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Abstract. The purpose of this paper is to study the possibility of recovering a
convolution semigroup on a locally compact noncommutative group using an inversion
formula. Theorem 2.1 shows how we can do that for the heat kernel on the Heisenberg
group, while for a more general case the conditions required to do that are stated in
Proposition 3.1.
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1. Preliminaries

For a vaguely continuous convolution semigroup on a locally compact
Abelian group it is known that the Fourier transform of its measures can be
written using some continuous negative definite function on the dual group
(see [3]). In the non-commutative case there are several problems that keeps
one from doing the same thing. For instance the dual space of a locally
compact noncommutative group is no longer a group. In this paper it will
be shown to reconstruct a convolution semigroup in the noncommutative
case together with the conditions needed to do that.

Performing a Fourier transform in the non-Abelian case is more difficult
that in the commutative one and requires notions of representation theory
(see Folland [4]). By a result of Siebert [9] and [10] the Fourier transform
of the measures of a vaguely continuous convolution semigroup on a locally
compact group at each representation is a strongly continuous contraction
semigroup.
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Consider a locally compact group G and his dual space Ĝ, formed with
equivalence classes of all irreducible representations π of G into some se-
parable Hilbert space Hπ. More details can be found in Folland [4] or
Heyer [6]. The dual space will be considered endowed with the measurable
structure called the Mackey-Borel structure. Further, the group G will be
considered a type I group, meaning that the Mackey-Borel structure on Ĝ
is standard.

For such a group, there is a measurable field of representations over Ĝ,
(ρπ)[π]∈Ĝ such that ρπ ∈ [π]. Thus, we can identify the points in Ĝ with
the representations in this measurable field.

If we fix a measurable field of representations as above, the Fourier
transform of a bounded measure µ ∈ Mb(G) is defined as the measurable
field of operators over Ĝ given by:

µ̂(π) =

∫
G
π(x−1)dµ(x).

The Fourier transform for f ∈ L1(G) is the measurable field of operators
over Ĝ:

f̂(π) =

∫
G
f(x)π(x−1)dx.

The basic properties of the Fourier transform are still valid. In the next
section a Plancherel-type theorem is needed:

Theorem 1.1. Let G be a locally compact group that is also unimodular,
type I, c2. Denote by I1 = L1(G)∩L2(G) and I2 = span{f ∗ g | f, g ∈ I1}.
There is a measure µ on Ĝ, uniquely determined by the Haar measure on
G such that:

1. If f ∈ I1 then f̂ ∈
∫ ⊕
Ĝ
HSπdµ(π).

2. The map f 7→ f̂ extends to an unitary operator from L2(G) to∫ ⊕

Ĝ
HSπdµ(π).

3. For f, g ∈ I1 one has the Parseval formula:∫
f(x)g(x)dx =

∫
tr[f̂(π)ĝ(π)∗]dµ(π).
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4. For h ∈ I2 we have the Fourier inversion Formula:

h(x) =

∫
tr[π(x)ĥ(π)]dµ(π),

where HSπ is the Hilbert space of the Hilbert-Schmidt operators over Hπ, en-
dowed with the Hilbert-Schmidt norm,

∫ ⊕
Ĝ
HSπdµ(π) is the space of square-

integrable fields of Hilbert-Schmidt operators over Ĝ, with respect to µ and
tr T is the trace of the trace-class operator T .

Recall here that a positive operator T on a Hilbert space H is said to
be trace-class if T has an orthonormal eigenbasis (en) with eigenvalues (λn)
with

∑
λn <∞ and its trace is tr(T ) =

∑
λn.

If we consider a convolution semigroup (µt)t>0 on G we will have the
semigroup property for the family of operators (µ̂t(π))t>0 on Hπ for each
π:

µ̂t ∗ µs(π) = µ̂t+s(π), for all s, t > 0.

By Siebert, [9], Prop. 3.1 we have even more: (µ̂t(π))t>0 is a strongly
continuous semigroup of operators over Hπ for every unitary representation
π of G on Hπ.

2. A particular case

It is showed next how to reconstruct the heat semigroup on the Heisen-
berg group, Hn using the Fourier transform of its measures, by means of
Theorem 1.1. The Heisenberg group is in fact R2n+1 = Rn × Rn × R with
the composition law:

(1) (x, ξ, t)(x′, ξ′, t′) =
(
x+ x′, ξ + ξ′, t+ t′ +

1

2
(x′ξ − xξ′)

)
,

where xξ is the usual scalar product in Rn. Hn is a non-Abelian group,
has the unit 1=(0,0,0) and the inverse of an element X = (x, ξ, t) ∈ Hn

is (−x,−ξ,−t). Hn is a locally compact group endowed with the usual
topology on R2n+1 and the Haar measure for this group is the Lebesgue
measure on R2n+1.

Hn has a second order differential operator, ∆H :

∆H =
1

2

n∑
i=1

(X2
i + Ξ2

i ),
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where

Xi =
∂

∂xi
+

1

2
ξi
∂

∂t
and Ξi =

∂

∂ξi
− 1

2
xi
∂

∂t
.

The heat kernel for ∆H was independently computed by Gaveau [5] and
Hulanicki [7] as an answer to the requirements:

∂Ks

∂s
= ∆HKs

lim
s→0+

Ks(x, ξ, t) = δ(x, ξ, t)
.

We have:

Ks(x, ξ, t) =
1

(4πs)n+1

∫ +∞

−∞
exp(−f(x, ξ, t, τ)/2s)V (τ)dτ,

where
f(x, ξ, t, τ) = −itτ + (∥x∥2 + ∥ξ∥2)τ

4
ctgh

τ

2

and

V (τ) =

(
τ/2

sh τ2

)n
.

(for further details see also Beals [2]).
In Panţiruc [8] is given an explicit formula for the Fourier transform

for the measures of this semigroup. Computations for Fourier transform for
a gaussian measure were also made in [1], for different (unitarily equivalent)

representations. Hn is a type I group and his dual space, Ĥn, can be identi-
fied with the measurable field of irreducible representations {πb,β ; ρh}b,β,h:

• 1-dimensional:

πb,β : Hn → T, πb,β(x, ξ, t) = e2πi(bx+βξ)

with b, β ∈ Rn;

• ∞-dimensional:

ρh : Hn → U(L2(Rn)), [ρh(x, ξ, t)f ](y) = e2πih(t+
1
2
xξ−yξ)f(y − x),

where h is a non-zero real number.

Thus the Fourier transform of a bounded measure µ ∈ Mb(Hn) is a

measurable field over Ĥn given by:
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• the complex values

µ̂(πb,β) =

∫
Hn

πb,β(−x,−ξ,−t)dµ(x, ξ, t) =
∫
Hn

e−2πi(bx+βξ)dµ(x, ξ, t);

• and the operators on L2(Rn):

[µ̂(ρh)ϕ](y) =

∫
Hn

[ρh(−x,−ξ,−t)ϕ](y)dµ(x, ξ, t) =

=

∫
Hn

e2πih(−t+
1
2
xξ+yξ)ϕ(y + x)dµ(x, ξ, t).

In Panţiruc [8], Proposition 2.1, it is given a formula for the Fourier
transform of the measures of the ”heat” kernel. This is a measurable field of
operators over Ĥn given by K̂s(πb,β) = e−4π2(∥b∥2+∥β∥2) for the 1-dimensional
representations πb,β and

[K̂s(ρh)ϕ](y) =

(
h

sh(4πhs)

)n
2

·
∫
Rn

ϕ(x)e−
πh
2
(a∥x−y∥2+ 1

a
∥x+y∥2)dx.

for the ∞-dimensional ones, ρh. As one can easily see we have K̂s(ρh) =

K̂s(ρ−h) for each s, h > 0.
In the same paper, Theorem 2.2 shows that for every h ̸= 0 the family

of operators (K̂s(ρh))s≥0 is a C0 semigroup of operators on L2(Rn) whose
infinitesimal generator is

Ahf(y) = ∆f(y)− 4π2h2∥y∥2f(y), for f ∈ C∞
c (Rn).

Putting all these information together we can prove the next:

Theorem 2.1. Let (Ks)s>0 be the heat kernel on Hn as described above.
Then

Ks(x, ξ, t) =

∫
Rn\{0}

tr[ρh(x, ξ, t)K̂s(ρh)]dµ(ρh)

=

∫
R\{0}

[

∞∑
j=1

λj(h) < ρh(x, ξ, t)ϕj(h), ϕj(h) >] | h |n dh,

where (ϕj(h))j≥1 is an orthonormal basis in L2(Hn) consisting of eigen-

vectors (with eigenvalues λj(h)) corresponding to the operators K̂s(ρh), for
h ∈ R \ {0}.
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Proof. It is enough to verify the conditions from the Plancherel theo-
rem 1.1. It is easy to see that

Ks ≥ 0, Ks(x, ξ, t) = Ks(−x,−ξ,−t) and Ks1 ∗Ks2 = Ks1+s2 .

It follows in particular that the functions Ks are positive definite and there-
fore bounded. But Ks ∈ L1(Hn) and being bounded means that they are
also square-integrable. We can then write Ks = Ks/2 ∗ Ks/2 to see that
Ks ∈ I2 from the Plancherel theorem 1.1.

The Plancherel measure for the Heisenberg group is given by:

dµ(πb,β) = 0, dµ(ρh) =| h |n dh

(see Folland [4]). We can write then

Ks(x, ξ, t) =

∫
Rn\{0}

tr[ρh(x, ξ, t)K̂s(ρh)]dµ(ρh)

=

∫
R\{0}

[

∞∑
j=1

λj(h) < ρh(x, ξ, t)ϕj(h), ϕj(h) >] | h |n dh

as soon as we prove that the formula makes sense, that is the operators
K̂s(ρh) are trace-class. But

[K̂s(ρh)ϕ](y) =

(
h

sh(4πhs)

)n
2

·
∫
Rn

ϕ(x)e−
πh
2
(a∥x−y∥2+ 1

a
∥x+y∥2)dx,

and in Panţiruc [8], Theorem 2.1 gives some properties for the operators

K̂s(ρh): they are all bounded, self-adjoint and positive operators on L2(Rn)
and since they are obviously Hilbert-Schmidt it follows that they are also
trace-class. Thus, the proof is complete. �

Theorem 2.1 shows how one can reconstruct this convolution semigroup
out of the Fourier transforms of its measures but we must emphasize that of
great help to do that were the already known properties of the functionsKs.

3. The general case

The next simple example of convolution semigroup on Hn shows that one
cannot hope to always apply the inversion formula to recover the initial
semigroup.
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Consider a translation semigroup onH1. This has the form (ε(at,bt,ct))t>0

where a, b, c are arbitrary but fixed real numbers and ε(at,bt,ct) is the Dirac
measure concentrated at the point (at, bt, ct) ∈ H1. In general, the Fourier
transform of a Dirac measure εx at a representation π is obviously ε̂x(π) =
π∗(x) = π(x−1) which is a unitary operator on the representation (Hilbert)
space Hπ. For H1 and for the representations ρh we get ε̂(at,bt,ct)(ρh) =
ρh(−at,−bt,−ct).

The family (ρh(−at,−bt,−ct))t≥0 is a C0-semigroup of unitary operators

on L2(R). The infinitesimal generator of this semigroup is given by:

Ah : D(Ah) ⊂ L2(R) → L2(R)
Ahϕ(y) = aϕ′(y) + 2πih(−c+ by)ϕ(y).

But the inversion formula cannot be applied. For once, the Fourier trans-
form for the semigroups measures are all unitary operators and these are not
trace-type operators unless the representation space is finite-dimensional,
and here is not the case.

It is known (by Siebert [9]) that if (µt)t>0 is a convolution semigroup
on G then for any representation π of G inHπ, [µ̂t(π)]t≥0 is a C0-contraction
semigroup on Hπ. If we take this observation back to the commutative case
we see that the value ψ(γ) that appears in the expression of the Fourier
transform: µ̂t(γ) = exp(−tψ(γ)) is the infinitesimal generator of the semi-
group of operators on C:

−ψ(γ) · z = lim
t→0+

e−tψ(γ)z − z

t
, z ∈ C.

It seems natural then to ask what conditions should one impose on a
family Aπ, π ∈ Ĝ of infinitesimal generators of C0 semigroups such that
the inversion formula to become applicable and by using it to obtain a
convolution semigroup.

For every π ∈ Ĝ denote by A(π) the set of all infinitesimal genera-
tors of C0 semigroups on the representation space Hπ. For every π ∈ Ĝ
let A(π) ∈ A(π) the generator of some semigroup of self adjoint, Hilbert-
Schmidt operators. Such a generator can be identified with some sequence of
real, negative numbers λn having the limit −∞ and such that

∑ 1
λ2n

<∞).

Denote by (Pt(π))t≥0 the semigroup generated by A(π). Obviously, we have:

Pt(π)u =
∑

etλn(π) < u, en(π) > en(π), u ∈ Hπ,
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where λn(π) are the eigenvalues of the infinitesimal generator A(π) and
en(π) is an orthonormal basis formed with the eigenvectors of Pt(π). Of
course, all the operators Pt(π) are trace-type since they are a product of
some Hilbert-Schmidt operators. Assume that the function π 7→ tr(Pt(π))
is µ-integrable: ∫

Ĝ
tr(Pt(π))dµ(π) <∞ ∀ t > 0.

We then have the next:

Proposition 3.1. Let µ be the Plancherel measure on Ĝ.
If

∫
Ĝ tr(Pt(π))dµ(π) <∞ for every t > 0 then we have:

i. There is ft ∈ L2(G) such that f̂t(π) = Pt(π) for every t > 0, π ∈ Ĝ
and ft ∗ fs = ft+s for every t, s > 0

ii. If ft ∈ L1(G) then

(a) ft(x) =
∫
Ĝ tr[π(x)Pt(π)]dµ(π), t > 0;

(b) ft is a positive definite function on G, for every t > 0.

(c) If in addition we suppose that for every t > 0, ft ≥ 0 then
(ftdx)t>0 is a convolution semigroup G.

Proof. i)Since Pt is self-adjoint, we get:

tr(Pt(π)) =
∑

< Pt(π)en(π), en(π) >=
∑

∥P t
2
(π)en(π)∥2 = ∥P t

2
(π)∥2HS .

It follows that (Pt(π))π ∈
∫ ⊕

Hπ ⊗Hπdµ(π) and from the Plancherel the-

orem 1.1 there is some ft ∈ L2(G) such that f̂t(π) = Pt(π). The relation
ft ∗fs = ft+s is true by the injectivity of the Fourier transform and the fact

that f̂t+s = Ps+t = PsPt = f̂sf̂t = f̂t ∗ fs.
ii) If ft ∈ L1(G) then ft ∈ I2 from 1.1 and then we have ii-a). We also

have ft(x
−1) = ft(x) and ft(e) ≥ 0 and

|ft(x)| ≤
∫
Ĝ
|tr[π(x)Pt(π)]|dµ(π) ≤

∫
Ĝ
tr[Pt(π)]dµ(π) = ft(e).

Let c1, c2, ...cn ∈ C, x1...xn ∈ G. Then:

n∑
i,j=1

cicjft(xix
−1
j ) =

∫
Ĝ

∑
etλn∥

n∑
i=1

ciπ(xi)en∥dµ(π) ≥ 0
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which means that ft is a positive definite function.
Finally, if ft ≥ 0 then one can apply Lemma 2.1 from Siebert, [9] to see

that ftdX → ε0 vaguely. Combining this with a) it follows that (ftdx)t>0

is a convolution semigroup on G, completing the proof. �
The assumption on ft to be positive is a strong one and in the com-

mutative case this is solved by Bochner’s theorem on the representation of
positive definite functions and for the proof was essential that a LCA-group
is ”reflexive” (Pontrjagin theorem). In the commutative case the Plancherel
measure is the Haar measure on the dual group and so it is positive. Also
in the commutative case we have an inversion theorem to help us decide
wether the second condition in ii) in the above theorem holds.

In the noncommutative case things are again more complicated. First,
one sees that in general there is a problem in identifying L1(Ĝ). The Fourier
transform of a function f ∈ L1(G) is defined on Ĝ but the values are
compact operators on (possibly different) Hπ’s and not complex numbers
as in the Abelian case.

Still, for the Heisenberg group we see that the Plancherel measure is
positive and we can only take the representations ρh, h ̸= 0 and so the
representation spaces can all be taken to be L2(Rn). Thus,∫ ⊕

Hπ ⊗Hπdµπ = L2
(
Ĝ,HS(L2(Rn)); |h|ndh

)
and L1(Ĝ) is actually L1(Ĝ,L(L2(Rn)); |h|ndh). Thus, the inversion theo-
rem on the Heisenberg group has the following form:

Conjecture.Let µ a bounded measure on Hn. If µ̂∈L1(Ĥn,HS(L2(Rn));
|h|ndh) and µ̂(ρh) is trace-class for every h ̸= 0 then µ has a continuous
density with respect to the Haar measure on Hn and this density is given
by:

ϕ(x) =

∫
Ĝ
tr[ρh(x)µ̂(ρh)]|h|ndh, x ∈ Hn.

If this is true then is a first step in reconstructing a whole class of
convolution semigroups on (at least) the Heisenberg group out of Fourier
transforms of its measures, namely that of convolution semigroups formed
by measures that are absolutely continuous with respect to the Haar mea-
sure.
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