DOI: 10.2478/aicu-2013-0030

ALMOST α -COSYMPLECTIC f-MANIFOLDS

BY

HAKAN ÖZTÜRK, CENGIZHAN MURATHAN, NESIP AKTAN and AYSEL TURGUT VANLI

Abstract. The purpose of this paper is to study a new class of framed manifolds. Such manifolds are called almost α -cosymplectic f-manifolds. For some special cases of α and s, one obtains (almost) α -cosymplectic, (almost) C-manifolds, and (almost) Kenmotsu f-manifolds. Moreover, several tensor conditions are studied. We conclude our results with a general example on α -cosymplectic f-manifolds.

Mathematics Subject Classification 2010: 53C15, 53D15, 57R15. Key words: f-structure, almost α -cosymplectic manifold, framed manifold.

1. Introduction and preliminaries

Let M a real (2n+s)-dimensional smooth manifold. M admits an f-structure ([1], [7]) if there exists a non null smooth (1,1) tensor field ϕ , of the tangent bundle TM, satisfying $\phi^3 + \phi = 0$, rank $\phi = 2n$. An f-structure is a generalization of almost complex (s=0) and almost contact (s=1) structure ([5], [7]). In the latter case, M is orientable ([6]). Corresponding to two complementary projection operators P and Q applied to TM, defined by $P = -\phi^2$ and $Q = \phi^2 + I$, where I is the identity operator, there exist two complementary distributions D and D^{\perp} such that $\dim(D) = 2n$ and $\dim(D^{\perp}) = s$. The following relations hold $\phi P = P\phi = \phi$, $\phi Q = Q\phi = 0$, $\phi^2 P = -P$, $\phi^2 Q = 0$. Thus, we have an almost complex distribution $(D, J = \phi_{|D}, J^2 = -I)$ and ϕ acts on D^{\perp} as a null operator. It follows that $TM = D \oplus D^{\perp}$, $D \cap D^{\perp} = \{0\}$. Assume that D_p^{\perp} is spanned by s globally defined orthonormal vectors $\{\xi_i\}$ at each point $p \in M$, $(1 \le i, j, ... \le s)$,

with its dual set $\{\eta^i\}$. Then one obtains $\phi^2 = -I + \sum_{i=1}^s \eta^i \otimes \xi_i$. In the above case, M is called a globally framed manifold (or simply an f-manifold) ([1], [4] and [5]) and we denote its framed structure by $M(\phi, \xi_i)$. From the above conditions one has $\phi \xi_i = 0$, $\eta^i \circ \phi = 0$, $\eta^i (\xi_j) = \delta_i^j$. Now, we consider a Riemannian metric g on M that is compatible with an f-structure such that

$$g(\phi X, Y) + g(X, \phi Y) = 0,$$

 $g(\phi X, \phi Y) = g(X, Y) - \sum_{i=1}^{s} \eta^{i}(X)\eta^{i}(Y), \ g(X, \xi_{i}) = \eta^{i}(X).$

In the above case, we say that M is a metric f-manifold and its associated structure will be denoted by $M(\phi, \xi_i, \eta^i, g)$.

A framed structure $M(\phi, \xi_i)$ is said to be normal ([4]) if the torsion tensor N_{ϕ} of ϕ is zero i.e., if $N_{\phi} = N + 2 \sum_{i=1}^{s} d\eta^{i} \otimes \xi_{i} = 0$, where N denotes the Nijenhuis tensor field of ϕ .

Define a 2-form Ω on M by $\Omega(X,Y)=g(X,\phi Y)$, for any $X,Y\in\Gamma(TM)$. The Levi-Civita connection ∇ of a metric f-manifold satisfies the following formula ([1]):

$$2g((\nabla_X \phi) Y, Z) = 3d\Omega(X, \phi Y, \phi Z) - 3d\Omega(X, Y, Z)$$
$$+g(N(Y, Z), \phi X) + N_j^2(Y, Z)\eta^j(X)$$
$$+2d\eta^j(\phi Y, X)\eta^j(Z) - 2d\eta^j(\phi Z, X)\eta^j(Y),$$

where the tensor field N_j^2 is defined by $N_j^2(X,Y) = (L_{\phi X}\eta^j)Y - (L_{\phi Y}\eta^j)X = 2d\eta^j(\phi X,Y) - 2d\eta^j(\phi Y,X)$, for each $j \in \{1,...,s\}$.

Following the terminology introduced by BLAIR ([1]), we say that a normal metric f-manifold is a K-manifold if its 2-form Ω closed (i.e., $d\Omega = 0$). Since $\eta^1 \wedge ... \wedge \eta^s \wedge \Omega^n \neq 0$, a K-manifold is orientable. Furthermore, we say that a K-manifold is a C-manifold if each η^i is closed, an S-manifold if $d\eta^1 = d\eta^2 = ... = d\eta^s = \Omega$.

Note that, if s=1, namely if M is an almost contact metric manifold, the condition $d\Omega=0$ means that M is quasi-Sasakian. M is said a K-contact manifold if $d\eta=\Omega$ and ξ is Killing.

FALCITELLI and PASTORE [3] introduced and studied a class of manifolds which is called almost Kenmotsu f-manifold. Such manifolds admit an f-structure with s-dimensional parallelizable kernel. A metric f.pk-manifold of dimension (2n + s), $s \ge 1$, with f.pk-structure (ϕ, ξ_i, η^i, g) , is said to be a almost Kenmotsu f.pk-manifold if the 1-forms η^i 's are closed and $d\Omega =$

 $2\eta^1 \wedge \Omega$. Several foliations canonically associated with an almost Kenmotsu f.pk-manifold are studied and locally conformal almost Kenmotsu f.pk-manifolds are characterized by Falcitelli and Pastore.

In this paper, we consider a wide subclass of f-manifolds called almost α -cosymplectic f-manifolds. Firstly, we give the concept of almost α -cosymplectic f-manifold and state general curvature properties. We derive several important formulas on almost α -cosymplectic f-manifolds. These formulas enable us to find the geometrical properties of almost α -cosymplectic f-manifolds with η -parallel tensors h_i and φh_i . We also examine the tensor fields τ_i 's which are defined by $g(\tau_i X, Y) = (\mathcal{L}_{\xi_i} g)(X, Y)$, for arbitrary vector fields X, Y on M. Then we give some results on η -parallelity, cyclic parallelity, Codazzi condition. Finally, we give an explicit example of almost α -cosymplectic f-manifold.

Throughout this paper we denote by $\overline{\eta} = \eta^1 + \eta^2 + ... + \eta^s$, $\overline{\xi} = \xi^1 + \xi^2 + ... + \xi^s$ and $\overline{\delta}_i^j = \delta_i^1 + \delta_i^2 + ... + \delta_i^s$.

2. Almost α -cosymplectic f-manifolds

We introduce a notion of an almost α -cosymplectic f-manifold for any real number α which is defined as metric f-manifold with f-structure $(\varphi, \xi_i, \eta^i, g)$ satisfying the conditions $d\eta^i = 0$, $d\Omega = 2\alpha \overline{\eta} \wedge \Omega$. The manifold is called generalized almost Kenmotsu f-manifold for $\alpha = 1$.

Let M be an almost α -cosymplectic f-manifold. Since the distribution D is integrable, we have $L_{\xi_i}\eta^j=0, \ [\xi_i,\xi_j]\in D$ and $[X,\xi_j]\in D$ for any $X\in\Gamma(D)$. Then the Levi-Civita connection is given by:

$$2g((\nabla_X \varphi) Y, Z) = 2\alpha g \left(\sum_{j=1}^s \left(g(\varphi X, Y) \xi_j - \eta^j(Y) \varphi X \right), Z \right) + g(N(Y, Z), \varphi X),$$
(2.1)

for any $X, Y, Z \in \Gamma(TM)$. Putting $X = \xi_i$ we obtain $\nabla_{\xi_i} \varphi = 0$ which implies $\nabla_{\xi_i} \xi_j \in D^{\perp}$ and then $\nabla_{\xi_i} \xi_j = \nabla_{\xi_j} \xi_i$, since $[\xi_i, \xi_j] = 0$.

We put $A_i X = -\nabla_X \xi_i$ and $h_i = \frac{1}{2} (L_{\xi_i} \varphi)$, where L denotes the Lie derivative operator.

Proposition 1. For any $i \in \{1, ..., s\}$ the tensor field A_i is a symmetric operator such that

- 1) $A_i(\xi_j) = 0$, for any $j \in \{1, ..., s\}$
- 2) $A_i \circ \varphi + \varphi \circ A_i = -2\alpha \varphi$.
- 3) $tr(A_i) = -2\alpha n$

Proof. $d\eta^i = 0$ implies that A_i is symmetric.

- 1) For any $i, j, k \in \{1, ..., s\}$ deriving $g(\xi_i, \xi_j) = \delta_i^j$ with respect to ξ_k , using $\nabla_{\xi_i} \xi_j = \nabla_{\xi_j} \xi_i$, we get $2g(\xi_k, A_i(\xi_j)) = 0$. Since $\nabla_{\xi_i} \xi_j \in D^{\perp}$, we conclude $A_i(\xi_j) = 0$.
- 2) For any $Z \in \Gamma(TM)$, we have $\varphi(N(\xi_i, Z)) = (L_{\xi_i}\varphi)Z$ and, on the other hand, since $\nabla_{\xi_i}\varphi = 0$,

$$(2.2) L_{\varepsilon_i} \varphi = A_i \circ \varphi - \varphi \circ A_i$$

One can easily obtain from (2.2)

$$(2.3) -A_i X = -\alpha \varphi^2 X - \varphi h_i X$$

Applying (2.1) with $Y = \xi_i$, we have $2g(\varphi A_i X, Z) = -2\alpha g(\varphi X, Z) - g(\varphi N(\xi_i, Z), X)$, which implies the desired result.

3) Considering local adapted orthonormal frame $\{X_1, ..., X_n, \varphi X_1, ..., \varphi X_n, \xi_1, ..., \xi_s\}$, by 1) and 2), one has

$$trA_{i}=\sum_{j=1}^{n}g\left(A_{i}X_{j},X_{j}\right)+g\left(A_{i}\varphi X_{j},\varphi X_{j}\right)=-2\alpha\sum_{j=1}^{n}g\left(\varphi X_{j},\varphi X_{j}\right)=-2\alpha n.$$

Proposition 2 ([1]). For any $i \in \{1,...,s\}$ the tensor field h_i is a symmetric operator and satisfies

- 1) $h_i \xi_j = 0$, for any $j \in \{1, ..., s\}$
- 2) $h_i \circ \varphi + \varphi \circ h_i = 0$
- 3) $trh_i = 0$
- 4) $tr\varphi h_i = 0$

Proposition 3. $\nabla \varphi$ satisfies the following relation:

$$(\nabla_X \varphi)Y + (\nabla_{\varphi X} \varphi)\varphi Y = \sum_{i=1}^s [-\alpha(\eta^i(Y)\varphi X + 2g(X, \varphi Y)\xi_i) - \eta^i(Y)h_i X].$$

Proof. By direct computations, we get $\varphi N(X,Y) + N(\varphi X,Y) = 2\sum_{i=1}^{s} \eta^{i}(X)h_{i}Y$, and $\eta^{i}(N(\varphi X,Y)) = 0$. From (2.1) and the equations above, the proof is completed.

Proposition 4. Let M be an almost α -cosymplectic f-manifold. The integral manifolds of D are almost Kaehler manifolds with mean curvature vector field $H = -\alpha \overline{\xi}$.

Proof. Let \widetilde{M} be an integral manifold of D. We know that $(D,J=\varphi_{|_D},J^2=-I)$ is an almost complex distribution and the induced metric \widetilde{g} on \widetilde{M} is a Hermitian metric. Therefore, for any $X,Y\in\Gamma(\widetilde{M})$, we have the induced 2-form on \widetilde{M} such that $\widetilde{\Omega}(X,Y)=\widetilde{g}(X,JY)=g(X,\varphi Y)=\Omega(X,Y)$ and $d\widetilde{\Omega}=0$ on \widetilde{M} . In this manner, \widetilde{M} is an almost Keahler manifold. Computing the second fundamental form B, since, A_i 's are the Weingarten operators in the directions ξ_i , we get,

(2.4)
$$B(X,Y) = \sum_{i=1}^{s} g(A_i X, Y) \xi_i = \sum_{i=1}^{s} \left[-\alpha g(X,Y) \xi_i + g(\varphi h_i X, Y) \xi_i \right].$$

Using the Proposition 2 and (2.3). Now, we choose a local orthonormal frame $\{e_1, e_2, ..., e_{2n}\}$ such that $e_{l+n} = \varphi e_l$, for l = 1, 2, ..., n, in $T\widetilde{M}$. Taking $X = Y = e_p$ in (2.4) and summing over p = 1, 2, ..., 2n, we get $H = \frac{1}{2n} \sum_{i=1}^{s} (trA_i)\xi_i = -\alpha \overline{\xi}$.

Proposition 5. Let M be an almost α -cosymplectic f-manifold and \widetilde{M} be an integral manifold of D. Then

- 1) when $\alpha = 0$, \widetilde{M} is totally geodesic if and only if all the operators h_i vanish;
- 2) when $\alpha \neq 0$, \widetilde{M} is totally umbilic if and only if all the operators h_i vanish.

Proof. The proof is obvious through
$$(2.4)$$
.

Proposition 6. Under the same situation as in Proposition 5, M is α -cosymplectic f-manifold with structure f-structure $(\varphi, \xi_i, \eta^i, g)$ if and only if the integral manifolds of D are tangentially Kaehler and all the operators h_i vanish.

Proof. If the structure is normal, for any $X \in \Gamma(TM)$, one obtains that

$$0 = N(X, \xi_j) = N_{\varphi}(X, \xi_j) + 2\sum_{i=1}^{s} d\eta^i(X, \xi_j)\xi_i$$

$$= -\varphi \left[\varphi X, \xi_j\right] + \varphi^2 \left[X, \xi_j\right] + 2\sum_{i=1}^{s} d\eta^i(X, \xi_j)\xi_i = 2\varphi h_j X.$$

Hence, all the operators h_i vanish. On the other hand, for each $X, Y \in \Gamma(D)$ we have

$$(2.6) N_{\varphi}(X,Y) = [\varphi X, \varphi Y] - \varphi[\varphi X, Y] - \varphi[X, \varphi Y] - [X, Y] = N_{J=\varphi_{|_{D}}}(X,Y).$$

It is obvious that $N_J = 0$ if and only if almost complex structure J is integrable. Therefore, the proof is completed by (2.5) and (2.6).

Theorem 1 ([1]). A C-manifold M^{2n+s} is a locally decomposable Riemannian manifold which is locally the product of a Kaehler manifold M_1^{2n} and an Abelian Lie group M_2^s .

3. Curvature properties

Proposition 7. Let M be an almost α -cosymplectic f-manifold. Then we have

$$R(X,Y)\xi_{i} = \alpha^{2} \sum_{k=1}^{s} \left[\eta^{k}(Y)\varphi^{2}X - \eta^{k}(X)\varphi^{2}Y \right]$$

$$(3.1) \qquad -\alpha \sum_{k=1}^{s} \left[\eta^{k}(X)\varphi h_{k}Y - \eta^{k}(Y)\varphi h_{k}X \right] + (\nabla_{Y}\varphi h_{i})X - (\nabla_{X}\varphi h_{i})Y.$$

Proof. Using the Riemannian curvature tensor and (2.3), we obtain (3.1).

Using (2.3) and (3.1), by simple computations, we have the following proposition.

Proposition 8. For an almost α -cosymplectic f-manifold with the f-structure $(\varphi, \xi_i, \eta^i, g)$, the following relations hold

(3.2)
$$R(X,\xi_j)\xi_i = \sum_{k=1}^s \delta_j^k \left[\alpha^2 \varphi^2 X + \alpha \varphi h_k X \right] + \alpha \varphi h_i X - h_i h_j X + \varphi \left(\nabla_{\xi_i} h_i \right) X$$

(3.3)
$$R(\xi_j, X)\xi_i - \varphi R(\xi_j, \varphi X)\xi_i = 2 \left[-\alpha^2 \varphi^2 X + h_i h_j X \right],$$

$$(\nabla_{\xi_j} h_i) X = -\varphi R(X, \xi_j) \xi_i + \sum_{k=1}^s \delta_j^k \left[-\alpha^2 \varphi X - \alpha h_k X \right]$$

$$(3.4) \qquad -\alpha h_i X - \varphi h_i h_j X,$$

(3.5)
$$S(X,\xi_i) = -2n\alpha^2 \sum_{k=1}^s \eta^k(X) - (\operatorname{div}\varphi h_i) X,$$

(3.6)
$$S(\xi_i, \xi_j) = -2n\alpha^2 - tr(h_j h_i),$$

Corollary 1. Let M be an almost α -cosymplectic f-manifold. The Ricci tensor satisfies the following conditions:

- 1) $S(\xi_i, \xi_i)$ always takes negative value when $\alpha \neq 0$,
- 2) If all the values $S(\xi_i, \xi_i)$ vanish then any leaf of D is totally geodesic.
- 3) If all the values $S(\xi_i, \xi_i)$ vanish and M is normal then M is locally the product of a Kaehler manifold M_1^{2n} and an Abelian Lie group M_2^s .

Proof. The proof is clear through
$$(3.6)$$
.

The tensor τ was introduced by Chern and Hamilton [2] and is defined by $g(\tau X, Y) = (L_{\xi}g)(X, Y)$ for arbitrary vector fields X, Y on a contact metric manifold. Now, we define and examine this tensor field for an almost α -cosymplectic f-manifold

Proposition 9. An almost α -cosymplectic f-manifold with f-structure $(\varphi, \xi_i, \eta^i, g)$ has tensor fields τ_i such that $\tau_i X = 2\nabla_X \xi_i$, where τ_i 's are defined by $g(\tau_i X, Y) = (L_{\xi_i} g)(X, Y)$ for arbitrary vector fields X, Y on M.

Proof. Using the definition of the tensor fields τ_i , we get

$$(L_{\xi_i}g)(X,Y) = g(\nabla_X \xi_i, Y) + g(X, \nabla_Y \xi_i)$$

= $2g(-\alpha \varphi^2 X - \varphi h_i X, Y)$

for arbitrary vector fields X,Y on M. Applying the formula (2.3), the proof is completed. \Box

Proposition 10. Let M be a locally symmetric almost α -cosymplectic f-manifold. Then, $\nabla_{\xi_{\gamma}} h_i = 0$, for any $\gamma \in \{1, ..., s\}$.

Proof. Notice that (3.3) can be written as $\frac{1}{2} (R(\xi_j,.)\xi_i - \varphi R(\xi_j,\varphi.)\xi_i) = -\alpha^2 \varphi^2 + h_i h_j$ and since the operator $R(\xi_j,\cdot)\xi_i$ is parallel with respect to ξ_k , we get $\nabla_{\xi_k} h_i h_j = 0$. Applying ∇_{ξ_γ} to (3.4), we obtain $\nabla_{\xi_\gamma} (\nabla_{\xi_j} h_i) = -\alpha \nabla_{\xi_\gamma} h_i - \alpha \nabla_{\xi_\gamma} h_j$. Moreover, $\nabla_{\xi_k} h_i h_j = 0$ implies that $(\nabla_{\xi_k} h_i) h_j + h_i (\nabla_{\xi_k} h_j) = 0$, and applying ∇_{ξ_γ} to this equation, we get $\nabla_{\xi_\gamma} h_i = 0$. \square

Theorem 2. Let M be a locally symmetric generalized almost Kenmotsu f-manifold. Then the following conditions are equivalent:

- 1) M is a generalized α -Kenmotsu f-manifold;
- 2) all the operators h_i vanish.

Moreover, if any of the conditions above holds, then M cannot have constant sectional curvature.

Proof. Assuming that M is a generalized α -Kenmotsu f-manifold, we have $\nabla \xi_i = -\alpha \varphi^2$ and, by (2.3), all the operators h_i vanish. Now, supposing all the operators h_i vanish, it follows that $\nabla \xi_i = -\alpha \varphi^2$ and $\nabla \eta^i = \alpha \left(g - \sum_{k=1}^s \eta^k \otimes \eta^k\right)$ and by (3.1), $R(X,Y)\xi_i = \alpha^2 \sum_{k=1}^s [\eta^k(Y)\varphi^2 X - \eta^k(X)\varphi^2 Y]$. So, M is a generalized α -Kenmotsu f-manifold. Moreover, The sectional curvature of any 2-plane spaned by $\{Y,\xi_i\}$ is $K(Y,\xi_i) = -\alpha^2 \|\varphi Y\|^2$, for all vector fields Y on M. So, the sectional curvature of any 2-plane spaned by $\{\xi_i,\xi_j\}$, for any $i,j\in\{1,2,...,s\}$, vanishes and one gets that the sectional curvature of any plane spaned by $Y \in D$ and $Y \in D$ and

4. Some tensor conditions

For any vector field X on M, we can take $X = X^T + \sum_{i=1}^s \eta^i(X)\xi_i$ where X^T is the tangential part of X and $\sum_{i=1}^s \eta^i(X)\xi_i$ is the normal part of X. We can rewrite η -parallel condition for a given almost α -cosymplectic f-manifold. We say that any (1,1)- type tensor field B is η -parallel if and only if $g((\nabla_{X^T}B)Y^T, Z^T) = 0$, for $X^T, Y^T, Z^T \in \mathcal{D}$.

The starting point of the investigation of almost α -cosymplectic fmanifolds with η -parallel tensors h_i and φh_i is the following propositions:

Proposition 11. Let M be an almost α -cosymplectic f-manifold and h_i 's are (1,1)-type tensor fields. If the tensor fields h_i 's are η -parallel, then

$$(\nabla_X h_i)Y = -\sum_{k=1}^s \eta^k(X) \left[\varphi l_{ki}Y + \sum_{\gamma=1}^s \delta_k^{\gamma} [\alpha^2 \varphi Y + \alpha h_{\gamma} Y] + \varphi h_i h_k Y + \alpha h_i Y \right]$$

$$(4.1) \qquad -\sum_{k=1}^{s} \eta^{k}(Y) [\alpha h_{i}X + \varphi h_{i}h_{k}X] - \sum_{k=1}^{s} g(\alpha h_{i}X + \varphi h_{i}h_{k}X, Y) \xi_{k},$$

for all vector fields X, Y on M, where the tensor $l_{ki} = R(., \xi_k)\xi_i$ is the Jacobi operator with respect to the characteristic vector fields and h_i 's are (1,1)-type tensor fields.

Proof. Suppose that each h_i is η -parallel. Denoting the component of X orthogonal to ξ by X^T , we obtain

$$0 = g((\nabla_{X^{T}}h_{i})Y^{T}, Z^{T})$$

$$= g((\nabla_{X-\sum_{k=1}^{s} \eta^{k}(X)\xi_{k}}h_{i})(Y - \sum_{k=1}^{s} \eta^{k}(Y)\xi_{k}), Z - \sum_{k=1}^{s} \eta^{k}(Z)\xi_{k})$$

$$= g((\nabla_{X}h_{i})Y, Z) - \sum_{k=1}^{s} \eta^{k}(X)g((\nabla_{\xi_{k}}h_{i})Y, Z) - \sum_{k=1}^{s} \eta^{k}(Y)g((\nabla_{X}h_{i})\xi_{k}, Z)$$

$$- \sum_{k=1}^{s} \eta^{k}(Z)g((\nabla_{X}h_{i})Y, \xi_{k}) = g((\nabla_{X}h_{i})Y, -\varphi^{2}Z)$$

$$- \sum_{k=1}^{s} \eta^{k}(X)g((\nabla_{\xi_{k}}h_{i})Y, Z) - \sum_{k=1}^{s} \eta^{k}(Y)g((\nabla_{X}h_{i})\xi_{k}, Z),$$

for all vector fields X, Y, Z on M. Using (2.3) and (3.4), the proof is completed.

Proposition 12. Let M be an almost α -cosymplectic f-manifold. If the tensor fields φh_i 's are η -parallel, then

$$(\nabla_X \varphi h_i) Y = \sum_{k=1}^s \eta^k(X) \left[l_{ki} Y - \sum_{\gamma=1}^s \delta_k^{\gamma} [\alpha^2 \varphi^2 Y + \alpha \varphi h_{\gamma} Y] + h_i h_k Y - \alpha \varphi h_i Y \right]$$

$$(4.2) \qquad - \sum_{k=1}^s \eta^k(Y) [\alpha \varphi h_i X - h_i h_k X] - \sum_{k=1}^s g(\alpha \varphi h_i X - h_i h_k X, Y) \xi_k.$$

Proof. We consider that φh_i is η -parallel. Thus,

$$0 = g((\nabla_{X^T}\varphi h_i)Y^T, Z^T)$$

$$= g((\nabla_{X-\sum_{k=1}^s \eta^k(X)\xi_k}\varphi h_i)(Y - \sum_{k=1}^s \eta^k(Y)\xi_k), Z - \sum_{k=1}^s \eta^k(Z)\xi_k)$$

$$= g((\nabla_X\varphi h_i)Y, Z) - \sum_{k=1}^s \eta^k(X)g((\nabla_{\xi_k}\varphi h_i)Y, Z)$$

$$- \sum_{k=1}^s \eta^k(Y)g((\nabla_X\varphi h_i)\xi_k, Z) - \sum_{k=1}^s \eta^k(Z)g((\nabla_X\varphi h_i)Y, \xi_k)$$

for all vector fields X, Y on M. If we simplify the equation above, then

$$g((\nabla_X \varphi h_i) Y, Z) = \sum_{k=1}^s \eta^k(X) g((\nabla_{\xi_k} \varphi h_i) Y, Z) + \sum_{k=1}^s \eta^k(Y) g((\nabla_X \varphi h_i) \xi_k, Z) + \sum_{k=1}^s \eta^k(Z) g((\nabla_X \varphi h_i) Y, \xi_k).$$

Using (2.3) and
$$(\nabla_{\xi_k}\varphi h_i)Y = \varphi(\nabla_{\xi_k}h_i)Y$$
, the proof is completed. \square

Theorem 3. An almost α -cosymplectic f-manifold with the η -parallel tensor fields φh_i 's satisfy the following relation:

(4.3)
$$R(X,Y)\xi_i = \sum_{k=1}^s \eta^k(Y)l_{ki}X - \eta^k(X)l_{ki}Y,$$

where $l_{ki} = R(., \xi_k)\xi_i$ is the Jacobi operator with respect to the characteristic vector fields ξ_k and ξ_i .

Proof. Using (3.1) and (4.2), we get

$$R(X,Y)\xi_{i} = \alpha^{2} \sum_{k=1}^{s} \left[\eta^{k}(Y)\varphi^{2}X - \eta^{k}(X)\varphi^{2}Y \right]$$

$$-\alpha \sum_{k=1}^{s} \left[\eta^{k}(X)\varphi h_{k}Y - \eta^{k}(Y)\varphi h_{k}X \right]$$

$$+\sum_{k=1}^{s} \eta^{k}(Y) \left[l_{ki}X - \sum_{\gamma=1}^{s} \delta_{k}^{\gamma} \left[\alpha^{2}\varphi^{2}X + \alpha\varphi h_{\gamma}X \right] + h_{i}h_{k}X - \alpha\varphi h_{i}X \right]$$

$$-\sum_{k=1}^{s} \eta^{k}(X) \left[\alpha\varphi h_{i}Y - h_{i}h_{k}Y \right] - \sum_{k=1}^{s} g(\alpha\varphi h_{i}Y - h_{i}h_{k}Y, X)\xi_{k}$$

$$-\sum_{k=1}^{s} \eta^{k}(X) \left[l_{ki}Y - \sum_{\gamma=1}^{s} \delta_{k}^{\gamma} \left[\alpha^{2}\varphi^{2}Y + \alpha\varphi h_{\gamma}Y \right] + h_{i}h_{k}Y - \alpha\varphi h_{i}Y \right]$$

$$+\sum_{k=1}^{s} \eta^{k}(Y) \left[\alpha\varphi h_{i}X - h_{i}h_{k}X \right] + \sum_{k=1}^{s} g(\alpha\varphi h_{i}X - h_{i}h_{k}X, Y)\xi_{k}.$$

Then, we can easily write (4.3) by simplifying the equation above. \Box

Theorem 4. An almost α -cosymplectic f-manifold has negative pointwise constant ξ_i -sectional curvature.

Proof. Let M be an almost α -cosymplectic f-manifold with a pointwise constant ξ_i -sectional curvature $K(p), p \in M$. It means that $g(R(X^T, \xi_i)\xi_i, X^T) = K_i(p)g(X^T, X^T)$ for all tangent vectors X^T orthogonal to ξ_i at the point $p \in M$, i.e., $X^T \in \mathcal{D}$. Putting $X^T = X - \sum_{k=1}^s \eta^k(X)\xi_k$ and using the symmetries of curvature tensor R, we see that the equation above is equivalent to $\varphi l_{ii}X = K_i\varphi X$, for any vector field X, where K_i is a smooth function in M. From the equation (3.4), we get

$$(\nabla_{\xi i} h_i) X = -K_i \varphi X + \sum_{k=1}^s \delta_i^k \left[-\alpha^2 \varphi X - \alpha h_k X \right] - \alpha h_i X - \varphi h_i^2 X$$

Separating the equation above to symmetric and skew-symmetric parts, we obtain

$$(\nabla_{\xi_i} h_i) X = -\alpha \left[\sum_{k=1}^s \delta_i^k h_k X + h_i X \right]$$

and

$$(4.4) -K_i \varphi X - \alpha^2 \varphi X - \varphi h_i^2 X = 0.$$

Let $\{E_1, E_2, ..., E_{2n}, \xi_1, ..., \xi_s\}$ be an orthonormal basis of the tangent space at any point. Firstly, we apply inner product with φX both two sides in (4.4). Then, the sum for $1 \leq j \leq 2n$ of the relation (4.4) with $X = E_j$ yields $K_i = -(\alpha^2 + \frac{\|h_i\|^2}{2n})$.

Remark 1. The conditions " h_i is a Codazzi tensor" and " φh_i is a Codazzi tensor" are equivalent.

Proposition 13. Let M be an almost α -cosymplectic f-manifold. If the tensor field φh_i 's (or h_i 's) are Codazzi, then the following conditions hold:

- 1) If $\alpha = 0$ then the integral manifolds of D are totally geodesic.
- 2) If $\alpha = 0$ and M is normal then M is a locally decomposable Riemannian manifold which is locally the product of a Kaehler manifold M_1^{2n} and an Abelian Lie group M_2^s .
 - 3) The integral manifolds of D are totally umbilic when $\alpha \neq 0$.

222

Proof. Let the tensor field φh_i be Codazzi. Taking $X = \xi_j$, $Y \in D$, we get $(\nabla_{\xi_j} h_i)Y - (\nabla_Y h_i)\xi_j = 0$. By using (3.4), we obtain $-\varphi l_{ji}Y = \alpha^2 \varphi Y + \alpha h_j Y$. By (3.3), we have $h_i h_j Y = 0$, for any i, j, so $h_i = 0$, for any i, and the statement follows by Proposition 5.

Theorem 5. Let M be an almost α -cosymplectic f-manifold. If the tensors τ_i 's are parallel and M is normal then M is a locally decomposable Riemannian manifold which is locally the product of a Kaehler manifold M_1^{2n} and an Abelian Lie group M_2^s .

Proof. Let the tensor fields τ_i 's are the parallel tensor field. It means that $(\nabla_X \tau_i) Y = 0$, for all $i \in \{1, 2, ..., s\}$ and $X, Y \in \Gamma(TM)$. Putting $Y = \xi_j$ for any $j \in \{1, 2, ..., s\}$ and contracting the equation above with respect to X, we get $-2n\alpha^2 + \alpha \operatorname{trace}(\varphi h_j) + \alpha \operatorname{trace}(\varphi h_i) - \operatorname{trace}(h_i h_j) = 0$. If we examine the last equation for all values of i and j and j, we see that suffices $\alpha = 0$ and $h_{\varsigma} = 0$ for all $\varsigma \in \{1, 2, ..., s\}$. Hence, the proof is obvious by Theorem 1.

Proposition 14. Let M be an almost α -cosymplectic f-manifold. If the tensor fields τ_i 's are η -parallel, then

$$(\nabla_X \varphi h_i) Y = \sum_{k=1}^s \left[\eta^k(X) \left(\nabla_{\xi_k} \varphi h_i \right) Y - \eta^k(Y) \varphi h_i \nabla_X \xi_k \right.$$

$$\left. + g \left(\left(\nabla_X \varphi h_i \right) \xi_k, Y \right) \xi_k \right].$$

Proof. Suppose that τ_i is η -parallel. It satisfies equation $g((\nabla_{X^T}\tau_i)Y^T, Z^T) = 0$ for any vector fields X^T, Y^T, Z^T on D. By simple computations, we get

$$(\nabla_X \tau_i) Y = \sum_{k=1}^s \left[g\left((\nabla_X \tau_i) Y, \xi_k \right) \xi_k + \eta^k(Y) (\nabla_X \tau_i) \xi_k + \eta^k(X) (\nabla_{\xi_k} \tau_i) Y \right].$$
(4.6)

On the other hand, one can easily obtain that

$$(4.7) \quad (\nabla_X \tau_i) Y = \sum_{v=1}^s \left[-2\alpha \eta^v(Y) \nabla_X \xi_v - 2\alpha g(\nabla_X \xi_v, Y) \xi_v \right] - 2(\nabla_X \varphi h_i) Y.$$

From (4.6) and (4.7) we have the desired result.

Theorem 6. Let M be an almost α -cosymplectic f-manifold. If the tensor fields τ_i 's are η -parallel, then $R(X,Y)\xi_i = \sum_{k=1}^s \eta^k(Y)l_{ki}X - \eta^k(X)l_{ki}Y$.

Proof. Using equation (4.5), we obtain the following difference:

$$(\nabla_{Y}\varphi h_{i}) X - (\nabla_{X}\varphi h_{i}) Y = \sum_{k=1}^{s} \eta^{k}(Y) (\nabla_{\xi_{k}}\varphi h_{i}) X - \sum_{k=1}^{s} \eta^{k}(X) (\nabla_{\xi_{k}}\varphi h_{i}) Y$$

$$+ \sum_{k=1}^{s} \eta^{k}(Y) \varphi h_{i} \nabla_{X} \xi_{k} - \sum_{k=1}^{s} \eta^{k}(X) \varphi h_{i} \nabla_{Y} \xi_{k}.$$

$$(4.8)$$

Using (3.4) and (4.8), we get, $R(X,Y)\xi_i = \sum_{k=1}^s \eta^k(Y)l_{ki}X - \eta^k(X)l_{ki}Y$. Hence, the proof is completed.

Proposition 15. Let M be an almost α -cosymplectic f-manifold. If the tensor field φh_i 's are cyclically parallel, then the following conditions hold:

- 1) If $\alpha = 0$ then the integral manifolds of D are totally geodesic.
- 2) If $\alpha = 0$ and M is normal then M is a locally decomposable Riemannian manifold which is locally the product of a Kaehler manifold M_1^{2n} and an Abelian Lie group M_2^s .
 - 3) The integral manifolds of D are totally umbilic when $\alpha \neq 0$.

Proof. The hypothesis can be written

$$g((\nabla_X \varphi h_i) Y, \xi_j) + g((\nabla_Y \varphi h_i) \xi_j, X) + g((\nabla_{\xi_j} \varphi h_i) X, Y) = 0$$

for all vector fields X, Y on M. From this equation, we get the following equation $(\nabla_{\xi_j} h_i) X = 2\alpha h_i X + \varphi(h_i \circ h_j + h_j \circ h_i) X$. Making use of (3.2), we obtain $R(X, \xi_i) \xi_i = \sum_{k=1}^s \delta_i^k [\alpha^2 \varphi^2 X + \alpha \varphi h_k X] + 3\alpha \varphi h_i X - 3h_i^2 X$ Applying φ to the last equation, substituting φX for X and using (3.3), we get $h_i^2 = 0$. So, we obtain trace $(h_i^2) = 0$, for any i, and apply Proposition 5. \square

Theorem 7. Let M be an almost α -cosymplectic f-manifold. If the tensors τ_i 's are cyclically parallel, then the following conditions hold:

- 1) The integral manifolds of D are totally geodesic
- 2) If M is normal then M is a locally decomposable Riemannian manifold which is locally the product of a Kaehler manifold M_1^{2n} and an Abelian Lie group M_2^{8} .

Proof. As $\tau_i X = -2\alpha \varphi^2 X - 2\varphi h_i X$, the hypothesis can be written $g((\nabla_X \tau_i)Y, Z) + g((\nabla_Y \tau_i)Z, X) + g((\nabla_Z \tau_i)X, Y) = 0$, for arbitrary vector

fields X, Y, Z on M. Using (2.3) and replacing Z by ξ_j , we reduce the following relation:

$$(4.9) \quad \varphi\left(\nabla_{\xi_j} h_i\right) X = 2\alpha^2 \varphi^2 X + 2\alpha \varphi h_j X + 2\alpha \varphi h_i X - h_i h_j X - h_j h_i X.$$

Substitution of the (4.9) into (3.2), we get

$$(4.10) l_{ii}X - \varphi l_{ii}\varphi X = 6\alpha^2 \varphi^2 X - 4h_i h_i X - 2h_i h_i X.$$

From equality of (3.3) and (4.10), we have $2\alpha^2\varphi^2X - h_jh_iX - h_ih_jX = 0$. Hence, the proof is clear.

Example 1. Let, n=1 and s=2. We consider the 4-dimensional manifold $M=\left\{(x,y,z_1,z_2)\in\mathbb{R}^4\right\}$, where (x,y,z_1,z_2) are the standart coordinates in \mathbb{R}^4 . The vector fields $e_1=f_1(z_1,z_2)\frac{\partial}{\partial x}+f_2(z_1,z_2)\frac{\partial}{\partial y}$, $e_2=-f_2(z_1,z_2)\frac{\partial}{\partial x}+f_1(z_1,z_2)\frac{\partial}{\partial y}$, $e_3=\frac{\partial}{\partial z_1}$, $e_4=\frac{\partial}{\partial z_2}$, where f_1 and f_2 are given by

$$f_1(z_1, z_2) = c_2 e^{-\alpha(z_1 + z_2)} \cos(z_1 + z_2) - c_1 e^{-\alpha(z_1 + z_2)} \sin(z_1 + z_2),$$

$$f_2(z_1, z_2) = c_1 e^{-\alpha(z_1 + z_2)} \cos(z_1 + z_2) + c_2 e^{-\alpha(z_1 + z_2)} \sin(z_1 + z_2)$$

for constant $c_1, c_2, \alpha \in \mathbb{R}$. It is obvious that $\{e_1, e_2, e_3, e_4\}$ are linearly independent at each point of M. Let g be the Riemannian metric defined by

$$g(e_i, e_j) = \begin{cases} 1, & \text{for } i = j \\ 0 & \text{for } i \neq j \end{cases}$$

for all $i, j \in \{1, 2, 3, 4\}$ and given by the tensor product $g = \frac{1}{f_1^2 + f_2^2} (dx \otimes dx + dy \otimes dy) + dz_1 \otimes dz_1 + dz_2 \otimes dz_2$. Let η^1 and η^2 be the 1-form defined by $\eta^1(X) = g(X, e_3)$ and $\eta^2(X) = g(X, e_4)$, respectively, for any vector field X on M and φ be the (1, 1) tensor field defined by $\varphi(e_1) = e_2, \varphi(e_2) = -e_1, \varphi(e_3 = \xi_1) = 0, \ \varphi(e_4 = \xi_2) = 0$. Also, let h_i 's be the (1, 1) tensor fields defined by $h_i(e_1) = -e_1, h_i(e_2) = e_2, h_i(e_3) = 0$ and $h_i(e_4) = 0$. Then using linearity of g and φ , we have

$$\varphi^{2}X = -X + \eta^{1}(X)e_{3} + \eta^{2}(X)e_{4}$$

$$g(\varphi X, \varphi Y) = g(X, Y) - \eta^{1}(X)\eta^{1}(Y) - \eta^{2}(X)\eta^{2}(Y)$$

$$\eta^{1}(e_{3}) = 1 \text{ and } \eta^{2}(e_{4}) = 1$$

for any vector fields on M

It remains to prove that $d\Omega=2\overline{\eta}\wedge\Omega$ and Nijenhuis torsion tensor of φ is zero. It follows that $\Omega(e_1,e_2)=-1$ and otherwise $\Omega(e_i,e_j)=0$ for $i\leq j$. Therefore, the essential non-zero component of Ω is $\Omega(\frac{\partial}{\partial x},\frac{\partial}{\partial y})=-\frac{1}{f_1^2+f_2^2}=-\frac{e^{2\alpha(z_1+z_2)}}{c_1^2+c_2^2}$, and hence

(4.11)
$$\Omega = -\frac{2e^{2\alpha(z_1+z_2)}}{c_1^2 + c_2^2} dx \wedge dy.$$

Consequently, the exterior derivative $d\Omega$ is given by

(4.12)
$$d\Omega = -\frac{4\alpha e^{2\alpha(z_1 + z_2)}}{c_1^2 + c_2^2} dx \wedge dy \wedge (dz_1 + dz_2).$$

Since $\eta^1 = dz_1$ and $\eta^2 = dz_2$, by (4.11) and (4.12), we find $d\Omega = 2\alpha(\eta^1 + \eta^2) \wedge \Omega$. Let ∇ be the Levi-Civita connection with respect to the metric g. Then, we obtain $[e_1, e_3] = [e_1, e_4] = \alpha e_1 - e_2, [e_2, e_3] = [e_2, e_4] = e_1 + \alpha e_2, [e_1, e_2] = 0, [e_3, e_4] = 0$. In conclusion, it can be noted that Nijenhuis torsion tensor of φ is zero. Thus, the manifold is an α -cosymplectic f-manifold.

Acknowledgement. The authors are grateful to the referee for the valuable suggestions and comments towards the improvement of the paper.

REFERENCES

- 1. Blair, D.E. Geometry of manifolds with structural group $U(n) \times O(s)$, J. Differential Geometry, 4 (1970), 155–167.
- CHERN, S.S.; HAMILTON, R.S. On Riemannian metrics adapted to threedimensional contact manifolds, Lecture Notes in Math., 1111, Workshop Bonn 1984 (Bonn, 1984), 279–308, Springer, Berlin, 1985.
- 3. FALCITELLI, M.; PASTORE, A.M. Almost Kenmotsu f-manifolds, Balkan J. Geom. Appl., 12 (2007), 32–43.
- 4. Goldberg, S.I.; Yano, K. On normal globally framed f-manifolds, Tohoku Math. J., 22 (1970), 362–370.
- 5. Goldberg, S.I.; Yano, K. Globally framed f-manifolds, Illinois J. Math., 15 (1971), 456–474.

- 6. Yano, K.; Kon, M. Structures on Manifolds, Series in Pure Mathematics, 3, World Scientific Publishing Co., Singapore, 1984.
- 7. Yano, K. On a structure defined by a tensor field f of type (1,1) satisfing $f^3+f=0$, Tensor (N.S.), 14 (1963), 99–109.

Received: 14.X.2011 Revised: 25.I.2012 Accepted: 19.III.2012 $A fyon karahisar\ Kocatepe\ University,\\ Faculty\ of\ Art\ and\ Sciences,\\ Department\ of\ Mathematics,\\ A fyon karahisar,\\ TURKEY\\ hozturk@aku.edu.tr$

 $Uluda\c y University,$ Faculty of Art and Sciences, Department of Mathematics, Bursa, TURKEY cengiz@uludag.edu.tr

 $D\"{u}zce\ University,$ Faculty of Art and Sciences, Department of Mathematics, D\"{u}zce, TURKEY nesipaktan@gmail.com

 $Gazi\ University,$ $Faculty\ of\ Sciences,$ $Department\ of\ Mathematics,$ Ankara, TURKEY avanli@gazi.edu.tr