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1. Introduction and preliminaries

Let M a real (2n + s)-dimensional smooth manifold. M admits an f -
structure ([1], [7]) if there exists a non null smooth (1,1) tensor field ϕ, of
the tangent bundle TM , satisfying ϕ3+ϕ = 0, rankϕ = 2n. An f -structure
is a generalization of almost complex (s = 0) and almost contact (s = 1)
structure ([5], [7]). In the latter case, M is orientable ([6]). Corresponding
to two complementary projection operators P andQ applied to TM , defined
by P = −ϕ2 and Q = ϕ2 + I, where I is the identity operator, there exist
two complementary distributions D and D⊥ such that dim(D) = 2n and
dim(D⊥) = s. The following relations hold ϕP = Pϕ = ϕ, ϕQ = Qϕ =
0, ϕ2P = −P, ϕ2Q = 0. Thus, we have an almost complex distribution(
D, J = ϕ|D , J

2 = −I
)
and ϕ acts on D⊥ as a null operator. It follows that

TM = D ⊕D⊥, D ∩D⊥ = {0}. Assume that D⊥
p is spanned by s globally

defined orthonormal vectors {ξi} at each point p ∈ M , (1 ≤ i, j, ... ≤ s),
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with its dual set
{
ηi
}
. Then one obtains ϕ2=−I+

∑s
i=1 η

i⊗ξi. In the above
case, M is called a globally framed manifold (or simply an f -manifold) ([1],
[4] and [5]) and we denote its framed structure by M(ϕ, ξi). From the above
conditions one has ϕξi=0, ηi◦ϕ=0, ηi(ξj)=δji . Now, we consider a Riemanni-
an metric g on M that is compatible with an f -structure such that

g(ϕX, Y ) + g(X,ϕY ) = 0,

g(ϕX, ϕY ) = g(X,Y )−
s∑

i=1

ηi(X)ηi(Y ), g(X, ξi) = ηi(X).

In the above case, we say that M is a metric f -manifold and its associated
structure will be denoted by M(ϕ, ξi, η

i, g).
A framed structure M(ϕ, ξi) is said to be normal ([4]) if the torsion

tensor Nϕ of ϕ is zero i.e., if Nϕ = N + 2
∑s

i=1 dη
i ⊗ ξi = 0, where N

denotes the Nijenhuis tensor field of ϕ.
Define a 2-form Ω onM by Ω(X,Y ) = g(X,ϕY ), for anyX,Y ∈ Γ(TM).

The Levi-Civita connection ∇ of a metric f -manifold satisfies the following
formula ([1]):

2g ((∇Xϕ)Y, Z) = 3dΩ(X,ϕY, ϕZ)− 3dΩ(X,Y, Z)

+g (N(Y,Z), ϕX) +N2
j (Y, Z)ηj(X)

+2dηj(ϕY,X)ηj(Z)− 2dηj(ϕZ,X)ηj(Y ),

where the tensor fieldN2
j is defined byN2

j (X,Y ) = (LϕXηj)Y−(LϕY η
j)X =

2dηj(ϕX, Y )− 2dηj(ϕY,X), for each j ∈ {1, ..., s}.
Following the terminology introduced by Blair ([1]), we say that a

normal metric f -manifold is a K-manifold if its 2-form Ω closed (i.e., dΩ =
0). Since η1∧ ...∧ηs∧Ωn ̸= 0, a K-manifold is orientable. Furthermore, we
say that a K-manifold is a C-manifold if each ηi is closed, an S-manifold if
dη1 = dη2 = ... = dηs = Ω.

Note that, if s = 1, namely if M is an almost contact metric manifold,
the condition dΩ = 0 means that M is quasi-Sasakian. M is said a K-
contact manifold if dη = Ω and ξ is Killing.

Falcitelli and Pastore [3] introduced and studied a class of manifolds
which is called almost Kenmotsu f -manifold. Such manifolds admit an f -
structure with s-dimensional parallelizable kernel. A metric f.pk-manifold
of dimension (2n+ s), s ≥ 1, with f.pk-structure (ϕ, ξi, η

i, g), is said to be
a almost Kenmotsu f.pk-manifold if the 1-forms ηi’s are closed and dΩ =



3 ALMOST α-COSYMPLECTIC f -MANIFOLDS 213

2η1∧Ω. Several foliations canonically associated with an almost Kenmotsu
f.pk-manifold are studied and locally conformal almost Kenmotsu f.pk-
manifolds are characterized by Falcitelli and Pastore.

In this paper, we consider a wide subclass of f -manifolds called al-
most α-cosymplectic f -manifolds. Firstly, we give the concept of almost α-
cosymplectic f -manifold and state general curvature properties. We derive
several important formulas on almost α-cosymplectic f -manifolds. These
formulas enable us to find the geometrical properties of almost α-cosymplec-
tic f -manifolds with η-parallel tensors hi and φhi. We also examine the
tensor fields τi’s which are defined by g(τiX,Y ) = (Lξig)(X,Y ), for arbi-
trary vector fields X,Y on M . Then we give some results on η-parallelity,
cyclic parallelity, Codazzi condition. Finally, we give an explicit example of
almost α-cosymplectic f -manifold.

Throughout this paper we denote by η = η1+η2+ ...+ηs, ξ = ξ1+ ξ2+

...+ ξs and δ
j
i = δ1i + δ2i + ...+ δsi .

2. Almost α-cosymplectic f-manifolds

We introduce a notion of an almost α-cosymplectic f -manifold for any real
number α which is defined as metric f -manifold with f -structure (φ, ξi, η

i, g)
satisfying the conditions dηi = 0, dΩ = 2αη ∧ Ω. The manifold is called
generalized almost Kenmotsu f -manifold for α = 1.

Let M be an almost α-cosymplectic f -manifold. Since the distribution
D is integrable, we have Lξiη

j = 0, [ξi, ξj ] ∈ D and [X, ξj ] ∈ D for any
X ∈ Γ (D). Then the Levi-Civita connection is given by:

2g ((∇Xφ)Y, Z) = 2αg

( s∑
j=1

(
g (φX, Y ) ξj − ηj(Y )φX

)
, Z

)
+ g (N(Y, Z), φX) ,(2.1)

for any X,Y, Z ∈ Γ (TM). Putting X = ξi we obtain ∇ξiφ = 0 which
implies ∇ξiξj ∈ D⊥ and then ∇ξiξj = ∇ξjξi, since [ξi, ξj ] = 0.

We put AiX = −∇Xξi and hi = 1
2 (Lξiφ), where L denotes the Lie

derivative operator.

Proposition 1. For any i ∈ {1, ..., s} the tensor field Ai is a symmetric
operator such that

1) Ai(ξj) = 0, for any j ∈ {1, ..., s}
2) Ai ◦ φ+ φ ◦Ai = −2αφ.
3) tr(Ai) = −2αn
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Proof. dηi = 0 implies that Ai is symmetric.
1) For any i, j, k ∈ {1, ..., s} deriving g(ξi, ξj) = δji with respect to ξk,

using ∇ξiξj = ∇ξjξi, we get 2g(ξk, Ai (ξj)) = 0. Since ∇ξiξj ∈ D⊥, we
conclude Ai (ξj) = 0.

2) For any Z ∈ Γ (TM), we have φ (N (ξi, Z)) = (Lξiφ)Z and, on the
other hand, since ∇ξiφ = 0,

(2.2) Lξiφ = Ai ◦ φ− φ ◦Ai

One can easily obtain from (2.2)

(2.3) −AiX = −αφ2X − φhiX

Applying (2.1) with Y = ξi, we have 2g (φAiX,Z) = −2αg (φX,Z) −
g (φN(ξi, Z), X) , which implies the desired result.

3) Considering local adapted orthonormal frame {X1, ..., Xn, φX1, ...,
φXn, ξ1, ..., ξs}, by 1) and 2), one has

trAi =

n∑
j=1

g (AiXj , Xj)+g (AiφXj , φXj) = −2α

n∑
j=1

g (φXj , φXj) = −2αn.

�

Proposition 2 ([1]). For any i ∈ {1, ..., s} the tensor field hi is a
symmetric operator and satisfies

1) hiξj = 0, for any j ∈ {1, ..., s}
2) hi ◦ φ+ φ ◦ hi = 0
3) trhi = 0
4) trφhi = 0

Proposition 3. ∇φ satisfies the following relation:

(∇Xφ)Y + (∇φXφ)φY =

s∑
i=1

[−α(ηi(Y )φX + 2g(X,φY )ξi)− ηi(Y )hiX].

Proof. By direct computations, we get φN(X,Y ) + N(φX, Y ) =
2
∑s

i=1 η
i(X)hiY, and ηi (N(φX, Y )) = 0. From (2.1) and the equations

above, the proof is completed. �

Proposition 4. Let M be an almost α-cosymplectic f -manifold. The
integral manifolds of D are almost Kaehler manifolds with mean curvature
vector field H = −αξ.
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Proof. Let M̃ be an integral manifold of D. We know that (D,J = φ|D ,
J2 = −I) is an almost complex distribution and the induced metric g̃

on M̃ is a Hermitian metric. Therefore, for any X,Y ∈ Γ(M̃), we have

the induced 2-form on M̃ such that Ω̃(X,Y ) = g̃(X,JY ) = g(X,φY ) =

Ω(X,Y ) and dΩ̃ = 0 on M̃ . In this manner, M̃ is an almost Keahler
manifold. Computing the second fundamental form B, since, Ai’s are the
Weingarten operators in the directions ξi, we get,

(2.4) B(X,Y ) =
s∑

i=1

g(AiX,Y )ξi =
s∑

i=1

[−αg(X,Y )ξi + g(φhiX,Y )ξi] .

Using the Proposition 2 and (2.3). Now, we choose a local orthonormal

frame {e1, e2, ..., e2n} such that el+n = φel, for l = 1, 2, ..., n, in TM̃ . Taking
X = Y = ep in (2.4) and summing over p = 1, 2, ..., 2n, we get H =
1
2n

∑s
i=1(trAi)ξi = −αξ. �

Proposition 5. Let M be an almost α-cosymplectic f-manifold and M̃
be an integral manifold of D. Then

1) when α = 0, M̃ is totally geodesic if and only if all the operators hi
vanish;

2) when α ̸= 0, M̃ is totally umbilic if and only if all the operators hi
vanish.

Proof. The proof is obvious through (2.4). �

Proposition 6. Under the same situation as in Proposition 5, M is α-
cosymplectic f-manifold with structure f-structure (φ, ξi, η

i, g) if and only
if the integral manifolds of D are tangentially Kaehler and all the operators
hi vanish.

Proof. If the structure is normal, for any X ∈ Γ (TM), one obtains
that

0 = N(X, ξj) = Nφ(X, ξj) + 2
s∑

i=1

dηi(X, ξj)ξi

= −φ [φX, ξj ] + φ2 [X, ξj ] + 2

s∑
i=1

dηi(X, ξj)ξi = 2φhjX.(2.5)
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Hence, all the operators hi vanish. On the other hand, for eachX,Y ∈ Γ (D)
we have

(2.6) Nφ(X,Y )=[φX,φY ]−φ[φX, Y ]−φ[X,φY ]−[X,Y ]=NJ=φ|D
(X,Y ).

It is obvious that NJ = 0 if and only if almost complex structure J is
integrable. Therefore, the proof is completed by (2.5) and (2.6). �

Theorem 1 ([1]). A C-manifold M2n+s is a locally decomposable Rie-
mannian manifold which is locally the product of a Kaehler manifold M2n

1

and an Abelian Lie group M s
2 .

3. Curvature properties

Proposition 7. Let M be an almost α-cosymplectic f -manifold. Then
we have

R(X,Y )ξi = α2
s∑

k=1

[
ηk(Y )φ2X − ηk(X)φ2Y

]
− α

s∑
k=1

[
ηk(X)φhkY − ηk(Y )φhkX

]
+ (∇Y φhi)X − (∇Xφhi)Y.(3.1)

Proof. Using the Riemannian curvature tensor and (2.3), we obtain
(3.1). �

Using (2.3) and (3.1), by simple computations, we have the following
proposition.

Proposition 8. For an almost α-cosymplectic f-manifold with the f-
structure (φ, ξi, η

i, g), the following relations hold

R(X, ξj)ξi =

s∑
k=1

δkj
[
α2φ2X + αφhkX

]
+ αφhiX − hihjX + φ

(
∇ξjhi

)
X(3.2)

(3.3) R(ξj , X)ξi − φR(ξj , φX)ξi = 2
[
−α2φ2X + hihjX

]
,

(
∇ξjhi

)
X = −φR(X, ξj)ξi +

s∑
k=1

δkj
[
−α2φX − αhkX

]
− αhiX − φhihjX,(3.4)
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(3.5) S(X, ξi) = −2nα2
s∑

k=1

ηk(X)− (divφhi)X,

(3.6) S(ξi, ξj) = −2nα2 − tr (hjhi) ,

Corollary 1. Let M be an almost α-cosymplectic f-manifold. The Ricci
tensor satisfies the following conditions:

1) S(ξi, ξi) always takes negative value when α ̸= 0,

2) If all the values S(ξi, ξi) vanish then any leaf of D is totally geodesic.

3) If all the values S(ξi, ξi) vanish and M is normal then M is locally
the product of a Kaehler manifold M2n

1 and an Abelian Lie group M s
2 .

Proof. The proof is clear through (3.6). �
The tensor τ was introduced byChern andHamilton [2] and is defined

by g(τX, Y ) = (Lξg) (X,Y ) for arbitrary vector fields X,Y on a contact
metric manifold. Now, we define and examine this tensor field for an almost
α-cosymplectic f -manifold

Proposition 9. An almost α-cosymplectic f-manifold with f -structure
(φ, ξi, η

i, g) has tensor fields τi such that τiX = 2∇Xξi, where τi’s are de-
fined by g(τiX,Y ) = (Lξig) (X,Y ) for arbitrary vector fields X,Y on M .

Proof. Using the definition of the tensor fields τi, we get

(Lξig) (X,Y ) = g (∇Xξi, Y ) + g (X,∇Y ξi)

= 2g
(
−αφ2X − φhiX,Y

)
for arbitrary vector fields X,Y on M . Applying the formula (2.3), the proof
is completed. �

Proposition 10. Let M be a locally symmetric almost α-cosymplectic
f -manifold. Then, ∇ξγhi = 0, for any γ ∈ {1, .., s}.

Proof. Notice that (3.3) can be written as
1

2
(R(ξj , .)ξi − φR(ξj , φ.)ξi) =

−α2φ2+hihj and since the operator R(ξj , ·)ξi is parallel with respect to ξk,
we get ∇ξkhihj = 0. Applying ∇ξγ to (3.4), we obtain ∇ξγ

(
∇ξjhi

)
=

−α∇ξγhi − α∇ξγhj . Moreover, ∇ξkhihj = 0 implies that (∇ξkhi)hj +
hi (∇ξkhj) = 0, and applying ∇ξγ to this equation, we get ∇ξγhi = 0. �
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Theorem 2. Let M be a locally symmetric generalized almost Kenmotsu
f -manifold. Then the following conditions are equivalent:

1) M is a generalized α-Kenmotsu f-manifold;

2) all the operators hi vanish.

Moreover, if any of the conditions above holds, then M cannot have constant
sectional curvature.

Proof. Assuming that M is a generalized α-Kenmotsu f -manifold,
we have ∇ξi = −αφ2 and, by (2.3) , all the operators hi vanish. Now,
supposing all the operators hi vanish, it follows that ∇ξi = −αφ2 and
∇ηi = α

(
g −

∑s
k=1 η

k ⊗ ηk
)
and by (3.1), R(X,Y )ξi = α2

∑s
k=1[η

k(Y )φ2X
−ηk(X)φ2Y ]. So, M is a generalized α-Kenmotsu f -manifold. Moreover,
The sectional curvature of any 2-plane spaned by {Y, ξi} is K(Y, ξi) =
−α2 ∥φY ∥2 ,for all vector fields Y on M . So, the sectional curvature of
any 2-plane spaned by {ξi, ξj}, for any i, j ∈ {1, 2, ..., s}, vanishes and one
gets that the sectional curvature of any plane spaned by Y ∈ D and ξi is
equal to −α2. �

4. Some tensor conditions

For any vector field X on M , we can take X = XT +
∑s

i=1 η
i(X)ξi where

XT is the tangential part of X and
∑s

i=1 η
i(X)ξi is the normal part of

X. We can rewrite η-parallel condition for a given almost α-cosymplectic
f -manifold. We say that any (1, 1)- type tensor field B is η-parallel if and
only if g((∇XTB)Y T , ZT ) = 0, for XT , Y T , ZT ∈ D.

The starting point of the investigation of almost α-cosymplectic f -
manifolds with η-parallel tensors hi and φhi is the following propositions:

Proposition 11. Let M be an almost α-cosymplectic f-manifold and
hi’s are (1, 1)-type tensor fields. If the tensor fields hi’s are η-parallel, then

(∇Xhi)Y = −
s∑

k=1

ηk(X)

[
φlkiY +

s∑
γ=1

δγk [α
2φY + αhγY ] + φhihkY + αhiY

]

−
s∑

k=1

ηk(Y )[αhiX + φhihkX]−
s∑

k=1

g(αhiX + φhihkX,Y )ξk,(4.1)

for all vector fields X,Y on M, where the tensor lki = R(., ξk)ξi is the
Jacobi operator with respect to the characteristic vector fields and hi’s are
(1, 1)-type tensor fields.
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Proof. Suppose that each hi is η-parallel. Denoting the component of
X orthogonal to ξ by XT , we obtain

0 = g((∇XT hi)Y
T , ZT )

= g(
(
∇X−

∑s
k=1 η

k(X)ξk
hi

)
(Y −

s∑
k=1

ηk(Y )ξk), Z −
s∑

k=1

ηk(Z)ξk)

= g((∇Xhi)Y, Z)−
s∑

k=1

ηk(X)g((∇ξkhi)Y, Z)−
s∑

k=1

ηk(Y )g((∇Xhi) ξk, Z)

−
s∑

k=1

ηk(Z)g((∇Xhi)Y, ξk) = g((∇Xhi)Y,−φ2Z)

−
s∑

k=1

ηk(X)g((∇ξkhi)Y, Z)−
s∑

k=1

ηk(Y )g((∇Xhi) ξk, Z),

for all vector fields X,Y , Z on M. Using (2.3) and (3.4), the proof is com-
pleted. �

Proposition 12. Let M be an almost α-cosymplectic f -manifold. If
the tensor fields φhi’s are η-parallel, then

(∇Xφhi)Y =

s∑
k=1

ηk(X)

[
lkiY −

s∑
γ=1

δγk [α
2φ2Y + αφhγY ] + hihkY − αφhiY

]

−
s∑

k=1

ηk(Y )[αφhiX − hihkX]−
s∑

k=1

g(αφhiX − hihkX,Y )ξk.(4.2)

Proof. We consider that φhi is η-parallel. Thus,

0 = g((∇XTφhi)Y
T , ZT )

= g(
(
∇X−

∑s
k=1 η

k(X)ξk
φhi

)
(Y −

s∑
k=1

ηk(Y )ξk), Z −
s∑

k=1

ηk(Z)ξk)

= g((∇Xφhi)Y, Z)−
s∑

k=1

ηk(X)g((∇ξkφhi)Y, Z)

−
s∑

k=1

ηk(Y )g((∇Xφhi) ξk, Z)−
s∑

k=1

ηk(Z)g((∇Xφhi)Y, ξk)
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for all vector fields X,Y on M. If we simplify the equation above, then

g((∇Xφhi)Y, Z) =

s∑
k=1

ηk(X)g((∇ξkφhi)Y, Z) +

s∑
k=1

ηk(Y )g((∇Xφhi) ξk, Z)

+

s∑
k=1

ηk(Z)g ((∇Xφhi)Y, ξk) .

Using (2.3) and (∇ξkφhi)Y = φ(∇ξkhi)Y , the proof is completed. �

Theorem 3. An almost α-cosymplectic f -manifold with the η-parallel
tensor fields φhi’s satisfy the following relation:

(4.3) R(X,Y )ξi =
s∑

k=1

ηk(Y )lkiX − ηk(X)lkiY,

where lki = R(., ξk)ξi is the Jacobi operator with respect to the characteristic
vector fields ξk and ξi.

Proof. Using (3.1) and (4.2), we get

R(X,Y )ξi = α2
s∑

k=1

[
ηk(Y )φ2X − ηk(X)φ2Y

]
− α

s∑
k=1

[
ηk(X)φhkY − ηk(Y )φhkX

]
+

s∑
k=1

ηk(Y )

[
lkiX −

s∑
γ=1

δγk
[
α2φ2X + αφhγX

]
+ hihkX − αφhiX

]

−
s∑

k=1

ηk(X) [αφhiY − hihkY ]−
s∑

k=1

g(αφhiY − hihkY,X)ξk

−
s∑

k=1

ηk(X)

[
lkiY −

s∑
γ=1

δγk
[
α2φ2Y + αφhγY

]
+ hihkY − αφhiY

]

+
s∑

k=1

ηk(Y ) [αφhiX − hihkX] +
s∑

k=1

g(αφhiX − hihkX,Y )ξk.

Then, we can easily write (4.3) by simplifying the equation above. �
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Theorem 4. An almost α-cosymplectic f -manifold has negative point-
wise constant ξi-sectional curvature.

Proof. Let M be an almost α-cosymplectic f -manifold with a pointwise
constant ξi-sectional curvatureK(p), p∈M. It means thatg(R(XT , ξi)ξi, X

T )
= Ki(p)g(X

T , XT ) for all tangent vectors XT orthogonal to ξi at the point
p ∈ M,i.e, XT ∈ D. Putting XT = X −

∑s
k=1 η

k(X)ξk and using the sym-
metries of curvature tensor R, we see that the equation above is equivalent
toφliiX = KiφX, for any vector field X, where Ki is a smooth function in
M. From the equation (3.4), we get

(∇ξihi)X = −KiφX +

s∑
k=1

δki
[
−α2φX − αhkX

]
− αhiX − φh2iX

Seperating the equation above to symmetric and skew-symmetric parts, we
obtain

(∇ξihi)X = −α

[
s∑

k=1

δki hkX + hiX

]
and

(4.4) −KiφX − α2φX − φh2iX = 0.

Let {E1, E2, ..., E2n, ξ1, ..., ξs} be an orthonormal basis of the tangent space
at any point. Firstly, we apply inner product with φX both two sides in
(4.4). Then, the sum for 1 ≤ j ≤ 2n of the relation (4.4) with X = Ej

yields Ki = −(α2 + ∥hi∥2
2n ). �

Remark 1. The conditions ”hi is a Codazzi tensor ” and ”φhi is a
Codazzi tensor” are equivalent.

Proposition 13. Let M be an almost α-cosymplectic f-manifold. If the
tensor field φhi’s (or hi’s) are Codazzi, then the following conditions hold:

1) If α = 0 then the integral manifolds of D are totally geodesic.

2) If α = 0 and M is normal then M is a locally decomposable Riemanni-
an manifold which is locally the product of a Kaehler manifold M2n

1 and an
Abelian Lie group M s

2 .

3) The integral manifolds of D are totally umbilic when α ̸= 0.
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Proof. Let the tensor field φhi be Codazzi. Taking X = ξj , Y ∈ D,
we get (∇ξjhi)Y − (∇Y hi)ξj = 0. By using (3.4), we obtain −φljiY =
α2φY + αhjY. By (3.3), we have hihjY = 0, for any i, j, so hi = 0, for any
i, and the statement follows by Proposition 5. �

Theorem 5. Let M be an almost α-cosymplectic f -manifold. If the
tensors τi’s are parallel and M is normal then M is a locally decomposable
Riemannian manifold which is locally the product of a Kaehler manifold
M2n

1 and an Abelian Lie group M s
2 .

Proof. Let the tensor fields τi’s are the parallel tensor field. It means
that (∇Xτi)Y = 0, for all i ∈ {1, 2, ..., s} and X,Y ∈ Γ(TM). Putting
Y = ξj for any j ∈ {1, 2, ..., s} and contracting the equation above with
respect to X, we get −2nα2+α trace (φhj)+α trace (φhi)−trace (hihj) = 0.
If we examine the last equation for all values of i and j and , we see that
suffices α = 0 and hς = 0 for all ς ∈ {1, 2, ..., s}. Hence, the proof is obvious
by Theorem 1. �

Proposition 14. Let M be an almost α-cosymplectic f -manifold. If
the tensor fields τi’s are η-parallel, then

(∇Xφhi)Y =

s∑
k=1

[
ηk(X) (∇ξkφhi)Y − ηk(Y )φhi∇Xξk

+g ((∇Xφhi) ξk, Y ) ξk] .(4.5)

Proof. Suppose that τi is η-parallel. It satisfies equation g((∇XT τi)Y
T ,

ZT ) = 0 for any vector fields XT , Y T , ZT on D. By simple computations,
we get

(∇Xτi)Y =

s∑
k=1

[g ((∇Xτi)Y, ξk) ξk

+ηk(Y ) (∇Xτi) ξk + ηk(X) (∇ξkτi)Y
]
.(4.6)

On the other hand, one can easily obtain that

(4.7) (∇Xτi)Y=

s∑
υ=1

[−2αηυ(Y )∇Xξυ − 2αg(∇Xξv, Y )ξv]− 2(∇Xφhi)Y.

From (4.6) and (4.7) we have the desired result. �
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Theorem 6. Let M be an almost α-cosymplectic f -manifold. If the ten-
sor fields τi’s are η-parallel, then R(X,Y )ξi =

∑s
k=1 η

k(Y )lkiX−ηk(X)lkiY.

Proof. Using equation (4.5), we obtain the following difference:

(∇Y φhi)X − (∇Xφhi)Y =

s∑
k=1

ηk(Y ) (∇ξkφhi)X −
s∑

k=1

ηk(X) (∇ξkφhi)Y

+

s∑
k=1

ηk(Y )φhi∇Xξk −
s∑

k=1

ηk(X)φhi∇Y ξk.(4.8)

Using (3.4) and (4.8), we get, R(X,Y )ξi =
∑s

k=1 η
k(Y )lkiX − ηk(X)lkiY.

Hence, the proof is completed. �

Proposition 15. Let M be an almost α-cosymplectic f-manifold. If the
tensor field φhi’s are cyclically parallel, then the following conditions hold:

1) If α = 0 then the integral manifolds of D are totally geodesic.
2) If α = 0 and M is normal then M is a locally decomposable Riemanni-

an manifold which is locally the product of a Kaehler manifold M2n
1 and an

Abelian Lie group M s
2 .

3) The integral manifolds of D are totally umbilic when α ̸= 0.

Proof. The hypothesis can be written

g((∇Xφhi)Y, ξj) + g((∇Y φhi) ξj , X) + g(
(
∇ξjφhi

)
X,Y ) = 0

for all vector fields X,Y on M. From this equation, we get the following
equation

(
∇ξjhi

)
X = 2αhiX+φ(hi◦hj+hj ◦hi)X. Making use of (3.2), we

obtain R(X, ξi)ξi =
∑s

k=1 δ
k
i [α

2φ2X+αφhkX]+3αφhiX−3h2iX Applying
φ to the last equation , substituting φX for X and using (3.3), we get
h2i = 0. So, we obtain trace(h2i ) = 0, for any i, and apply Proposition 5. �

Theorem 7. Let M be an almost α-cosymplectic f -manifold. If the
tensors τi’s are cyclically parallel , then the following conditions hold:

1) The integral manifolds of D are totally geodesic
2) If M is normal then M is a locally decomposable Riemannian mani-

fold which is locally the product of a Kaehler manifold M2n
1 and an Abelian

Lie group M s
2 .

Proof. As τiX = −2αφ2X − 2φhiX, the hypothesis can be written
g((∇Xτi)Y, Z) + g((∇Y τi)Z,X) + g((∇Zτi)X,Y ) = 0, for arbitrary vector
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fields X,Y, Z on M. Using (2.3) and replacing Z by ξj , we reduce the
following relation:

(4.9) φ
(
∇ξjhi

)
X = 2α2φ2X + 2αφhjX + 2αφhiX − hihjX − hjhiX.

Substitution of the (4.9) into (3.2), we get

(4.10) ljiX − φljiφX = 6α2φ2X − 4hihjX − 2hjhiX.

From equality of (3.3) and (4.10), we have 2α2φ2X − hjhiX − hihjX = 0.
Hence, the proof is clear. �

Example 1. Let, n = 1 and s = 2. We consider the 4-dimensional
manifold M =

{
(x, y, z1, z2) ∈ R4

}
, where (x, y, z1, z2) are the standart

coordinates in R4. The vector fieldse1 = f1(z1, z2)
∂
∂x + f2(z1, z2)

∂
∂y , e2 =

−f2(z1, z2)
∂
∂x + f1(z1, z2)

∂
∂y , e3 = ∂

∂z1
, e4 = ∂

∂z2
, where f1 and f2 are given

by

f1(z1, z2) = c2e
−α(z1+z2) cos(z1 + z2)− c1e

−α(z1+z2) sin(z1 + z2),

f2(z1, z2) = c1e
−α(z1+z2) cos(z1 + z2) + c2e

−α(z1+z2) sin(z1 + z2)

for constant c1, c2, α ∈ R. It is obvious that {e1, e2, e3, e4} are linearly in-
dependent at each point of M . Let g be the Riemannian metric defined
by

g(ei, ej) =

{
1, for i = j

0 for i ̸= j

for all i, j ∈ {1, 2, 3, 4}and given by the tensor product g = 1
f2
1+f2

2
(dx⊗dx+

dy ⊗ dy) + dz1 ⊗ dz1 + dz2 ⊗ dz2. Let η1 and η2 be the 1-form defined by
η1(X) = g(X, e3) and η2(X) = g(X, e4), respectively, for any vector field
X on M and φ be the (1, 1) tensor field defined by φ(e1) = e2, φ(e2) =
−e1,φ(e3 = ξ1) = 0, φ(e4 = ξ2) = 0. Also, let hi’s be the (1, 1) tensor fields
defined by hi(e1) = −e1, hi(e2) = e2, hi(e3) = 0 and hi(e4) = 0. Then using
linearity of g and φ, we have

φ2X = −X + η1(X)e3 + η2(X)e4

g(φX,φY ) = g(X,Y )− η1(X)η1(Y )− η2(X)η2(Y )

η1(e3) = 1 and η2(e4) = 1
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for any vector fields on M

It remains to prove that dΩ = 2η ∧Ω and Nijenhuis torsion tensor of φ
is zero. It follows that Ω(e1, e2) = −1 and otherwise Ω(ei, ej) = 0 for i ≤ j.
Therefore, the essential non-zero component of Ω is Ω( ∂

∂x ,
∂
∂y ) = − 1

f2
1+f2

2
=

− e2α(z1+z2)

c21+c22
, and hence

(4.11) Ω = −2e2α(z1+z2)

c21 + c22
dx ∧ dy.

Consequently, the exterior derivative dΩ is given by

(4.12) dΩ = −4αe2α(z1+z2)

c21 + c22
dx ∧ dy ∧ (dz1 + dz2).

Since η1 = dz1 and η2 = dz2, by (4.11) and (4.12), we find dΩ = 2α(η1 +
η2) ∧ Ω. Let ∇ be the Levi-Civita connection with respect to the metric g.
Then, we obtain [e1, e3] = [e1, e4] = αe1 − e2, [e2, e3] = [e2, e4] = e1 + αe2,
[e1, e2] = 0, [e3, e4] = 0. In conclusion, it can be noted that Nijenhuis torsion
tensor of φ is zero. Thus, the manifold is an α-cosymplectic f -manifold.
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Uludağ University,

Faculty of Art and Sciences,

Department of Mathematics,

Bursa,

TURKEY

cengiz@uludag.edu.tr
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