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Abstract. The paper deals with the existence and uniqueness of the solution of the
backward stochastic variational inequality:
—dY: + 0 (Y2)dt > F (t,Ys, Zs)dt — ZedB, 0 <t < T
Yr =n,
where F' satisfies a local boundedness condition.
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1. Introduction

We consider the following backward stochastic variational inequality
(BSVI):

(1) —dY; +0p (Vi) dt > F(t,Yy, Z) dt — ZydBy, 0 <t <T
Yr=n

where {B; : t > 0} is a standard Brownian motion, dy is the subdifferential

of a convex l.s.c. function ¢, and T' > 0 is a fixed deterministic time.

The study of the backward stochastic differential equations (BSDE)
(equation of type (1) without the subdifferential operator) was initiated
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by PARDOUX and PENG in [11] (see also [12]) where is proved the existence
and the uniqueness of the solution for the BSDE under the assumption of
Lipschitz continuity of F' with respect to y and z and square integrability
of n and F'(t,0,0).

The more general case of scalar BSDE with one-sided reflection and
associated optimal control problems was considered by EL KAROUI ET
AL. [8] and with two-sided reflection associated with stochastic game pro-
blem by CvITANIC, KARATZAS [6] (see also [3] and [7] for the investigation
of zero-sum two-player stochastic differential games whose cost functionals
are given by controlled reflected BSDE).

On the other hand, it is worth to mention the backward in time problems
in mechanics of continua, since a large number of physical phenomena leads
to these new non-standard problems. Specify that for improperly posed
problems the solutions will not exist for arbitrary data and not depend
continuously on the data (see e.g. [5], [4] and references therein).

The standard work on BSVI is that of PARDOUX and RASCANU [13],
which give a proof of existence and uniqueness of the solution for (1) under
the following assumptions on F: monotonicity with respect to y (in the
sense that (v —y, F(t,v',2) — F(t,y,2)) < aly’ — y|?), Lipschitzianity with
respect to z and a sublinear growth for F (¢,y,0), |F (t,y,0)| < 8¢+ Ly|,
Y (t,y) € [0,T] x R™. It is proved that there exists a unique triple (Y, Z, K)
such that

T T
Yt—i-KT—Kt:n—l—/ F(S,YS,Zs)ds—/ ZsdBs, a.s., with dK;€0p (Y}) dt.
t t

Moreover the process K is absolute continuous with respect to dt. In [14] the
same authors extend the results from [13] to the Hilbert spaces framework.
Using a mixed FEuler-Yosida scheme, MATICIUC, ROTENSTEIN provided
in [9] numerical results concerning the multi-valued stochastic differential
equation (1).

Our paper generalize the previous existence and uniqueness results for
(1) by assuming a local boundedness condition (instead of sublinear growth
of F), ie.

T
p
E(/ Ff(s)ds) < 00, where Ff (t) = sup |F(t,y,0)|.
0 ly|<p

Concerning to this requirement on F' we remark that a similar one was
considered by PARDOUX in [10] for the study of BSDE. More precisely, his
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result is the following: if n € L? (;R™), F (¢,0,0) € L% (2 x [0,T];R™),
F' is monotone with respect to y, Lipschitz with respect to z and there
exists a deterministic continuous increasing function 1 such that V (¢,y) €
[0,T] x R™, |F(t,y,0)] < |F(t,0,0)| + ¢ (Jy|),P-a.s, then there exist a
unique solution for BSDE (1) with ¢ = 0. This result was generalized by
BRIAND ET AL. [2].

The article is organized as follows: in the next Section we prove some
a priori estimates and the uniqueness result for the solution of BSVI (1).
Section 3 is concerned on the existence result under two alternative as-
sumptions (which allow to obtain the absolute continuity of the process K)
and Section 4 establishes the general existence result. In the Appendix we
presents, following [15], some results useful throughout the paper.

2. Preliminaries; a priori estimates and the uniqueness result

Let {B;:t >0} be a k-dimensional standard Brownian motion defined
on some complete probability space (2, F,P). We denote by {F; :t > 0}
the natural filtration generated by {B; : t > 0} and augmented by N, the
set of P- null events of F, F; = o{B, : 0 < r < t} V. N. We suppose that
the following assumptions holds:

(A1) n:Q — R™ is a Fp-measurable random vector,

(Ag) F : Q x[0,T] x R™ x R™*F — R™ satisfies that, for all y € R™,
z € R™F (w0 t) — F(-,y,2) : Qx [0,T] — R™ is progressively
measurable stochastic process, and there exist u : Q x [0,7] — R
and ¢ : Q x [0,T] — Ry progressively measurable stochastic processes
with fOT (|,ut| —|—€§) dt < oo, such that, for all ¢t € [0,T], y,y/ € R™
and z,2' € R™*k P-as.:

(Cy) y+—— F(t,y,z): R™ — R™ is continuous,
(My) (y —y, F(t.y',2) = F(t,y,2)) < uly' —yl?,

(LZ) \Fi(Ft,y,z’)—F(t,y,z)\ §€t|ZI—Z|,
(By) / Ff(s)ds < oo, Vp>0,
0
where, for p > 0, Ff& (t) =l sup |F(t,y,0)|,

lyl<p

(Az) ¢ :R™ — (—o00,+00] is a proper, convex ls.c. function.
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The subdifferential of ¢ is given by dp(y) = {g € R™ : (g,v—y)+¢(y) <
p(v), Vv e R™}

We define Dom(yp) = {y € R™ : ¢(y) < oo}, Dom(d¢) = {y € R™ :
Op(y) # 0} C Dom(p) and by (y,y) € Op we understand that y € Dom (9¢)
and g € 0p (y).

Recall that Dom(¢) = Dom(d¢), Int(Dom(y)) = Int(Dom(dyp)). Let
€ > 0 and the Moreau-Yosida regularization of ¢ :

ve (y) =l inf{% ly—v? 4+ o) :ve ]Rm}
) = ol LW + o ),

where J. (1) = (Imxm +€0¢) " (y). Remark that ¢, is a C* convex func-
tion and J. is a 1-Lipschitz function.

We mention some properties (see BREZIS [1], and PARDOUX, RASCANU
[13] for the last one): for all z,y € R™

(a) Ve(y) = 0¢e (y) = %E(y) € dp(J=y),
(3) (b) |Vee(x) = Ve (y)| < B lz —yl,
() (Voe(r) = Vo(y),r —y) >0,
(d) (Vee(r) = Vs(y),r —y) > —(e+ ) (Vpe(), Ves(y)) -

We denote by S%,[0, T the space of (equivalent classes of ) progressively mea-
surable and continuous stochastic processes X : Q x [0,T] — R™ such that
E supsepor | Xel” < 00, if p > 0, and by A7, (0,T) the space of (equivalent
classes of ) progressively measurable stochastic process X : Q x [0, 7] — R™
such that

T
/ | X, >dt < o0, P-as. weQ, ifp=0,
0

T p/2
E(/ |Xt\2dt> < 00, if p > 0.
0

For a function g : [0, 7] — R™, let us denote by ¢, the total variation of
gon [0,T] ie.

n—1
d
Totr ifsup{Z\g(tm)—g(ti)\ ineN, 0=ty <t <---tn=T},
1=0
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and by BV ([0,T]; R™) the space of the functions ¢ : [0,7] — R™ such that

. . def
T9lp < oo (BV ([0,T);R™) equipped with the norm ||g|| gy o rpmm) =
|9(0)| + g3, is a Banach space).

Definition 1. A pair (Y,Z) € S2[0,7] x A2 . (0,T) of stochastic
processes is a solution of backward stochastic variational inequality (1) if
there exists K € SY [0, 7] with Ko = 0, such that

T T
(@) 1K1+ / P Yt)\dt+/ (P (£, Yy, Z))| dt < o0, aus.,

(b) dK; € 0p(Y;)dt, as. that is: P-a.s.,

[ o) =veary+ [ ot < [ otyrar

Yy e C([0,T);RY), VO<t<s<T,
and, P-a.s., for all ¢t € [0,7] :
T T
(4) Vit Kr—Ki=n+ [ F(sYaZ)ds— [ Zab,
t t

(we also say that triplet (Y, Z, K) is solution of equation (1)).

Remark 2. If K is absolute continuous with respect to dt, i.e. there
exists a progressively measurable stochastic process U such that

T t
/ |Ut| dt < o0, a.s. and Ky = / Usds, for all t € [0,T],
0 0

then dK; € 0p (Y;) dt means U; € 0p (Yy), dt-a.e., as.

If dK; € dp (Y;) dt and dK; € dp(Y;)dt then we clearly have

T T
| lelars [ leldt < oo, as
0 0

and, using the subdifferential inequalities
| = Year) + e < [ e
t ¢ ¢
[ = Trak)+ [ e < [ o
t ¢ t
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we infer that, forall 0 <t <s<T
S
(5) / (Y, =Y, dK, —dK,) >0, as.
t

Let a,p > 1 and

t
©) e
0 2ny
where n, = (p—1) A 1.
Denote
st o, 1) {Y €S0[0,7):3a> 1, E sup V[P < Oo}'
s€[0,7T

Remark that if us and 2 are deterministic functions then, for all p > 1,
Sk P10, 7] = SE [0, 7).

Proposition 3. Let (ug, o) € O¢ and assumptions (A1—As) be satis-
fied. Then for every a,p > 1 there exists a constant Cgj such that for every
(Y, Z) solution of BSDE (1) satisfying

T

p

B sup (¥, o+ B( [ (o] + | (5,00,0)) ds)” < .
s€[0,T7 0

the following inequality holds P-a.s., for all t € [0,T] :

T p/2
E7 | sup ‘eVS (Ys — u0)|p + </ e2Vs |Z5|2ds> ]
t

s€t,T)
T p/2
BT ( [ e 1o = o o) ds)
t
T
LB / V- Yy — uol?? Ly, | 26 ds
t

T
+E7 / PV | Yy — uglP ™2 1y, 2ug [0(Ys) — @ (o) ds
t

< Ca7pEft ePVr In — uol?

T p T p
+</ eVs \ao\ds> +</ eVs\F(s,uO,onds) }
t t
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and, for every Ry >0 and p > 2,

T p/2
RP/*ET / 2V |F (s, Yy, Zs)| ds)
t

LR / Vo |V, — uglP 2 Ly, pug |F (5, Y, Z,)| ds
t

(8) < Cayp [EftepVT 1n — uol? + Rg/ 2

T p/2
ETt </ e2Vs 1> (F’Li,Ro (S) + Ro’}/:) ds)
b
TR ( /t Ve (FZ%RO (s) + 2R ws\) ds) ]

where

f
Ff o sup  |F(t,y.0).
ly—uo|<Ro

Proof. We can write
T T
Yt—uozn—uo—l-/ [F(S,YS,ZS)dS—sz]—/ Z,dBs.
t t

Let Ry > 0. The monotonicity property of F' implies that, for all |v| < 1:
<F(t¢u0 —|—R0’U,Z) - F(t,y,Z) >, U + Rov — y> < e |u0 + Rov — y|2)
and, consequently

RO (F(t,y,z),—v} + <F(t?y’z)7y_u0>
< it [ug + Rov — y|* + | F (t,uo + Rov, 2)| ly — Rov — uo|
< iy lug + Rov — y|* + [FiJ% (t) + L |2| ] ly — Rov — uo

< pueluo + Rov — yI> + F 5 () |y — Rov — uy|

a n
+ oty — Rov — wol? + 52 |22 < F: o (6) (ly — wol + Ro)
Ny 2a )

n
+ | ly — ug|® —2Ro (v,y — ug) +R3 \U\Q]+2—Z 2° < [Rquf;,RO (t) + R3]

n
(t) +2Ro |7l ] |y — ol + e ly — wol* + 52 127

#
+ [F, o

up,Ro
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Taking supj,|<; , we have
[Ro oo (1) R ] + [Fj; Ry (1) + 2R0 [l ] 13 = uo|
+Y; — upl® th-i-2—|Zt\ :
a
From the subdifferential inequalities we have |p(t, Y;)—p(t, uo)| < [p(t, Y;)—
o(t, uo)]+2|to||Ye —uo| and [p(t, i) —(t, ugp)]dt < (Y —ug, dK;). Therefore

lo(t,Y:) — o(t, uo)|dt < (Y —up, dKy) + 2]ao||Y: — uoldt. From the above it
follows that

[Ro \F(t Vi, Zy)| + le(Ye)—¢ (u )Hdt‘f‘ (Yi—uo, F (t,Y:, Zy) dt—dKy)
(9) < [RoF} o Ry (t )+Ro% Jdt+[F} o Ry (1) F2Ro |ye| +2 [ao| ] [Vi—uo| dt
+[Y; — ugl? d%+%|Zt‘ :

For Ry = 0, inequality (7) clearly follows from (9) applying Proposition 11
from Appendix.

For Ry > 0 we moreover deduce, using once again Proposition 11, ine-
quality (8). O

Remark 4. Denoting
T T
0 = €' |n — g +/ eV |iig| ds —l—/ eV | F (s,u0,0)| ds
0 0
we deduce that, for all ¢ € [0,77] :
(10) V3| < Jug| + CUP eV (B 0P) P as.
Corollary 5. Letp > 2. We suppose moreover that there exist ro,co > 0

such that

def
el o = sup{p (uo +rov) : v <1} <cp

T p/2
i BT < /t eQVsd¢K¢S>

T p/2
(11) < O, B [epVT In — uol? + (gofwo — ¢ (uo (/ €2V5d8>

T P T
+ </ eVs |&0\ds> + (/ eV | F (s,u0,0 |ds> }
¢ ¢

Then
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Proof. Let an arbitrary function v € C ([0,7];R™) such that |[v|; <
1. From the subdifferential inequality (ug + rov (t) — Yi, dKy) + o(Yi)dt <
@ (up + rov (t)) dt, we deduce that rod JKT, + ¢(Yz)dt < (Y; — ug, dKy) +
il rodt. Since (Y; — g, o) + ¢ (ug) < ¢(Vy), then

rod $KY, < (¥i — o, dIo) + [io] Yy — wo| dt + [0, ,, — ¢ (o) d.

Therefore

TodiKit — U, F (t,Y}, Zt) dt — th>
< (g - ol 0) )t +[Yi = ol (Jfo] + |F (1,0, 0)])
+ Y = uo[* AV + 57 | Z4[” dt.

The inequality (11) follows using Proposition 11. O

Proposition 6 (Uniqueness). Let assumptions (A1—As) be satisfied.
Leta,p>1. If (Y, 2),(Y,Z) € 5% [0, 7] x A2, (0,T) are two solutions of
BSDE (1) corresponding respectively ton and 1) such that Esupyejo 1| ePVs|Y,—
Yi|P < oo, then for allt € [0,T], e?V1|Y; — Y, [P < Bt (ePV7 | — ijP) , P-a.s.
and there exists a constant C,,p such that P-a.s., for all t € [0,T] :

~ T - p/2
E7t| sup ePV*|Y, — Y|P + (/ V=7, — Zs\2d8> ]
(12) s€(t,T] t

< Ca BT eV |y — .

Moreover, the uniqueness of solution (Y, Z) of BSDE (1) holds in Sy, P [0, T x
A0, (0,T).

mxk

Proof. Let (Y,Z2), (Y,Z) € S%,[0,T] x A%, (0,T) be two solutions

corresponding to n and 7} respectively. Then there exists p > 1 such that
YYESP[OT]andYt Yt—n—nJrft dLg ft s)dB; where

= fo (s,Ys,Zs) — F(S,Y'S,Zs))ds — (dKs — sz)]. Slnce by (5) (Y5 —
Y dKy — dK,) > 0, then, for all a > 1,

Yy =Yy, dLy) < |V = YiPpudt + |V = Yil| Z, = Zul byt
n
<Y = Y32 (ut+—€2)dt+ p|Zt Z,|?dt.

By Proposition 11, from Appendix, inequality (12) follows.
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Let now p > 1 be such that (Y, 2),(Y,Z) € S},:r’p 0,77 x AY ., (0,7)

are two solutions of BSDE (1) corresponding respectively to 1 and 7. From
the definition of space S [0, 7] there exists a > 1 such that

a,p a,p ~
E sup [ Y|P < oo, E sup [e* Yi|P < oo.
te[0,T) te[0,T

Consequently estimate (12) follows and uniqueness too. O

3. BSVI - an existence result

Using Proposition 3 we can prove now the existence of a triple (Y, Z, K)
which is a solution, in the sense of Definition 1, for BSVI (1). In order to
obtain the absolute continuity with respect to dt for the process K it is
necessary to impose a supplementary assumption.

Let (ug,tp) € Op be fixed and

apdef o 2|V » ERY
O = Cype In —uol? + |to| ds
0

(13) v (/OT|F(s,uO,0)|ds)p],

where a,p > 1, Cy, is the constant given by Proposition 3 and V" is
defined by (6).

If there exists a constant M such that || —i—fOT |F (s,u0,0)|ds < M, as.
then ©5F < C, PVl [(M + |uo|)? + |io|P TP] and by (10)

1 .
Yl < luol + (EZ1042) " < Jug| + CL V1w [M + Juo| + || T], a.5.
We will make the following assumptions:

(A4) There exist p > 2, a positive stochastic process 3 € L' (Q x (0,7)), a
positive function b € L' (0,7) and a real number x > 0, such that

(1) Eet(n) < oo,
(i3) for all (u,a) € Op and z € R™*k .
1
(4, F (t,u, 2)) < 5 [a> 4 B + b (t) [ul” + & |z|*
dP ® dt-a.e., (w,t) € Qx[0,T7],

and
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(As) There exist M, L > 0 and (uo, Ug) € J¢ such that:

(i) Ep*(n) < oo,
it) 4 <L, ae.,tel0,T],

—~

T
(zi) |n —I—/ |F (s,u0,0)|ds < M, as., w € Q,
0

)
w) dRy > |ug —I-C;/p 2l\Vilz 1pr + ug| + |G| T
(iv) P
T
such that E/O (F}i(s))st < 0.

We note that, if (4, F (t,u,z)) < 0, for all (u,u) € dp, then condition
(A4-ii) is satisfied with 5; = b(t) = k = 0. For example, if ¢ = I (the
convex indicator of closed convex set D) and n, denotes the unit outward
normal vector to D at y € Bd (D), then condition (n,, F'(t,y,2)) < 0 for
all y € Bd (D) yields (Ay-ii) with 8; = b(t) = k = 0. In this last case the
Ito’s formula for o (y) = [dist (y)]* and the uniqueness yields K = 0.

We also remark that if F' (¢,y,z) = F (y, z) then assumptions (As) be-
comes

In| + Ept (n) < M, as., w € Q.

Theorem 7 (Existence). Let p > 2 and assumptions (A;—As) be sat-
isfied with s — ps = p(s) and s — €y = {(s) deterministic processes.
Suppose moreover that, for all p > 0,

T P
E|n\p—|—E</O Ff(s)ds) < 00,

and one of assumptions (Ay) or (As) is satisfied. Then there exists a unique
pair (Y, Z) € S5 [0,T] x AP, (0,T) and a unique stochastic process U €
A2,(0,T) such that

T
(a) / |F(t,Y:, Zy)| dt < oo, P-a.s.,

(b) ¥ (w) € Dom (9p), dP & dt- a.e. (w,t) € Q x [0,T],
(c) Ui(w)€dp(Yi(w)), dP@dt - a.e. (w,t) e Qx]0,T]

and for allt € [0,T :

T T T
(14) Y; —I—/ Usds =n —I—/ F (s,Ys,Zs)ds — / ZsdBg, a.s.
t t t
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Moreover, uniqueness holds in ST [0,T] x AY .

(0,T), where

s 0,71 | sz [0,7].
p>1

Proof. Let (Y,Z), (Y,Z) € SL7[0,T] x AY ., (0,T) be two solutions.

Then 3p;, pp > 1 such that Y € S5 [0, 7], Y € SE2 [0, 7] and it follows that
Y,Y € S, [0, T, where p = p1 A pa. Applying Proposition 6 we obtain the
uniqueness.

To prove existence of a solution we can assume, without loss of gene-
rality, that there exists up € Dom (¢) such that

(15) 0= (up) <p(y), Yy eR™,

hence 0 € d¢ (ug), since, in the sense of Definition 1, we can replace BSVI
(1) by
—dY; 4+ 08¢ (V) dt > F (t,Y;, Z) dt — ZydB;, 0<t < T
Yr = 7,
where, for (ug, ug) € dp fixed,
~ def ~ d
?y) = ¢(y) — ¢(uo) — (do,y —uo), y €R
F(t,y,2) = F(t,y,2) — i, y e R, t€[0,7].

Step 1. Approximating problem.
Let ¢ € (0, 1] and the approximating equation

T T
Yf+/ wema)ds:m/ F (s, Y, 25) ds
t t
T
(16) —/ Z5dBs, as., t €[0,T7],
t

V. is the gradient of the Yosida’s regularization ¢, of the function ¢.
Using (15) we obtain

(A7) 0= (uo) < p(Jey) < we(y) < @(y), Je (uo) = uo, Ve(ug) = 0.

It follows from [2], Theorem 4.2 (see also [15], Chapter 5) that equation
(16) has an unique solution (Y€, Z%) € S5, [0,T] x AP . (0,T).

mxk
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Step 2. Boundedness of Y and Z¢, without supplementary assumptions
(Ag) or (As).
From Proposition 3, applied for (16), we obtain, for all a > 1,

E7 | sup |e¥ (Y7 = uo)["
s€LT)

T p/2 T p/2
(18)  + (/ Ve (Vo)ds) "+ (/ |z ds) "]
t t
T P
< Ca,pE]:t [epVT In — uol? + (/ evs \F(s,u0,0)|ds) ]
t
In particular there exists a constant independent of € such that

(@) E[Ye|7 < EIYeI5)7" <c. ,
19 T T /272/P
(19) () E/ 1222 ds < [E(/ \Z§|2ds)p } <
0 0

Moreover, from (10) we obtain
(20) 7| < o + (BT 057) "7
where ©7" is given by (13) with i = 0 (since V. (up) = 0).

Throughout the proof we shall fix a = 2 (and then V; defined by (6),
with n, =1 A (p—1) =1, becomes V; = fg [ (s) + €2 (s)] ds).

Step 3. Boundedness of Ve (YE).
Using the following stochastic subdifferential inequality (for proof see
Proposition 2.2, [13])

T
e (YE) + / (Vo (YE), dYE) < 0o (YE) = peln) < o).
t
we deduce that, for all ¢ € [0,T],
T 2
e (YE) + / Ve (VE)[2 ds < (n)

T T
() / (Ve (YE), F (5, YE, Z5)) ds — / (Vo (YE), Z2dB).
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Since

B[ 190 00 Plzzas) " < L[ s v2) ([ 17220s)"]

€ s€[0,T7]

1 T
< —2E< sup |Y55\2> —i—E(/ |Z§|2ds> < 00,
€ s€[0,T] 0

then E ftT (Ve (YE), Z5dBs) = 0. Under assumption (Ay), since Vo (YY) €
9y (J. (V). then
(Ve (Y9), F (8, Y5, Z5))
1
= - (Y§ = Je (Y5) F (s, Y5, Z5) — F (s, J: (YY), Z5))
+ (Ve (Ys), F (s, J: (Y5), Z5))

1 1
< it () Y5 = T ()P + 5 IV (VI + Bo + b (s) [T (V) + |25

From (2) and inequality |Jo (Y7)| < [J- (YE) — Je (uo)| + |uo| < |YE — wo| +
|ug| we have, for all ¢t € [0,7T],

1 T T
Boe(¥7) + 3B [ VoV ds < Bon) +2 [ 1" (5) Bou(¥)ds
t t
T
4B [ (8.4 b(s) (Y5 — wol + fuol)” + 51 Z5 ) ds
t

that yields, via estimate (18) and the backward Gronwall’s inequality, that
there exists a constant C' > 0 independent of € € (0, 1] such that

T
(@) Epe(Yf)+E / Ve (Y5)2ds < C,

(22) 0
(b) E|YF - J. (YF) < Ce.

If we suppose (As) then, from (20), we infer that

(23) |Yf\S\UOH(EE@%p)l/pé\uolJnglgf 62”V||T[M+Iuo\+\ao\T] def Ro.

Now

(Ve (YS), F (s,Ys, Z3))

= <VSO€(}/;€)’F (5’}/55’0» + <Vg05(YSE),F (S’YSE’ZS) - F(s,YSE,O))
< S Ve (YO +|Ff (s) 12+ L2 22

S

1
2
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Hence from (21) it follows that, for all ¢ € [0,77,

1 T
Bo(J. (V) + 5B [ Vo) ds
t

(24) <E <¢(n) + /tT |Fj (s)|%ds + L /tT |Z2 ds>

and from (19) we obtain boundedness inequalities (22).

Step 4. Cauchy sequence and convergence.
Let ,0 € (0,1].
We can write Y — Y = [T dK$° — [ Z2dB,, where

t
Ki? = [ [P (5.5, 20) = F(s.Y2.20) = Ve (V) + VilD)| ds.
0
Then
€ § €,0 € § € 512 1 € 512
(V¥ AKE OV <0,V e (VE), Vs (VY7 Vi 512~ 2 P,

and by Proposition 11, with p = 2,

T
B sup V- YOP+B [ 125 - Z0fds
s€[0,T] 0
T

<CE [ e+ 0)(Viae V7). V(47
< 10(s+ 5) [E/T Ve (YE)|? ds +E/T |V¢5(Y5)‘2d8] < C'(e+6).
=9 0 e\ls 0 s =

Hence there exist (Y,Z,U) € S%[0,T] x A2, (0,T) x A2 (0,T) and a
sequence €, \, 0 such that

Yer —Y, in S2,[0,7) and a.s. in C ([0,7];R™),

Zen — Z, in A2, (0,T) and a.s. in L? (0,T;R™*F) |

Vi (Y) — U, weakly in A2, (0,7),

Je, (Ye") = Y, in A2 (0,T) and a.s. in L? (0, T;R™).

n

Passing to limit in (16) we conclude that

T T T
Yt—i—/ Usds:n—l—/ F(S,Y'S,Zs)ds—/ ZsdBg, a.s.
t t t
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Since Vi (YE) € dp (J- (YS)) then for all A € F, 0 < s <t < T and
v e Sh[0,T],

t t t
E / 14 (Vi (YE), 0 — Y dr + / 1ao(J. (YE))dr < E / 1ao(v,)dr.
S S S

Passing to liminf for ¢ = ¢, Y\ 0 in the above inequality we obtain that
Us € d¢(Ys). Hence (Y,Z,U) € Sh,[0,T] x AP (0,T) x A2, (0,T) and

mxk

(Y, Z,K), with K; = fot Usds, is the solution of BSVI (1).

Step 5. Remarks in case (As).
Passing to liminf for ¢ = ¢, N\, 0 in (23) and (24) it follows, using
assumptions (As), that the solution also satisfies

(a) |Yi] < Ro, as. for all t € (0,77,
1 T
O Ee)+ 58 [ U
t
T T
SE(Q&(U)—F/ |F§Z (s)\2d5+L2/ | Zs|2ds).
0 0

The proof is completed now. O

Remark 8. The existence Theorem 7 is well adapted to the Hilbert
spaces since we do not impose an assumption of type Int (Dom (¢)) # 0,
which is very restrictive for the infinite dimensional spaces. In the context
of the Hilbert spaces Theorem 7 holds in the same form and one can give,

as examples, partial differential backward stochastic variational inequalities
(see [14]).

4. BSVI - a general existence result
We replace now assumptions (As) with Int (Dom (¢)) # 0.

Theorem 9 (Existence). Let p > 2 and assumptions (A1—As) be sa-
tisfied with s — ps = p(s) and s — €s = £ (s) deterministic processes. We
suppose moreover that Int (Dom (p)) # 0 and for all p >0

T P
E|n\p+E</0 Ff(s)ds) < 0.
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Then there exists a unique triple (Y,Z,K) € Sh[0,T] x AP

6 (0,T) x
Sh(0,T),ELT K $§/2< 00, such that for allt € [0,T] :

T T
Vit K= Ki=n+ [ FYoZ)ds— [ Zab.. as.,
t t

dK; € 0p (Yy)dt, a.s.,
Yr=mn, as.,

(25)

which means that BSVI (1) has a unique solution, and moreover
) T
E|Y |2 +E||K|E + ELRI2? + E/ Z dt < .
0

Proof. The uniqueness was proved in Proposition 6.

Step 1. Existence under supplementary assumption

aM > 0, ug € Int(Dom(dy)) such that

(26) d
Blo(n)| + 1l + [ 1F(s,u0,0)lds < M, as.we .
0

Let Ry defined by (23) and denote (; = £(t) + Ffi (t). By Theorem 7 there
exists a unique (Y, 2", U") € S5,[0,T] x AL, (0,T) x A2,(0,T) such that
Ul € 0p(Y]") and for all t € [0,T] :

T T

T
(27) Y —1—/ Ulds = n—l—/ F (s, Y, Z7) 1¢,<nds —/ Z'dBs, a.s.
t t

t

Moreover sup,cp 7 [Ys'| < Ro, a.s. and

e (] T|¢<n“>\ds)p/2 ve( [ T|Z§\2ds)p/2 <c

Let ¢g=p/2,ng=1A(¢g—1), a =2 and Vf’q given by (6).
Since
(V" =Y (P (Y 20 g <n — UL = (Y 20 ) g <nn + UFT)dt
< (VP =YL R Y Z0) (Mg <n — L <nta)dt
1Y = YAV Sz — 2 P,
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then by Proposition 11, from Appendix, (with a = 2) there exists a constant
depending only on p, such that

T p/4
B s (v -y ([ 12 - 2ppas)
s€[0,7T] 0

T
< 0 IV ei ([T (537 20 0 )
0

p/2

But

p/2
( 1C5>n|F s, Y] Z")\ds)
( "o (FE )+ 0(9)12210) ds)

< C/E ( / e 5nFp (5) ds)p/2
) T p/2] 1/ T p/27 /2
E (/0 Leonf® (s) ds> ] - [E (/0 Ve (s)|2ds> ]

1/2

| /\

/
+Cp

<

T P
» E(/O 1CSZHF1§) (s)ds) ]
T p11/2
E </ 1e.5nf? (s) ds) ] — 0, as n — oo.
0

Hence there exists a pair (Y, Z) € 5%2 [0, T x Afn/ik (0,T) such that, as n —
oo, (Y™, Z") — (Y, Z) in s/ [0,T] XA%ik; (0,7) . In particular Yj* — Yp in

R™ and from equation (27) it follows that K™ = [; Ul'ds — K, in S,[0,T].
Now by (11) for V; =V, *P we obtain

T p/2
E (/ o) dt) I
0

T p
< CeVilr [1 +T +E|n) +E</ \F(t,uo,0)|dt) ]
0

1/2
+c o

with C =C (p7 uo, ,&0) To, 90) :
Therefore

T
E1K12? < CelVir [1 +T+E|nl +E(/ |F(37U070)|d5)p]'
0
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Passing to liminf as n — oo, eventually on a subsequence, we deduce from
(18) and (20) that supyejo 77 [Ys| < Ro, a.s. and

T p/ T p/2
E</ |¢(ys)\ds> +E</ \28\2d5> <C.
0 0

To show that (Y, Z, K) is solution of BSDE (25) it remains to show that
dK; € 0p (Y;) (dt). Applying Corollary 13 we obtain dK; € 0¢ (Y;) (dt),
since dK{* = Uj'dt € Op (Y{") dt.

2

Step 2. Ezxistence without supplementary assumption (26).
Let (ug, tlg) € ¢ such that ug € Int(Dom(y)) and B (ug, r9) C Dom (¢) .
Recall that

def
@imo = sup {p (ug + rov) : [v] < 1} < .

We introduce 1" = 1o ([0 + e (M]) + w0lm,e) (1] + e (n)]) and
F" (tvyvz) = F(S,y, Z) - F(S,U0,0) 1|F(s,u0,0)|2n Cleaﬂy |77n‘ + ‘90(7771” +
|F™ (t,u0,0)| < 3n + |¢(ug)|. By Step 1, for each n € N* there exists a

unique triple (Y™, 2", K™) € S5,[0,T) x A, (0,T) x S/ (0,T) solution
of BSDE

T T
(29) Y+ (KF— K" =" +/ F" (s, Y™, Z™) ds —/ Z"dB,, as.
t t

From Corollary 5 and Proposition 6 we infer that there exists a constant
C) such that

T p/2
Erf? K" 5% +E sup I(Ys"—UONPJFE(/ |90(st)_¢(u0)‘d8>
s€[0,T] 0

+E</0T ‘ngds)p/?SCpewllvllT [ [¢fo’ro—<p(uo)}

T
(30) +E|n”—uo\p+E(/ |F™ (s,u0,0)|d5)p}
0

p/2
Tp/2+|110\pr

p/2
< Cpe?#IVlir [Sﬁo,m — (Uo)] TP/ + [P TP + E |n — uol” +

+E</OT\F(s,uO,O)|ds)p]

Remark that p > 2 is required only to obtain the estimate of E K ”f%/ 2,
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Since

(YSn - st—Hv F" (Sv stv Z;Z) - Fn+l(57 st-i-l’ Z;H—l»
< VI = Y| F (5,10, 0) 1175 00,0) >0

1
+ D/Sn o }/;n+l|2d‘/;f + Z‘z;l _ Z;“LJrl‘st
then by Proposition 11 we obtain

! T 12, \P/?
B( sup v - vp) ([ 120 - 20Pds)
s€[0,T] 0

< GV [E (1 = wol” g oty 2n)
T p
+E(/ |F(8,U0,0)‘ 1|F(s,uo,0)|2n) :| :
0

Hence there exists a pair (Y, Z) € S, [0, 7] x AP . (0,T) such that (Y™, Z™)
— (Y, Z), as n — oo, in SH,[0,T] x AP, (0,T). In particular Y] — ¥j in

R™. From equation (29) we have K™ — K in S9, [0,T], and for all ¢ € [0, T]]
T T
Y+ Ky — K; = n+/ F(s,Ys, Zs)ds —/ Z.dB., as.
t t

Letting n — oo and applying Proposition 12 we can assert that estimate (30)

holds without n. To complete the proof remark that from dK[* € dp (Y;") dt
we can infer, using Corollary 13, that dK; € dp (Y3) dt.

Therefore (Y, Z, K) is solution of BSDE (25) in the sense of Definition 1.

O

Remark 10. When p and ¢ are stochastic processes we obtain, with
similar proofs as in Theorems 7 and 9, the existence of a solution in the
space

def
Ur, . (0.7) { (V. 2)€80,[0. T A0, (0.7) : | (V. 2|, <00, Va > 1},
where

& T e p/2
1. 2)l2, < E( sup i) +E(/ V|7, [ds)
’ SG[O,T} 0
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5. Appendix

In this section we first present some useful and general estimates on
Y,Z) e SY[0,T] x A? 0,7) satisfying an identity of type
m mxk

T T
Y; = YT+/ dK, —/ Z. By, t € [0,T], P-as.,
t t

where K € 9, [0,7] and K. (w) € BV ([0,7];R™) P-a.s., w € .

The following results and their proofs are given in the monograph of
PARDOUX, RASCANU [15], Annex C.

Assume there exist

& D,R,N progressively measurable increasing continuous stochastic
processes with Dy = Ry = Ny = 0,

& V progressively measurable bounded-variation continuous stochastic
process with 1 = 0,

Sa,p>1,
such that, as signed measures on [0,7],

n
(31)  dDy+ (Yi,dKy) < (1p>2dRy + |Vi|dNy + |Y|2dV;) + ﬁ | Z,|? dt,

where n, = (p— 1) A L.

def def
Let [[VeV]] ., = and [|Ve¥| = [|veV]|

sup |Yie's .
[mT]‘ ’ 0T

S

Proposition 11. Assume (31) and

T p/2 T p
E HYeVHZ; +E (/ e?Vs 1p>2dRs> +E </ eVSdNS> < o0.
0 0

Then there ewists a positive constant C,,, depending only of a,p, such that,
P-a.s., for all t € [0,T] :

ETt LEE%} |eVSYS|p + (/tT GQVQst)p/Z N </tT v, ‘ZS‘Q ds)p/2}

T T
@) + B [ WPy dD [ Y 1y 02 ]
t t

1% P T o p/2 T P
< Ca,p E}—t[‘e TYT‘ +(/t e? SlngdRs> —i—(/t e 5CU\[S) ]
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In particular for all t € [0,T] :
v+
Yil? < Cop B5 | (V2P + 152 B+ N2) I | s
P p>2hvp T

Moreover if there exists a constant b > 0 such that for all t € [0,T] :

T 1/2 T
|eVT’VtYT| + </ eQ(VSvt)lpdes) +/ eV="YdN, < b, a.s.
. t

then for all t € [0,T] :

T p/2
(33) Y;|P +E (/ e2(Vs=W) |ZS|2ds> <WCyp, P-as.
t
The following results provides a criterion for passing to the limit in
Stieltjes integral (for the proofs we refer the reader to [15], Chapter I).

Proposition 12. Let Y, K, Y™, K" be C ([0,T] ; R™)-valued random vari-
ables, n € N. Assume

(i) 3p > 0 such that sup EJK"}}. < oo,
neN*
(@) (Y™ =Yg+ K" = Klg) 2% 0, as n — oo,
ie. Ye >0, P{(|Y" = Y|+ |K" — K||;) > e} = 0, as n — oc.

Then, for all0 < s <t<T:
t rob ¢
/<an7dKf>p—>/ (Y, dK,), as n — oo,
s S

and moreover, EJK{,. <liminf, , - EJK"]E. .

Corollary 13. Let the assumptions of Proposition 12 be satisfied. If
A R™ = R™ s a (multivalued) mazimal monotone operator then the
following implication holds

dK{" € A(Y/")dt on [0,T], a.s. = dK; € A(Y;)dt on [0,T], a.s.
In particular if ¢ : R? —] — 00, 400] is a proper convex l.s.c. function then

dK{' € 0p (Y{")dt on [0,T], a.s. = dK; € 0p(Y;)dt on [0,T], a.s.
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