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1. Introduction and preliminaries

Let M a real (2n + s)-dimensional smooth manifold. M admits an f-
structure ([1], [7]) if there exists a non null smooth (1,1) tensor field ¢, of
the tangent bundle T M, satisfying ¢+ ¢ = 0, rank ¢ = 2n. An f-structure
is a generalization of almost complex (s = 0) and almost contact (s = 1)
structure ([5], [7]). In the latter case, M is orientable ([6]). Corresponding
to two complementary projection operators P and @ applied to T'M, defined
by P = —¢? and Q = ¢? + I, where I is the identity operator, there exist
two complementary distributions D and D such that dim(D) = 2n and
dim(D+) = s. The following relations hold ¢P = P¢ = ¢, ¢Q = Q¢ =
0, P = —P, $*°Q = 0. Thus, we have an almost complex distribution
(D, J =9, J? = —I) and ¢ acts on DT as a null operator. It follows that
TM = D @ D+, DN D+ = {0}. Assume that Dé is spanned by s globally
defined orthonormal vectors {&;} at each point p € M, (1 < i,7,... < s),
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with its dual set {7]2} Then one obtains ¢?=—1+ Y7 | n'®¢;. In the above
case, M is called a globally framed manifold (or simply an f-manifold) ([1],
[4] and [5]) and we denote its framed structure by M (¢, ;). From the above
conditions one has ¢&;=0, no¢=0, " (£;)=4!. Now, we consider a Riemanni-
an metric g on M that is compatible with an f-structure such that

g(¢X7 Y) + g(X7 d)Y) = 07
9(¢X,0Y) = g(X,Y) = > ' (X' (Y), g(X,&) =n'(X).
=1

In the above case, we say that M is a metric f-manifold and its associated
structure will be denoted by M (¢,&;, ¢, g).

A framed structure M(¢,&;) is said to be normal ([4]) if the torsion
tensor Ny of ¢ is zero ie., if Ny = N +2>7 dn' ® & = 0, where N
denotes the Nijenhuis tensor field of ¢.

Define a 2-form Q on M by Q(X,Y) = g(X, ¢Y), forany X, Y € I'(T'M).
The Levi-Civita connection V of a metric f-manifold satisfies the following
formula ([1]):

20 (Vxd)Y,Z) = 3dUX,eY,¢Z) — 3dUX,Y, Z)
+9(N(Y,2),$X) + N; (Y, Z)’ (X)
+2diy (¢Y, X )’ (Z) — 2dn)’ (.2, X1’ ('),

where the tensor field Nj2 is defined by Nj2 (X,Y) = (Lox )Y —(Loyn’) X =
2dn? (¢ X,Y) — 2dn? (¢Y, X), for each j € {1,..., s}.

Following the terminology introduced by BLAIR ([1]), we say that a
normal metric f-manifold is a K-manifold if its 2-form 2 closed (i.e., dQ2 =
0). Since n* A...An* AQ™ # 0, a K-manifold is orientable. Furthermore, we
say that a K-manifold is a C-manifold if each 1’ is closed, an S-manifold if
dnt =dn? = ... =dn® = Q.

Note that, if s = 1, namely if M is an almost contact metric manifold,
the condition d€2 = 0 means that M is quasi-Sasakian. M is said a K-
contact manifold if dn = 2 and ¢ is Killing.

FALCITELLI and PASTORE [3] introduced and studied a class of manifolds
which is called almost Kenmotsu f-manifold. Such manifolds admit an f-
structure with s-dimensional parallelizable kernel. A metric f.pk-manifold
of dimension (2n + s), s > 1, with f.pk-structure (¢,&;, 7', g), is said to be
a almost Kenmotsu f.pk-manifold if the 1-forms n'’s are closed and d) =
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2n' A€). Several foliations canonically associated with an almost Kenmotsu
f.pk-manifold are studied and locally conformal almost Kenmotsu f.pk-
manifolds are characterized by Falcitelli and Pastore.

In this paper, we consider a wide subclass of f-manifolds called al-
most a-cosymplectic f-manifolds. Firstly, we give the concept of almost a-
cosymplectic f-manifold and state general curvature properties. We derive
several important formulas on almost a-cosymplectic f-manifolds. These
formulas enable us to find the geometrical properties of almost a-cosymplec-
tic f-manifolds with n-parallel tensors h; and ph;. We also examine the
tensor fields 7;’s which are defined by g(7; X,Y) = (L¢,9)(X,Y), for arbi-
trary vector fields X,Y on M. Then we give some results on n-parallelity,
cyclic parallelity, Codazzi condition. Finally, we give an explicit example of
almost a-cosymplectic f-manifold.

Throughout this paper we denote by 77 = N4t E =2+
o+ € and §) =6} + 67+ ... + 5.

2. Almost a-cosymplectic f-manifolds
We introduce a notion of an almost a-cosymplectic f-manifold for any real

number o which is defined as metric f-manifold with f-structure (¢, &, 1%, g)
satisfying the conditions dn’ = 0, dQ = 2o A Q. The manifold is called
generalized almost Kenmotsu f-manifold for a = 1.

Let M be an almost a-cosymplectic f-manifold. Since the distribution
D is integrable, we have Lgn/ = 0, [§,¢;] € D and [X,¢;] € D for any
X €T (D). Then the Levi-Civita connection is given by:

29 (Vx9)Y,Z) = 2ag(2 (9 (X, Y)& =0’ (YV)pX) ,Z)

j=1
(2.1) +9(N(Y,2),0X),
for any X,Y,Z € I'(T'M). Putting X = & we obtain V¢, = 0 which
implies V¢,§; € D+ and then Ve, &5 = Ve, &, since [€;,&5] = 0.
We put A4, X = —Vx¢& and h; = %(Lgigp), where L denotes the Lie
derivative operator.

Proposition 1. For anyi € {1, ..., s} the tensor field A; is a symmetric
operator such that
1) Ai(&) =0, foranyje{l,..,s}
2) Ajop+pod; =—2wp.
3) t’l”(Ai) = —2an
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Proof. dn' = 0 implies that A; is symmetric. '

1) For any i,j,k € {1,...,s} deriving g(&;,&;) = 6] with respect to &,
using V¢, &5 = Ve, &, we get 29(&g, Ai (§5)) = 0. Since V¢,§; € D+, we
conclude A4; (§;) = 0.

2) For any Z € I'(T'M), we have ¢ (N (&,72)) = (L¢, ) Z and, on the
other hand, since V¢, = 0,

(2.2) Le,p=Ajop—poA;
One can easily obtain from (2.2)
(2.3) —AiX = —ap?X — ph; X

Applying (2.1) with Y = &, we have 2g (pA;X,Z) = —2ag(pX,Z) —
g (pN(&,Z), X), which implies the desired result.

3) Considering local adapted orthonormal frame {X;, ..., X, p X1, ..
©Xn, &1, .., &}, by 1) and 2), one has

)

n
tra; = Zg (AiXj, X;)+g (AipXj, 0X;) = =20 ) g (9X;, 0X;) = —2am.
j=1

]

Proposition 2 ([1]). For any i € {1,...,s} the tensor field h; is a
symmetric operator and satisfies
1) hi& =0, forany j € {1,...,s}
2) hiop+@oh;=0
3) tT‘hi =0
4) troh; =0

Proposition 3. Vo satisfies the following relation:
(VxQ)Y + (Vox@)pV =Y _[—a(n’ (V)X +29(X,Y)&) — ' (V)hX].
i=1
Proof. By direct computations, we get o N(X,Y) + N(pX,Y) =
230 n"(X)h;Y, and 7' (N(¢X,Y)) = 0. From (2.1) and the equations
above, the proof is completed. O

Proposition 4. Let M be an almost a-cosymplectic f-manifold. The
integral manifolds of D are almost Kaehler manifolds with mean curvature
vector field H = —aé.
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Proof. Let M be an integral manifold of D. We know that (D, J = ¢,
J? = —I) is an almost complex distribution and the induced metric g
on M is a Hermitian metric. Therefore, for any X,Y € F(]Tj ), we have
the induced 2-form on M such that QX,Y) = §(X,JY) = g(X,pY) =
Q(X,Y) and dQ = 0 on M. In this manner, M is an almost Keahler
manifold. Computing the second fundamental form B, since, A;’s are the

Weingarten operators in the directions &;, we get,

s

(24) BX,)Y)=) gAX. V)&= [~ag(X, V)& + g(phX,Y)&].
=1 i=1

Using the Proposition 2 and (2.3). Now, we choose a local orthonormal
frame {eq, €9, ..., €2, } such that e;,, = ey, for i =1,2,...,n, in TM. Taking
X =Y = ¢, in (2.4) and summing over p = 1,2,...,2n, we get H =
1 le(tTAi)fi = —ag. O

2n
Proposition 5. Let M be an almost a-cosymplectic f-manifold and M

be an integral manifold of D. Then

1) when a = 0, M is totally geodesic if and only if all the operators h;
vanish;

2) when a # 0, M is totally umbilic if and only if all the operators h;
vanish.

Proof. The proof is obvious through (2.4). O

Proposition 6. Under the same situation as in Proposition 5, M is -
cosymplectic f-manifold with structure f-structure (p,&;,n', g) if and only
if the integral manifolds of D are tangentially Kaehler and all the operators
h; vanish.

Proof. If the structure is normal, for any X € I'(T'M), one obtains
that

0=N(X,&) = Np(X,&) +2) _dn'(X,&)¢
=1

(2.5) = —o[pX, G+ PP (X, &1+ 2 dyi(X,&)& = 20h; X.
=1
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Hence, all the operators h; vanish. On the other hand, for each X, Y € I' (D)
we have

(2'6) NLP(X7 Y):[QOX’ SOY]_SD[QO)Q Y]_QO[X7 QOY]—[X, Y]:NJ=‘P|D (X7 Y)

It is obvious that Ny = 0 if and only if almost complex structure J is
integrable. Therefore, the proof is completed by (2.5) and (2.6). O

Theorem 1 ([1]). A C-manifold M*"** is a locally decomposable Rie-
mannian manifold which is locally the product of a Kaehler manifold M"
and an Abelian Lie group Ms.

3. Curvature properties

Proposition 7. Let M be an almost a-cosymplectic f-manifold. Then
we have

R(X, V)& = a® 3 [ (V)92 X — " (X)¢?Y |
k=1

(31 —ad [PFX)ehY — 1" (V)eheX | + (Vyehs) X = (Vxph) Y.
k=1

Proof. Using the Riemannian curvature tensor and (2.3), we obtain
(3.1). O

Using (2.3) and (3.1), by simple computations, we have the following
proposition.

Proposition 8. For an almost a-cosymplectic f-manifold with the f-
structure (@, &, 7', g), the following relations hold

R(X,&)6 =) 0} [0*0* X + aphy X]

k=1
(3.2) + aphi X — hih; X + ¢ (Ve hi) X
(3.3) R(&, X)& — oR(&,9X)& = 2 [—a0* X + hih; X ],

(Ve,hi) X = —pR(X, )6+ Y 0% [~a?pX — ahy.X]
k=1
(34) - Olth — gOhith,
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(3.5) S(X,&) = —2na® > 1P (X) — (diveh) X,
k=1
(3.6) S(fl, fj) = —2na2 —tr (hjhl) s

Corollary 1. Let M be an almost a-cosymplectic f-manifold. The Ricci
tensor satisfies the following conditions:

1) S(&,&) always takes negative value when o # 0,

2) If all the values S(&;, &) vanish then any leaf of D is totally geodesic.

3) If all the values S(&;,&;) vanish and M is normal then M is locally
the product of a Kaehler manifold M?™ and an Abelian Lie group M;.

Proof. The proof is clear through (3.6). O

The tensor 7 was introduced by CHERN and HAMILTON [2] and is defined
by g(1X,Y) = (Leg) (X,Y) for arbitrary vector fields X,Y on a contact
metric manifold. Now, we define and examine this tensor field for an almost
a-cosymplectic f-manifold

Proposition 9. An almost a-cosymplectic f-manifold with f-structure
(,&,n%, g) has tensor fields 7; such that ;X = 2V x&;, where 7;’s are de-
fined by g(1;: X,Y) = (Lg,g) (X,Y) for arbitrary vector fields X,Y on M.

Proof. Using the definition of the tensor fields 7;, we get

(Le;g) (X,Y) = g(Vx&,Y)+9(X,Vy§)
= 29 (—a<p2X —ph; X, Y)

for arbitrary vector fields X, Y on M. Applying the formula (2.3), the proof
is completed. O

Proposition 10. Let M be a locally symmetric almost a-cosymplectic
f-manifold. Then, V¢ h; =0, for any v € {1,..,s}.
1

Proof. Notice that (3.3) can be written as 5 (R(&j, )& — oR(&j,9.)&) =

—a?p? + hih; and since the operator R(&;,-)&; is parallel with respect to &,
we get Ve hih; = 0. Applying V¢, to (3.4), we obtain Ve, (nghi) =
—aVe hi — aVe hj. Moreover, V¢ hih; = 0 implies that (Ve h;)h; +
hi (Ve,hj) = 0, and applying V¢, to this equation, we get V¢ h; =0. [0
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Theorem 2. Let M be a locally symmetric generalized almost Kenmotsu
f-manifold. Then the following conditions are equivalent:

1) M is a generalized a-Kenmotsu f-manifold;

2) all the operators h; vanish.

Moreover, if any of the conditions above holds, then M cannot have constant
sectional curvature.

Proof. Assuming that M is a generalized a-Kenmotsu f-manifold,
we have V¢ = —ap? and, by (2.3) , all the operators h; vanish. Now,
supposing all the operators h; vanish, it follows that V& = —aw? and
V' =a(g— 50" @n*) and by (3.1), R(X,Y)& = o® 351 [n*(Y)* X
—nF(X)p?Y]. So, M is a generalized a-Kenmotsu f-manifold. Moreover,
The sectional curvature of any 2-plane spaned by {Y,¢;} is K(Y,&) =
—a?||pY|]? for all vector fields Y on M. So, the sectional curvature of
any 2-plane spaned by {&;,;}, for any ¢, j € {1,2,..., s}, vanishes and one
gets that the sectional curvature of any plane spaned by Y € D and §; is
equal to —a2. O

4. Some tensor conditions
For any vector field X on M, we can take X = X7 + >l n'(X)& where

XT is the tangential part of X and > ;_; n*(X)&; is the normal part of
X. We can rewrite n-parallel condition for a given almost a-cosymplectic
f-manifold. We say that any (1, 1)- type tensor field B is n-parallel if and
only if g((VyxrB) YT, ZT) =0, for XT YT ZT € D.

The starting point of the investigation of almost a-cosymplectic f-
manifolds with n-parallel tensors h; and @h; is the following propositions:

Proposition 11. Let M be an almost a-cosymplectic f-manifold and
h;’s are (1,1)-type tensor fields. If the tensor fields h;’s are n-parallel, then

(Vxh)Y ==Y n*(X) |:g0lkiY + ) 0[0PQY + ah,Y] + ohihiY + oY

k=1 y=1
(4.1) = W) ahiX + phihp X] =Y g(0hi X + ohih X, Y )&,
k=1 k=1

for all vector fields X, Y on M, where the tensor ly; = R(.,&k)&; is the
Jacobi operator with respect to the characteristic vector fields and h;’s are
(1,1)-type tensor fields.
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Proof. Suppose that each h; is n-parallel. Denoting the component of
X orthogonal to ¢ by X7, we obtain

0=g((Vyrh) YT, ZT)

= 9((Vi_si_, proog i) (V = Zn’“msk), Z =Y n"(2)&)

k=1
= 9((Vxh)Y. Zn 9(Vehi) Y. Z2) = > 0" (V)g((Vxhi) &, 2)
k=1
—Zﬂ 9(Vxhi) Y,&) = 9(Vxhi) Y, —0*Z)
- Zn 9((Ve,hi Zn 9(Vxhi) &, ),

for all vector fields X,Y, Z on M. Using (2.3) and (3.4), the proof is com-
pleted. O

Proposition 12. Let M be an almost a-cosymplectic f-manifold. If
the tensor fields wh;’s are n-parallel, then

(Vxoph)Y Z n"( [lkz Z 5Z[a2g02Y + aph, Y| + hihY — aph;Y
v=1
S
(4.2) - Z 1" (V) |aphi X — hilX] =Y glaphi X — hihp X, Y )&
= k=1

Proof. We consider that ph; is n-parallel. Thus,

0=g((Vxroh) Y™, Z")

= 9((Vxox_, w0 ohi) (Y Zn Z =3 (2)&)
k=1
= g((Vxehi) Y, Z'n 9(Veuphi) Y. Z)

= " Wg(Vxphi) &, Z2) = > 1M (2)g(Vxohi) Y, &)

k=1 k=1
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for all vector fields X,Y on M. If we simplify the equation above, then

9((Vxohi) Y. Zn 9(Ve,0hi) Y, Z) +Zn 9((Vxohi) &, 2)
k=1
+ Z n"(Z)g (Vxehi) Y, &) .
Using (2.3) and (Ve ph:) Y = ¢(Ve, hi)Y, the proof is completed. O

Theorem 3. An almost a-cosymplectic f-manifold with the n-parallel
tensor fields ph;’s satisfy the following relation:

(4'3) X Y gz ZTI lkzX n ( )lsz

where l; = R(.,&)& is the Jacobi operator with respect to the characteristic
vector fields & and &;.
Proof. Using (3.1) and (4.2), we get
S
R(X,Y)§ = o? Z [n’“(Y)sOQX — nk(X)sOQY}

—QZ[ X)phY —nf (Y )wth}

+Zn [l;mX Zm 22X+a¢hX]+hthagphX}

v=1
- Z " (X) [aphsY — i Y] = glophsY — hiiY, X)&
k=1
=) nF(x) {zkiy =Y 60 [0*Q°Y + aph Y] + hihY — acphiY}
=1 v=1

+ ) 0 (V) [aphi X — hihi X] + ) glaphi X — hihp X, V).
k=1

Then, we can easily write (4.3) by simplifying the equation above. O
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Theorem 4. An almost a-cosymplectic f-manifold has negative point-
wise constant &;-sectional curvature.

Proof. Let M be an almost a-cosymplectic f-manifold with a pointwise
constant &;-sectional curvature K (p), p€ M. It means thatg(R(X7T, &)&, XT)
= K;(p)g(XT, XT) for all tangent vectors X orthogonal to & at the point
p€ Mje, XT € D. Putting X7 =X — > 7_, n*(X)& and using the sym-
metries of curvature tensor R, we see that the equation above is equivalent
toply; X = K;pX, for any vector field X, where K; is a smooth function in
M. From the equation (3.4), we get

(Veihi) X = —K;0X + de [—oz2<pX — ath] — ah; X — goh%X
k=1

Seperating the equation above to symmetric and skew-symmetric parts, we
obtain

(Ve hi)X = —« [Z P X + hi X
k=1

and
(4.4) —KipX — a?pX — ph?X = 0.

Let {Ey, Eo, ..., Eoy, &1, ..., &} be an orthonormal basis of the tangent space
at any point. Firstly, we apply inner product with ¢.X both two sides in
(4.4). Then, the sum for 1 < j < 2n of the relation (4.4) with X = E;

yields K; = —(a? + %) ’

2

Remark 1. The conditions "h; is a Codazzi tensor
Codazzi tensor” are equivalent.

and "ph; is a

Proposition 13. Let M be an almost a-cosymplectic f-manifold. If the
tensor field ph;’s (or h;’s) are Codazzi, then the following conditions hold:

1) If a = 0 then the integral manifolds of D are totally geodesic.

2) Ifa = 0 and M is normal then M is a locally decomposable Riemanni-
an manifold which is locally the product of a Kaehler manifold M#" and an
Abelian Lie group M.

3) The integral manifolds of D are totally umbilic when « # 0.
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Proof. Let the tensor field ph; be Codazzi. Taking X = §;, Y € D,
we get (Ve hy)Y — (Vyhy)§; = 0. By using (3.4), we obtain —pl;Y =
a@?@Y + ah;Y. By (3.3), we have h;h;Y = 0, for any i, j, so h; = 0, for any
i, and the statement follows by Proposition 5. |

Theorem 5. Let M be an almost a-cosymplectic f-manifold. If the
tensors 1;’s are parallel and M s normal then M is a locally decomposable
Riemannian manifold which is locally the product of a Kaehler manifold
MP" and an Abelian Lie group Ms.

Proof. Let the tensor fields 7;’s are the parallel tensor field. It means
that (Vx7;)Y = 0, for all i € {1,2,...,8} and X,Y € T'(TM). Putting
Y =& for any j € {1,2,...,s} and contracting the equation above with
respect to X, we get —2na®+atrace (ph;) +atrace (ph;) —trace (hih;) = 0.
If we examine the last equation for all values of i and j and , we see that
suffices « = 0 and he = 0 for alls € {1,2,...,s}. Hence, the proof is obvious
by Theorem 1. O

Proposition 14. Let M be an almost a-cosymplectic f-manifold. If
the tensor fields 1;’s are n-parallel, then

S

(Vxoh) Y = 37 [1(X) (Veohi) Y = 1 (V) ohiV i
k=1

(4.5) +9 (Vxphi) &, Y) &] -

Proof. Suppose that 7; is n-parallel. It satisfies equation g((V yr7;)Y 7,
ZT) = 0 for any vector fields X7, YT ZT on D. By simple computations,
we get

(Vxm)Y = [g((Vxm) Y, &) &
k=1

(4.6) (V) (V) & + 1 (X) (Ve m) Y]

On the other hand, one can easily obtain that

s

(A7) (Vxm)V=_[-2an"(Y)Vx& — 209(Vx&o, V)& — 2(Vxphi)Y.

v=1

From (4.6) and (4.7) we have the desired result. O
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Theorem 6. Let M be an almost a-cosymplectic f-manifold. If the ten-
sor fields 7;’s are n-parallel, then R(X,Y)& = Y 4y nF (V) X =% (X) 1k Y.

Proof. Using equation (4.5), we obtain the following difference:
(Vyphi) X — (Vxph) Z 1" (Y) (Ve 0hi) Z 1 (X) (Ve 0hi) Y

(4.8) + Z n*(Y)phiVx & — Z 1" (X)ehiVy -

Using (3.4) and (4.8), we get, R(X,Y)& = S5 n* (V)i X — n*(X)1.Y-
Hence, the proof is completed. O

Proposition 15. Let M be an almost a-cosymplectic f-manifold. If the
tensor field ph;’s are cyclically parallel, then the following conditions hold:

1) If a = 0 then the integral manifolds of D are totally geodesic.

2) If a« = 0 and M is normal then M is a locally decomposable Riemanni-
an manifold which is locally the product of a Kaehler manifold M?"™ and an
Abelian Lie group M5.

3) The integral manifolds of D are totally umbilic when « # 0.

Proof. The hypothesis can be written

9(Vxphi) Y, &) + g((Vywhi) &, X) + g((Ve;0hi) X,Y) =0

for all vector fields X,Y on M. From this equation, we get the following
equation (ij hi) X = 2ah; X +@(h;oh;+h;oh;)X. Making use of (3.2), we
obtain R(X,&)& = > r_y SF[?p? X + aphi X+ 3aph; X —3h2X Applying
¢ to the last equation , substituting ¢X for X and using (3.3), we get
h? = 0. So, we obtain trace(h?) = 0, for any i, and apply Proposition 5. [J

Theorem 7. Let M be an almost a-cosymplectic f-manifold. If the
tensors 7;’s are cyclically parallel , then the following conditions hold:

1) The integral manifolds of D are totally geodesic

2) If M is normal then M is a locally decomposable Riemannian mani-
fold which is locally the product of a Kaehler manifold M?™ and an Abelian
Lie group M.

Proof. As 7,X = —2ap?’X — 2¢h; X, the hypothesis can be written
g(Vx1)Y,Z) + g(Vy1:)Z,X) + g((Vz7:)X,Y) = 0, for arbitrary vector
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fields X,Y,Z on M. Using (2.3) and replacing Z by &;, we reduce the
following relation:

(4.9 @ (Ve hi) X = 2020 X + 2000h; X + 2000h; X — hihj X — hjh; X.
Substitution of the (4.9) into (3.2), we get
(4.10) 1;iX — ljipX = 60*0* X — 4h;ih; X — 2hjh; X.

From equality of (3.3) and (4.10), we have 2a2p?X — hjh; X — h;ih; X = 0.
Hence, the proof is clear. O

Example 1. Let, n = 1 and s = 2. We consider the 4-dimensional
manifold M = {(:c,y, 21,29) € R4}, where (z,vy, 21, 29) are the standart
coordinates in R*. The vector fieldse; = fl(zl,zz)(% + fg(zl,ZQ)a%, ey =

—fg(zl,zQ)(% + fl(zl,ZQ)a%, e3 = 8%17 €4 = 8%2, where f; and fo are given
by
fi(z1,22) = coe—(21t22) cos(z1 + z2) — crelz1tz2) sin(z1 + z2),

fa(z1,22) = cre lztz) cos(z1 + 2z2) + coe(21122) sin(z1 + 22)

for constant c1,ce, @ € R. It is obvious that {ej, ez, e3,e4} are linearly in-
dependent at each point of M. Let g be the Riemannian metric defined

by
( ) 1, fori=1j
€i,e;) =
A 0 fori#j
for all 4, j € {1,2,3,4}and given by the tensor product g = fQTIfQ(d:r(@dx+
1 2

dy ® dy) + dz1 ® dz1 + dzg @ dzy. Let 771 and 772 be the 1-form defined by
N (X) = g(X,e3) and n*(X) = g(X,e4), respectively, for any vector field
X on M and ¢ be the (1,1) tensor field defined by ¢(e1) = ea, p(e2) =
—e1,p(es =&1) =0, p(eq = &) = 0. Also, let h;’s be the (1,1) tensor fields
defined by h;(e1) = —eq, hi(e2) = ez, hi(eg) = 0 and h;(es) = 0. Then using
linearity of g and ¢, we have

@’X = —X +n'(X)es +n°(X)ey
9(0X,0Y) = g(X,Y) =" (X)n' (V) = n*(X)n*(Y)
n'(e3) = 1 and 7°(es) = 1
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for any vector fields on M
It remains to prove that d2 = 27 A and Nijenhuis torsion tensor of ¢
is zero. It follows that (e, e2) = —1 and otherwise 2(e;, e;) = 0 for ¢ < j.

Therefore, the essential non-zero component of 2 is Q(a%, 8%) = —ﬁ =
1 2
e2a(z1+2)
—Saraz and hence
262a(zl+22)
]+ ¢35

Consequently, the exterior derivative df2 is given by

4 2a(z1+22)
OZle' A dy AN (le + dZQ).
1 2

(4.12) Q) = —
Since n* = dz; and n? = dzs, by (4.11) and (4.12), we find dQ = 2a(n' +
n%) A Q. Let V be the Levi-Civita connection with respect to the metric g.
Then, we obtain [e1, e3] = [e1,e4] = aer — ez, [e2, e3] = [e2, €4] = €1 + aveo,
[e1, ea] = 0, [es, e4] = 0. In conclusion, it can be noted that Nijenhuis torsion
tensor of ¢ is zero. Thus, the manifold is an a-cosymplectic f-manifold.
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