as in the proof of Theorem 3.2, we can
obtain

Λf(4x)−10f(2x)+16f(x)(t) ≥ T̃x(t), ∀x ∈ X, t > 0.

Let h : X → Y be a function defined by h(x) := f(2x) − 2f(x), for all
x ∈ X. Thus (3.28) implies that

Λh(2x)

23
−h(x)

(t) ≥ T̃x(2
3t) ≥ T̃x(2

2t), ∀x ∈ X, t > 0,

which implies that

(3.36) Λh(2ℓ+1x)

23(ℓ+1)
−h(2ℓx)

23ℓ

(t) ≥ T̃2ℓx(2
3(ℓ+1)t)
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for all x ∈ X, t > 0 and ℓ ∈ N. Thus it follows from (3.36) and (PN4) that

(3.37) Λh(2mx)

23m
−h(x)

(t) ≥ Tm
ℓ=1(T̃2ℓ−1x(2

2ℓt)), ∀x ∈ X, t > 0.

In order to prove the convergence of the sequence {h(2mx)
23m

}, if we replace x

with 2m
′
x in (3.37), then we get

Λ
h(2m+m′

x)

23(m+m′) −h(2m
′
x)

23m
′
(t) ≥ Tm

ℓ=1(T̃2m
′+ℓ−1x(2

3m′+2ℓt)), ∀x ∈ X, t > 0.

Since the right hand side of the inequality tends to 1 as m′ and m tend
to infinity, the sequence {h(2mx)

23m
} is a Cauchy sequence. Therefore, one

can define the function C : X → Y by C(x) := limm→∞
1

23m
h(2mx) for all

x ∈ X.
Now, if we replace x, y with 2mx, 2my in (3.3), respectively, then it

follows that

Λ∆h(2mx,2my)

23m
(t) = Λ∆f(2m+1x,2m+1y)

23m
−2

∆f(2mx,2my)

23m

(t)

≥ T
(
Λ∆f(2m+1x,2m+1y)

23m

( t

2

)
,Λ∆f(2mx,2my)

23m−1

( t

2

))
(3.38)

≥ T (ξ2m+1x,2m+1y(2
3m−1t), ξ2mx,2my(2

3m−2t)), ∀x, y ∈ X, t > 0.

By lettingm → ∞ in (3.38), we find that Λ∆C(x,y)(t) = 1 for all t > 0, which
implies ∆C(x, y) = 0 and so C satisfies (1.4). Therefore, by Theorem 2.1
(see Lemma 2.2 in [20]), the function C : X → Y is cubic. The rest of the
proof is similar to the proof of Theorem 3.2. This completes the proof. �

Theorem 3.4. Let ξ : X2 → D+ be a function satisfies (3.11) for all
x, y ∈ X and t > 0. Suppose that (3.12) for all x ∈ X and t > 0 holds
and an odd function f : X → Y satisfies (3.3) for all x, y ∈ X and t > 0.
Then there exists an additive function A : X → Y and a cubic function
C : X → Y such that

Λf(x)−A(x)−C(x)(t) ≥ T (T∞
ℓ=1(T̃2ℓ−1x(3t)), T

∞
ℓ=1(T̃2ℓ−1x(3(2

2ℓ)t))),(3.39)

for all x ∈ X and t > 0, where T̃x(t) is defined as in Theorem 3.2.

Proof. By Theorems 3.2 and 3.3, there exist a unique additive function
Ao : X → Y and a unique cubic function Co : X → Y such that

(3.40) Λf(2x)−8f(x)−A0(x)(t) ≥ T∞
ℓ=1(T̃2ℓ−1x(t))
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and

(3.41) Λf(2x)−2f(x)−C0(x)(t) ≥ T∞
ℓ=1(T̃2ℓ−1x(2

2ℓt)), ∀x ∈ X, t > 0.

Thus it follows from (3.40) and (3.41) that

Λf(x)+ 1
6
A0(x)− 1

6
C0(x)

(t) ≥ T (Λf(2x)−8f(x)−A0(x)(3t),Λf(2x)−2f(x)−C0(x)(3t)),

for all x ∈ X and t > 0. Thus we obtain (3.39) by letting A(x) = −1
6A0(x)

and C(x) = 1
6C0(x) for all x ∈ X. This completes the proof. �

Finally, we are ready to prove the main theorem concerning the stability
problem for the functional equation (1.4) in Menger probabilistic normed
spaces.

Theorem 3.5. Let ξ : X2 → D+ be a function satisfies (3.1) and (3.11)
for all x, y ∈ X and t > 0. Suppose that (3.2) and (3.12) for all x ∈ X and
t > 0 hold and a function f : X → Y satisfies (3.3) for all x, y ∈ X and
t > 0. Furthermore, assume that f(0) = 0 in (3.3), where f is even. Then
there exists an additive function A : X → Y, a cubic function C : X → Y
and a unique quartic function Q : X → Y satisfying (1.4) and

Λf(x)−A(x)−C(x)−Q(x)(t)

≥ T
(
T
(
T∞
ℓ=1

(
ξ0,kℓ−1x

(k4ℓ
2ℓ

t
))

, T∞
ℓ=1

(
ξ0,kℓ−1x

(k4ℓ
2ℓ

t
)))

,

T
(
T
(
T∞
ℓ=1

(
T̃2ℓ−1x

(3
2
t
))

, T∞
ℓ=1(T̃2ℓ−1x(3(2

2ℓ−1)t)
))

,(3.42)

T
(
T∞
ℓ=1

(
T̃2ℓ−1x

(3
2
t
))

, T∞
ℓ=1(T̃2ℓ−1x(3(2

2ℓ−1)t))
)))

,

for all x ∈ X, t > 0, where T̃x(t) is defined as in Theorem 3.2.

Proof. Let fe(x) = 1
2(f(x) + f(−x)) for all x ∈ X. Then fe(0) = 0,

fe(−x) = fe(x) and

Λ∆fe(x,y)(t) = Λ∆f(x,y)+∆f(−x,−y)
2

(t) ≥ T (Λ∆f(x,y)(t),Λ∆f(−x,−y)(t))

≥ T (ξx,y(t), ξ−x,−y(t)) = T (ξx,y(t), ξx,y(t)), ∀x, y ∈ X, t > 0.

Hence, in view of Theorem 3.1, there exist a unique quartic function Q :
X → Y such that

Λfe(x)−Q(x)(t) ≥ T
(
T∞
ℓ=1

(
ξ0,kℓ−1x

( k4ℓ

2ℓ−1
t
))

,(3.43)

T∞
ℓ=1

(
ξ0,kℓ−1x

( k4ℓ

2ℓ−1
t
)))

, ∀x ∈ X, t > 0.
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On the other hand, let fo(x) = 1
2(f(x) − f(−x)) for all x ∈ X. Then

fo(0) = 0, fo(−x) = −fo(x) and, by using the above method, it follows
from Theorem 3.4 that there exist an additive function A : X → Y and a
cubic function C : X → Y such that

Λfo(x)−A(x)−C(x)(t) ≥ T (T (T∞
ℓ=1(T̃2ℓ−1x(3t)), T

∞
ℓ=1(T̃2ℓ−1x(3(2

2ℓ)t))),

T (T∞
ℓ=1(UT̃2ℓ−1x(3t)), T

∞
ℓ=1(T̃2ℓ−1x(3(2

2ℓ)t)))), ∀x ∈ X, t > 0.(3.44)

Hence (3.42) follows from (3.43) and (3.44). This completes the proof. �
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