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Abstract. Çöken and Çiftci proved that a null Cartan curve in Minkowski space-
time E

4

1 is a null Bertrand curve if and only if k2 is nonzero constant and k3 is zero.
That is, the null curve with non-zero curvature k3 is not a Bertrand curve in Minkowski
space-time E

4

1.

So, in this paper we defined a new type of Bertrand curve in Minkowski space-time
E

4

1 for a null curve with non-zero curvature k3 by using the similar idea of generalized
Bertrand curve given by Matsuda and Yorozu and we called it a null (1, 3)-Bertrand
curve. Also, we proved that if a null curve with non-zero curvatures in Minkowski space-
time E

4

1 is a null (1, 3)-Bertrand curve then it is a null helix. We give an example of such
curves.
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1. Introduction

In the classical differential geometry of curves in Euclidean space, Saint
Venant (see [15]) proposed the question whether upon the surface gene-
rated by the principal normal of a curve, a second curve can exist which
has for its principal normal the principal normal of the given curve. This
question was answered by Bertrand in 1850 in a paper (see [3]) in which
he showed that a necessary and sufficient condition for the existence of such
a second curve is that a linear relationship with constant coefficients exists
between the first and second curvatures of the given original curve. In other
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words, if we denote first and second curvatures of a given curve by k1 and
k2, respectively then we have λk1+µk2 = 1 where λ, µ ∈ R. Since Bertrand
published his paper, curve pairs of this type have been called Conjugate
Bertrand Curves or more commonly Bertrand Curves (see [11]). In 1888,
Bioche [4] gave a new theorem to obtain Bertrand curves by using the
given two curves C1 and C2 in Euclidean 3−space. Later, Burke [6] gave
a theorem related with Bioche’s theorem on Bertrand curves.

The following properties of Bertrand curves are well known: If two
curves have the same principal normals: (i) corresponding points are a
fixed distance apart; (ii) the tangents at corresponding points are at a fixed
angle. These well known properties of Bertrand curves in Euclidean 3-
space were extended by Pears in [14] to Riemannian n−space and found
general results for Bertrand curves. When we apply these general results to
Euclidean n-space, it is easily found that either k2 or k3 is zero. In other
words, Bertrand curves in E

n(n > 3) are degenerate curves. This result was
restated in [12] by Matsuda and Yorozu. They proved that there is no
special Bertrand curve in E

n(n > 3) and they defined new type which is
called (1, 3)-type Bertrand curve in 4-dimensional Euclidean space.

In differential geometry of curves in Minkowski space, there are three
different kinds of curves called spacelike, timelike and null ( lightlike) de-
pending on their causal characters. Many of the classical results from Rie-
mannian geometry have Lorentz counterparts. In fact, spacelike curves or
timelike curves can be studied by a similar approach to that in positive
definite Riemannian geometry. However, since the induced metric of a null
curve is degenerate, this case is much more complicated and also different
from a non-degenerate case. The presence of null curves often causes im-
portant and interesting differences as will be the case in the present study.

In Minkowski 3-space (also in a Lorentzian manifold), spacelike and
timelike Bertrand curves and their characterizations were studied in [2, 7, 9,
10]. Null Bertrand curves in Minkowski 3- space were studied by Balgetir,
Bektaş and Inoguchi in [1] and they proved the following theorem for a
null Cartan curve to be a Bertrand curve:

Theorem A. Let α be a Cartan framed null curve. Then it is a Bertrand
curve if and only if α is a null geodesic or a Cartan framed null curve with
constant second curvature k2.

Null Bertrand curves were studied in a Lorentzian manifold by Jin [10].

Çoken and Çiftci [5] proved the following theorem for Bertrand curves
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in Minkowski space-time

Theorem B. A Cartan curve in Minkowski space-time E
4
1 is a null

Bertrand curve if and only if the curvature k2 is a non-zero constant and
k3 is zero.

That is, the null curve with non-zero curvature k3 is not a Bertrand
curve in Minkowski space-time E

4
1. Also, Göçmen and Keleş [8] obtained

some new results for Cartan framed null Bertrand curves in R
4
1.

In this paper, we define a new type of Bertrand curve in Minkowski
space-time E

4
1 for a null curve with non-zero curvature k3 by using the

similar idea of generalized Bertrand curve given by Matsuda and Yorozu

[12] and we called it a null (1, 3)-Bertrand curve. Also, we prove that if a
null curve with non-zero curvatures in Minkowski space-time E

4
1 is a null

(1, 3)-Bertrand curve then it is a null helix. Also, some properties of null
(1, 3)-Bertrand curves in Minkowski space-time are given. We complete the
paper with an example of such curves.

2. Preliminaries

The Lorentzian 4 -space E
4
1 is the Euclidean 4-space E

4 equipped with
indefinite flat metric given by

g = −dx21 +

4
∑

i=2

dx2i ,

where (x1, x2, x3, x4) is a rectangular coordinate system of E4
1. Recall that

a vector v ∈ E
4
1\{0} is spacelike if g(v, v) > 0, timelike if g(v, v) < 0 and

null (lightlike) if g(v, v) = 0 and v 6= 0. In particular, the vector v = 0 is
a spacelike vector. The norm of a vector v is given by ||v||L =

√

|g(v, v)|
and two vectors v and w are said to be orthogonal if g(v,w) = 0. An
arbitrary curve α in E

4
1 can locally be spacelike, timelike or null (lightlike)

if all of its velocity vectors α′(s) are spacelike, timelike or null, respectively.
Recall that a spacelike curve in E

4
1 is called pseudo-null curve or partially-

null curve if its principal normal vector is null and its first binormal vector
is null, respectively. A spacelike or a timelike curve α has unit speed, if
g(α′(s), α′(s)) = ±1 ([13]). A null curve α is parametrized by arclength
function s if g(α′′(s), α′′(s)) = 1. In particular, a pseudo-null or a partially-
null curve α has unit speed if g(α′(s), α′(s)) = 1.
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Let {T,N1, N2, N3} be the moving Frenet frame along a null curve in
E
4
1. Then the Frenet frame field of the curve α satisfies the following Frenet

equations:

(2.1)

T ′ = k1N1,

N ′

1 = k2T − k1N2,

N ′

2 = −k2N1 + k3N3,

N ′

3 = −k3T

where the first curvature k1 (s) = 0 if α is a straight line or k1 (s) = 1 in all
other cases [16]. Such curve has two non zero curvatures k2 (s) and k3 (s) .
Moreover, this moving Frenet frame {T,N1, N2, N3} satisfies the following
conditions:

g(T, T ) = g(N2, N2) = 0, g(N1, N1) = g(N3, N3) = 1,

g(T,N1) = g(T,N3) = g(N1, N3) = g(N1, N2) = g(N2, N3)=0, g(T,N2)=1.

In this study we consider the curve α is not a straight line, that is, the first
curvature of the curve α is equal to one.

3. Null (1, 3)-bertrand curves in minkowski space-time

From [5], we know that a null curve with non-zero curvature k3 is not
a Bertrand curve in Minkowski space-time E

4
1. In this section, we give the

definition of null (1, 3)− Bertrand curve for a null curve with non-zero
curvature k3 in E

4
1. Also we give some characterizations of such curves.

Definition 3.1. Let α : I ⊂ R → E
4
1 and β : I ⊂ R → E

4
1 be null curves

with curvatures k1(s) = 1, k2(s), k3(s) 6= 0 and k1(ϕ(s)), k2(ϕ(s)), k3(ϕ(s)),
respectively, where ϕ : I → I, s = ϕ(s) is a regular C∞−function such that
each point α(s) of the curve α corresponds to the point β(s) = β(ϕ(s)) of the
curve β for all s ∈ I. If the Frenet (1, 3)-normal plane at each point α(s) of
the curve α coincides with the Frenet (1, 3)-normal plane at corresponding
point β(s) = β(ϕ(s)) of the curve β for all s ∈ I then α is called a null
(1, 3)-Bertrand curve in E

4
1 and β is called a null (1, 3)-Bertrand mate of

the curve α.

Theorem 3.1. Let α : I ⊂ R → E
4
1 be a null curve with curvature

functions k1(s) = 1, k2(s) and k3(s) 6= 0. Then α is a null (1, 3)-Bertrand
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curve if and only if there exist constant real numbers λ, δ, γ and µ 6= 0
satisfying

λ 6= 0,(3.1-a)

1 + λk2(s)− µk3(s) = 0,(3.1-b)

(k2(s))
2 + (k3 (s))

2 =
λ2

δ4
,(3.1-c)

− k2(s)

k3(s)
= γ,(3.1-d)

for all s ∈ I.

Proof.We assume that α is a null (1, 3)-Bertrand curve parametrized
by arc-length s and β is the null (1, 3)-Bertrand mate of the curve α with
arc-length s. Then we can write the curve β as

(3.2) β (s) = β (ϕ (s)) = α(s) + λ(s)N1(s) + µ(s)N3(s)

for all s ∈ I where λ(s) and µ(s) are C∞−functions on I. Differentiating
(3.2) with respect to s and by using the Frenet equations, we have

(3.3)
T (ϕ (s))ϕp (s) = [1 + λ (s) k2(s)− µ (s) k3(s)]T (s) + λp(s)N1(s)

−λ(s)k1(s)N2(s) + µp(s)N3(s)

for all s ∈ I. Since the plane spanned by N1(s) and N3(s) coincides with
the plane spanned by N1(ϕ (s)) and N3(ϕ (s)), we can write

N1(ϕ (s)) = cos θ (s)N1(s) + sin θ (s)N3(s),(3.4)

N3(ϕ (s)) = − sin θ (s)N1(s) + cos θ (s)N3(s).(3.5)

And then by using (3.4) and (3.5), we have

g(N 1(ϕ (s)), T (ϕ (s))ϕp (s)) = λp(s) cos θ (s) + µp (s) sin θ (s) = 0,

g(N 3(ϕ (s)), T (ϕ (s))ϕp (s)) = −λp(s) sin θ (s) + µp (s) cos θ (s) = 0.

Thus we get
λp(s) = 0, µp(s) = 0.

That is, λ and µ are constant functions on I. So, we can rewrite (3.2) and
(3.3) for all s ∈ I as follows:

(3.6) β (s) = β (ϕ (s)) = α(s) + λN1(s) + µN3(s)
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and

(3.7) T (ϕ (s))ϕp (s) = [1 + λk2(s)− µk3(s)]T (s)− λk1(s)N2(s).

If we denote

(3.8) ζ(s) =
1 + λk2(s)− µk3(s)

ϕp (s)
, δ(s) = −λk1(s)

ϕp (s)

for all s ∈ I. We can easily obtain that

(3.9) T (ϕ (s)) = ζ(s)T (s) + δ(s)N2(s),

where ζ(s) and δ(s) are C∞-functions on I. Since T (ϕ (s)) , T (s) and N2(s)
are lightlike vectors, we get

(3.10) ζ(s)δ(s) = 0.

That is, 1 + λk2(s) − µk3(s) = 0 or λ = 0. We assume that λ = 0 and
1+λk2(s)−µk3(s) 6= 0. In that case, we can write T (ϕ (s)) = ζ(s)T (s) and

if we differentiate the last equation with respect to s, we get dT (ϕ(s))
ds

ϕp (s) =
ζ ′(s)T (s)+ ζ(s)T ′(s). By using the Frenet equations of α and β null curves,
we have k1(ϕ(s)))N 1 (ϕ (s))ϕp (s) = ζ ′(s)T (s)+ζ(s)k1(s)N1(s). From (3.4),
it holds ζ ′(s) = 0. That is, ζ(s) is non-zero constant function on I. So we
get k1(ϕ(s))N 1 (ϕ (s))ϕp (s) = ζk1(s)N1(s), where ϕp (s) = |ζ| . Since the
null curves α and β are not straight lines, the principal curvature functions
of the null curves α and β are equal to one. That is, k1(ϕ(s)) = 1 and
k1(s) = 1. So we have N1 (ϕ (s)) = ±N1(s), for all s ∈ I. This implies that
α is a null Bertrand curve. But by Theorem B, this fact is a contradiction.
Thus we must consider only the case of λ 6= 0 and 1 + λk2(s)− µk3(s) = 0.
Then we obtain the relations (3.1-a) and (3.1-b). Hence we can write

(3.11) T (ϕ (s)) = δ(s)N2(s).

Differentiating (3.11) and by using the Frenet equations, we obtain

k1(ϕ(s)))N 1 (ϕ (s))ϕp (s) = −δ(s)k2(s)N1(s) + δ′(s)N2(s)

+ δ(s)k3(s)N3(s).(3.12)

Since N1 (ϕ (s)) is expressed by linear combination of N1(s) and N3(s), it
holds that δ′(s) = 0. That is, δ(s) is a non-zero constant function. Also
from (3.8), we can write

(3.13) ϕp (s) = −λ

δ
.
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Since λ 6= 0, it follows ϕp (s) 6= 0. Hence there exists a regular map ϕ :
I → I defined by s = ϕ (s) = −λ

δ
s + η, where η is a real constant. We can

rewrite (3.12) as k1(ϕ(s)))N 1 (ϕ (s))ϕp (s) = −δk2(s)N1(s) + δk3(s)N3(s).
and we can easily see that

(3.14)
(

ϕp (s) k1(ϕ(s))
)2

= δ2
[

(k2(s))
2 + (k3 (s))

2
]

.

By substituting (3.13) into (3.14) and using k1(ϕ(s)) = 1, we obtain the
relation (3.1-c). From (3.12), we have

N1 (ϕ (s)) = −δk2(s)

ϕp (s)
N1(s) +

δk3(s)

ϕp (s)
N3(s),

where

(3.15) cos θ (s) = −δk2(s)

ϕp (s)
, sin θ (s) =

δk3(s)

ϕp (s)
.

Differentiating (3.4) with respect to s and using the Frenet equations, we
obtain

ϕp (s) k2(ϕ(s))T (ϕ(s)) − ϕp (s) k1(ϕ(s))N 2 (ϕ (s))

= (cos θ (s))′N1(s) + (sin θ (s))′ N3(s)(3.16)

+ (cos θ (s) k2(s)− sin θ (s) k3(s))T (s)− cos θ (s) k1(s)N2(s)

for all s ∈ I. From the above fact, it holds

(3.17) (cos θ (s))′ = 0, (sin θ (s))′ = 0.

That is, θ is a constant function on L with value θ0. Let γ = (cos θ0) (sin θ0)
−1

be a constant number. So from (3.15) , we get k2(s)
k3(s)

= −γ. Thus we obtain

the relation (3.1-d).
Conversely, we assume that α : I ⊂ R → E

4
1 is a null curve with cur-

vature functions k1(s) = 1, k2(s) and k3(s) 6= 0 satisfying the relation
(3.1− a) , (3.1 − b) , (3.1− c) and (3.1 − d) for constant numbers λ, δ, γ

and µ. Then we define a null curve β : I ⊂ R → E
4
1 such as

(3.18) β(s) = α (s) + λN1(s) + µN3(s)

for all s ∈ I. Differentiating (3.18) with respect to s and by using the Frenet
equations, we have

dβ (s)

ds
= (1 + λk2(s)− µk3(s))T (s) + (−λk1(s))N2(s).
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By using (3.1-b), we obtain

dβ (s)

ds
= −λk1(s)N2(s)

for all s ∈ I. From (3.1-a), it follows dβ(s)
ds

6= 0. We consider that the curve
α is not a straight line, that is, the first curvature of the curve α is equal
to one. So we can write

(3.19) β′ (s) = −λN2(s).

Differentiating (3.19) with respect to s, we get

β′′(s) = λ (k2(s)N1(s)− k3(s)N3(s)) .

There exists a regular map ϕ : I → I defined by

s = ϕ(s) =

∫ s

0
g
(

β′′(t), β′′(t)
)

1

4 dt, (∀s ∈ I)

where s denotes the pseudo-arc length parameter of the curve β. From
(3.1-c), we obtain

(3.20) ϕp (s) = ǫ
λ

δ

for all s ∈ I, where ϕ : I → I is a regular C∞−function and

ǫ =

{

1, λ
δ
> 0

−1, λ
δ
< 0

.

Thus the curve β is rewritten as follows:

(3.21) β (s) = β(ϕ(s)) = α (s) + λN1(s) + µN3(s).

Differentiating (3.21) with respect to s, we obtain

ϕp (s)
dβ (s)

ds

∣

∣

∣

∣

s=ϕ(s)

= (1 + λk2(s)− µk3(s))T (s)− λN2(s).

From (3.1-b)

(3.22) T (ϕ(s)) = − λ

ϕp (s)
N2(s),
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where T (ϕ(s)) = dβ(s)
ds

. By substituting (3.20) into (3.22), we get

(3.23) T (ϕ(s)) = −ǫδN2(s)

for all s ∈ I. Differentiating (3.23) with respect to s and by using the Frenet
equations, we have

dT (ϕ(s))

ds
=

ǫδk2(s)

ϕp (s)
N1 (s)−

ǫδk3(s)

ϕp (s)
N3 (s)

and

(3.24)

∥

∥

∥

∥

dT (ϕ(s))

ds

∥

∥

∥

∥

=
δ2

(

(k2(s))
2 + (k3 (s))

2
)

(ϕp (s))2
.

Since the curve α is a null (1, 3)-Bertrand curve, the curvatures of α satisfy
(3.1-c). If we substitute (3.1-c) into (3.24), we get

(3.25) k1(ϕ(s)) =

∥

∥

∥

∥

dT (ϕ(s))

ds

∥

∥

∥

∥

= 1.

Then we can define a unit vector field N1(ϕ(s)) along the curve β by

N1(ϕ(s)) =
1

k1(ϕ(s))

dT (ϕ(s))

ds

=
ǫδk2(s)

ϕp (s)
N1 (s)−

ǫδk3(s)

ϕp (s)
N3 (s) .

Since N1(ϕ(s)) is expressed by linear combination of N1(s) and N3(s), we
can put N1(ϕ(s)) = cos τ (s)N1 (s) + sin τ (s)N3 (s) , where

(3.26) cos τ (s) =
ǫδk2(s)

ϕp (s)
sin τ (s) = −ǫδk3(s)

ϕp (s)

for all s ∈ I and τ (s) is a C∞−function. (3.1-c) and (3.1-d) imply that
the curvatures of the curve α k2(s) and k3(s) are constants. On the other
hand, ϕp (s) = λ

δ
=constant. Thus cos τ (s) and sin τ (s) are constants, that

is, τ (s) = τ0 =constant. We can rewrite as

(3.27) N1(ϕ(s)) = cos τ0N1 (s) + sin τ0N3 (s) .
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Differentiating (3.27) with respect to s and by using the Frenet equations,
we have

dN 1(ϕ(s))

ds
ϕp (s) = (k2 cos τ0 − k3 sin τ0)T (s)− cos τ0N2 (s) .

By using (3.26) in the above equality, we get

dN1(ϕ(s))

ds
=

ǫ

δ
T (s)− ǫδk2

(ϕp (s))2
N2 (s)

for all s ∈ I. From the Frenet equations

(3.28) k2(ϕ(s)) = −1

2
g

(

dN 1(ϕ(s))

ds
,
dN1(ϕ(s))

ds

)

=
k2

(ϕp (s))2
.

Thus we can define a unit vector field N2(ϕ(s)) along the curve β by

N2(ϕ(s)) = k2(ϕ(s))T (ϕ(s)) −
dN1(ϕ(s))

ds
,

that is,

N2(ϕ(s)) = − ǫ

δ
T (s)

Next we can define a unit vector N3 (ϕ (s)) along the curve β by N3(ϕ(s)) =
− sin τ0N1 (s) + cos τ0N3 (s) , that is,

N3(ϕ(s)) =
ǫδk3(s)

ϕp (s)
N1 (s) +

ǫδk2(s)

ϕp (s)
N3 (s) .

Thus we obtain

(3.29) k3(ϕ(s)) = −g

(

dN3(s)

ds
,N2(s)

)

= − k3(s)

(ϕp (s))2
.

Notice that g
(

T , T
)

= g
(

N2, N2

)

= 0, g
(

N1, N1

)

= g
(

N3, N3

)

= 1
and g

(

T ,N1

)

= g
(

T ,N3

)

= g
(

N1, N3

)

= g
(

N1, N 2

)

= g
(

N2, N3

)

=
0, g

(

T ,N2

)

= 1 for all s ∈ I, where
{

T ,N1, N2, N 3

}

is moving Frenet
frame along null curve β in E4

1 . And it is trivial that the Frenet (1,3)-
normal plane at each point α (s) of the curve α coincides with the Frenet
(1,3)-normal plane at corresponding point β (s) of the curve β. Hence α is
a null (1,3)- Bertrand curve in E

4
1. This completes the proof. �
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Corollary 3.1. Let α : I ⊂ R → E
4
1 be a null (1, 3)-Bertrand curve

with curvature functions k1(s) = 1, k2(s), k3(s) 6= 0 and β : I ⊂ R → E
4
1 be

a null (1, 3)-Bertrand mate of the curve α with curvature functions k1(s),
k2(s), k3(s) where s and s denote the arc-length parameter of the curves α

and β, respectively. Then the relations between these curvature functions
are

k1(ϕ(s)) = 1, k2(ϕ(s)) =
k2(s)

(ϕp (s))2
, k3(ϕ(s)) = − k3(s)

(ϕp (s))2
,

where ϕ : I → I, s = ϕ(s) is a regular C∞−function for all s ∈ I.

Proof. It is obvious from the Theorem (3.1). �

Corollary 3.2. Let α : I ⊂ R → E
4
1 be a null (1, 3)-Bertrand curve

with curvatures k1(s) = 1, k2(s), k3(s) 6= 0 and β be a null (1, 3)-Bertrand
mate of the curve α and ϕ : I → I, s = ϕ(s) is a regular C∞−function such
that each point α(s) of the curve α corresponds to the point β(s) = β(ϕ(s))
of the curve β for all s ∈ I. Then the distance between the points α(s) and
β (s) is constant for all s ∈ I.

Proof. Let α : I ⊂ R → E
4
1 be a null (1, 3)-Bertrand curve with

curvatures k1(s) = 1, k2(s), k3(s) 6= 0 and β be a null (1, 3)-Bertrand
mate of the curve α. We assume that β is distinct from α. Let the pairs
of α(s) and β(s) = β(ϕ(s)) (where ϕ : I → I, s = ϕ(s) is a regular
C∞−function) be corresponding points of the curves α and β. Then we
can write β (s) = β (ϕ (s)) = α(s) + λN1(s) + µN3(s), where λ and µ are
non-zero constants. Thus we can write β (s)−α(s) = λN1(s)+µN3(s) and
‖β (s)− α(s)‖ =

√

λ2 + µ2. So, d (α (s) , β (s)) = constant. This completes
the proof. �

Corollary 3.3. Let α : I ⊂ R → E
4
1 be a null (1, 3)-Bertrand curve

with curvature functions k1(s) = 1, k2(s), k3(s) 6= 0 and β be a null (1, 3)-
Bertrand mate of the curve α with curvature functions k1(ϕ(s)), k2(ϕ(s)),
k3(ϕ(s)). Then the curvatures of the curves α and β are constants.

Proof.We assume that α : I ⊂ R → E
4
1 is a null (1, 3)-Bertrand curve

with curvatures k1(s) = 1, k2(s) 6= 0, k3(s) 6= 0 and β is a null (1, 3)-
Bertrand mate of the curve α. In that case, the relations (3.1-c) and (3.1-d)
imply that k2(s), k3(s) are constant. From the Corollary 3.1, it can be
easily seen that the curvatures of the curve β are constant curvatures. �
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Corollary 3.4. If α : I ⊂ R → E
4
1 is a null (1, 3)-Bertrand curve with

non-zero curvatures and β is a null (1, 3)-Bertrand mate of α then α and
β are null helices.

Proof.We assume that α : I ⊂ R → E
4
1 is a null (1, 3)-Bertrand curve

with curvatures k1(s) = 1, k2(s), k3(s) 6= 0 and β is a null (1, 3)-Bertrand
mate of the curve α. Then both the curvatures k2(s), k3(s) belong to the
curve α and the curvatures k2(ϕ(s)), k3(ϕ(s)) belong to the curve β are
nonzero constants. Hence they are null helices. �

Corollary 3.5. Let α : I ⊂ R → E
4
1 be a null (1, 3)-Bertrand curve

and β be a null (1, 3)-Bertrand mate of α. Then the curvatures k2(s), k3(s)
belong to the curve α and the curvatures k2(ϕ(s)), k3(ϕ(s)) belong to the
curve β satisfy k2k3 + k2k3 = 0.

Proof. It is obvious from (3.28) and (3.29). �

Example 3.1. Let α be a null curve in E4
1 given by

α(s) =
1√
2
(sinh (s) , cosh (s) , sin (s) , cos (s)) .

The Frenet frame of the curve α is given by

T (s) =
1√
2
(cosh (s) , sinh (s) , cos (s) ,− sin (s)) ,

N1 (s) =
1√
2
(sinh (s) , cosh (s) ,− sin (s) ,− cos (s)) ,

N2 (s) =
1√
2
(− cosh s,− sinh s, cos (s) ,− sin (s)) ,

N3 (s) =
1√
2
(sinh (s) , cosh (s) , sin (s) , cos (s)) .

Then we get the curvatures of α as follows k1 (s) = 1, k2 (s) = 0, k3 (s) =
−1. By using the Theorem B, the curve α is not a null Bertrand curve.
But if we take constants λ, δ, γ and µ as λ = 1, δ = 1, γ = 0, µ = −1,
then it is trivial that the relations (3.1-a), (3.1-b), (3.1-c) and (3.1-d) hold.
Therefore, the curve α is a null (1, 3)-Bertrand curve in E

4
1. In this case, the

null (1, 3)-Bertrand mate of the curve α is given by

β(s) =
1√
2
(sinh (s) , cosh (s) ,− sin (s) ,− cos (s)) .
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By using (3.25), (3.28), (3.29), we obtain the curvatures of the curve β as
k1 = 1, k2 = 0 and k3 = 1.

Acknowledgement. The authors would like to express their sincere
gratitude to the referee for valuable suggestions to improve the paper.

REFERENCES

1. Balgetir, H.; Bektaş, M.; Inoguchi, J. – Null Bertrand curves in Minkowski

3-space and their characterizations, Note Mat., 23 (2004/05), 7–13.
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