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Abstract. COKEN and CIFTCI proved that a null Cartan curve in Minkowski space-
time IE% is a null Bertrand curve if and only if k2 is nonzero constant and ks is zero.
That is, the null curve with non-zero curvature ks is not a Bertrand curve in Minkowski
space-time Ef.

So, in this paper we defined a new type of Bertrand curve in Minkowski space-time
E} for a null curve with non-zero curvature ks by using the similar idea of generalized
Bertrand curve given by MATSUDA and YOROZU and we called it a null (1, 3)-Bertrand
curve. Also, we proved that if a null curve with non-zero curvatures in Minkowski space-
time E? is a null (1, 3)-Bertrand curve then it is a null helix. We give an example of such
curves.

Mathematics Subject Classification 2010: 53C50, 53B30.

Key words: Minkowski space-time, null curve, Frenet vectors, Bertrand curves.

1. Introduction

In the classical differential geometry of curves in Euclidean space, SAINT
VENANT (see [15]) proposed the question whether upon the surface gene-
rated by the principal normal of a curve, a second curve can exist which
has for its principal normal the principal normal of the given curve. This
question was answered by BERTRAND in 1850 in a paper (see [3]) in which
he showed that a necessary and sufficient condition for the existence of such
a second curve is that a linear relationship with constant coefficients exists
between the first and second curvatures of the given original curve. In other
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words, if we denote first and second curvatures of a given curve by k; and
ko, respectively then we have Ak; + pks = 1 where A, p € R. Since Bertrand
published his paper, curve pairs of this type have been called Conjugate
Bertrand Curves or more commonly Bertrand Curves (see [11]). In 1888,
BIOCHE [4] gave a new theorem to obtain Bertrand curves by using the
given two curves C] and Cs in Euclidean 3—space. Later, BURKE [6] gave
a theorem related with Bioche’s theorem on Bertrand curves.

The following properties of Bertrand curves are well known: If two
curves have the same principal normals: (i) corresponding points are a
fixed distance apart; (ii) the tangents at corresponding points are at a fixed
angle. These well known properties of Bertrand curves in Euclidean 3-
space were extended by PEARS in [14] to Riemannian n—space and found
general results for Bertrand curves. When we apply these general results to
Euclidean n-space, it is easily found that either ko or k3 is zero. In other
words, Bertrand curves in E"(n > 3) are degenerate curves. This result was
restated in [12] by MATSUDA and YOROZU. They proved that there is no
special Bertrand curve in E"(n > 3) and they defined new type which is
called (1,3)-type Bertrand curve in 4-dimensional Euclidean space.

In differential geometry of curves in Minkowski space, there are three
different kinds of curves called spacelike, timelike and null ( lightlike) de-
pending on their causal characters. Many of the classical results from Rie-
mannian geometry have Lorentz counterparts. In fact, spacelike curves or
timelike curves can be studied by a similar approach to that in positive
definite Riemannian geometry. However, since the induced metric of a null
curve is degenerate, this case is much more complicated and also different
from a non-degenerate case. The presence of null curves often causes im-
portant and interesting differences as will be the case in the present study.

In Minkowski 3-space (also in a Lorentzian manifold), spacelike and
timelike Bertrand curves and their characterizations were studied in [2, 7, 9,
10]. Null Bertrand curves in Minkowski 3- space were studied by BALGETIR,
BEKTAS and INOGUCHI in [1] and they proved the following theorem for a
null Cartan curve to be a Bertrand curve:

Theorem A. Let a be a Cartan framed null curve. Then it is a Bertrand
curve if and only if « is a null geodesic or a Cartan framed null curve with
constant second curvature ks.

Null Bertrand curves were studied in a Lorentzian manifold by JIn [10].

COKEN and C1rTCI [5] proved the following theorem for Bertrand curves
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in Minkowski space-time

Theorem B. A Cartan curve in Minkowski space-time E] is a null
Bertrand curve if and only if the curvature ke is a non-zero constant and
ks is zero.

That is, the null curve with non-zero curvature k3 is not a Bertrand
curve in Minkowski space-time E}. Also, GOGMEN and KELES [8] obtained
some new results for Cartan framed null Bertrand curves in Rf.

In this paper, we define a new type of Bertrand curve in Minkowski
space-time E] for a null curve with non-zero curvature k3 by using the
similar idea of generalized Bertrand curve given by MATSUDA and YOROZU
[12] and we called it a null (1, 3)-Bertrand curve. Also, we prove that if a
null curve with non-zero curvatures in Minkowski space-time Ef is a null
(1,3)-Bertrand curve then it is a null helix. Also, some properties of null
(1,3)-Bertrand curves in Minkowski space-time are given. We complete the
paper with an example of such curves.

2. Preliminaries

The Lorentzian 4 -space E‘ll is the Euclidean 4-space E* equipped with
indefinite flat metric given by

4
g=—da? + de?,
i=2

where (21, 2,73, 24) is a rectangular coordinate system of E{. Recall that
a vector v € EP\{0} is spacelike if g(v,v) > 0, timelike if g(v,v) < 0 and
null (lightlike) if g(v,v) = 0 and v # 0. In particular, the vector v = 0 is
a spacelike vector. The norm of a vector v is given by ||v||L = /|g(v,v)]
and two vectors v and w are said to be orthogonal if g(v,w) = 0. An
arbitrary curve « in E% can locally be spacelike, timelike or null (lightlike)
if all of its velocity vectors o/(s) are spacelike, timelike or null, respectively.
Recall that a spacelike curve in E‘f is called pseudo-null curve or partially-
null curve if its principal normal vector is null and its first binormal vector
is null, respectively. A spacelike or a timelike curve « has unit speed, if
g(d/(s),d/(s)) = £1 ([13]). A null curve « is parametrized by arclength
function s if g(a(s),a”(s)) = 1. In particular, a pseudo-null or a partially-
null curve o has unit speed if g(a/(s),d/(s)) = 1.
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Let {T, N1, N2, N3} be the moving Frenet frame along a null curve in
E{. Then the Frenet frame field of the curve « satisfies the following Frenet
equations:

T = kN,
1) Nl = kT — k1 No,
' Ny = —kaNi + k3N3,
N,= —ksT

where the first curvature kp (s) = 0 if « is a straight line or k7 (s) =1 in all
other cases [16]. Such curve has two non zero curvatures kz (s) and k3 (s) .
Moreover, this moving Frenet frame {7, N1, No, N3} satisfies the following
conditions:

g(T,T) = g(N2,Na) =0, g(Ni,N1) =g(N3,N3) =1,
g(T,N1) = g(T, N3) = g(N1,N3) = g(N1, Na) = g(Na, N3)=0, g(T', N2)=1.

In this study we consider the curve « is not a straight line, that is, the first
curvature of the curve « is equal to one.

3. Null (1,3)-bertrand curves in minkowski space-time

From [5], we know that a null curve with non-zero curvature k3 is not
a Bertrand curve in Minkowski space-time Ef. In this section, we give the
definition of null (1,3)— Bertrand curve for a null curve with non-zero
curvature k3 in E. Also we give some characterizations of such curves.

Definition 3.1. Let « : I C R — Ef and 8: T C R — E{ be null curves
with curvatures k1(s) = 1, ka(s), k3(s) # 0 and k1(¢(s)), k2(p(s)), k3(o(s)),
respectively, where o : I — 1,5 = ¢(s) is a regular C*°—function such that
each point a(s) of the curve « corresponds to the point 5(3) = B(p(s)) of the
curve [ for all s € I. If the Frenet (1, 3)-normal plane at each point «(s) of
the curve «a coincides with the Frenet (1,3)-normal plane at corresponding
point (3) = B(p(s)) of the curve g for all s € I then « is called a null
(1,3)-Bertrand curve in E{ and 3 is called a null (1,3)-Bertrand mate of

the curve a.

Theorem 3.1. Let o : I C R — Ef be a null curve with curvature
functions ki(s) = 1, ka(s) and k3(s) # 0. Then « is a null (1,3)-Bertrand
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curve if and only if there exist constant real numbers A\, §, v and p # 0
satisfying

(3.1-a) A#0,
(3.1-b) 1+ Aka(s) — pks(s) =0,
2
(310 (kals))? + (ks () = 55,
ka(s)
(3.1-d) - kZ Ot
for all s € 1.

Proof. We assume that « is a null (1, 3)-Bertrand curve parametrized
by arc-length s and /5 is the null (1,3)-Bertrand mate of the curve o with
arc-length 5. Then we can write the curve g as

(3.2) B(5) =B(p(s) = a(s) + Als)N1(s) + pu(s)N3(s)

for all s € I where A(s) and u(s) are C°°—functions on I. Differentiating
(3.2) with respect to s and by using the Frenet equations, we have

(3.3) T(p(s)¢ ()= [L+A(s)ka(s) — p(s) ks(s)] T (s) + N (s)N1(s)
' —A(s)k1(s)Na(s) + p'(s) N3 (s)

for all s € I. Since the plane spanned by Nj(s) and N3(s) coincides with
the plane spanned by N1(p (s)) and N3( (s)), we can write

(3.4) Nifp (s
(3.5) Ns(p (s

And then by using (3.4) and

)) = cos @ (s) Ni(s) +sinf (s) N3(s),
)) = —siné (s) Ni(s) + cos O (s) N3(s).
(3.5), we have

919 (5)), T (¢ (5)) ¢' (5)) = X(s) cos 0 (s) + ' (s) sinf (s) =0,

9(Nslp (), (4 (5)) ' (5)) = —N(s) sin ) (s) + ' (s) cos 6 (s) = 0.
Thus we get

A(s) =0, u'(s) =0.

That is, A and p are constant functions on I. So, we can rewrite (3.2) and
(3.3) for all s € I as follows:

(3.6) B(5) = B(¢(s)) = als) + ANi(s) + ulNs(s)
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and
(3.7) T (¢ (5) ¢ (5) = [1+ Mka(s) — pks(s)] T(s) — M1 (s)Na(s).

If we denote

14 Aka(s) — pks(s) &) — _ Aka(s)
(33) Clo) = R TR ats) = =S
for all s € I. We can easily obtain that
(3.9) T (¢ (s)) = C(s)T'(s) + 3(s)Na(s),

where ((s) and §(s) are C*°-functions on I. Since T (¢ (s)), T(s) and Na(s)
are lightlike vectors, we get

(3.10) C(s)d(s) = 0.

That is, 1 + Aka(s) — pks(s) = 0 or A = 0. We assume that A = 0 and
14 Mko(s) — pks(s) # 0. In that case, we can write T (¢ (s)) = ((s)T'(s) and
if we differentiate the last equation with respect to s, we get %gp‘ (s) =
¢'(s)T(s)+¢(s)T'(s). By using the Frenet equations of o and /3 null curves,
we have k1(p(s))) N1 (¢ (s)) @' () = ('(5)T(s) +((s)k1(s) N1 (s). From (3.4),
it holds ¢’(s) = 0. That is, ((s) is non-zero constant function on I. So we
get k1(p(s))N1 (¢ (s)) @' (s) = Cki(s)Ni(s), where ¢'(s) = |¢|. Since the
null curves a and § are not straight lines, the principal curvature functions
of the null curves o and 3 are equal to one. That is, ki(¢(s)) = 1 and
k1(s) = 1. So we have N1 (¢ (s)) = £Ny(s), for all s € I. This implies that
« is a null Bertrand curve. But by Theorem B, this fact is a contradiction.
Thus we must consider only the case of A # 0 and 1 + Aka(s) — uks(s) = 0.
Then we obtain the relations (3.1-a) and (3.1-b). Hence we can write

(3.11) T (¢ (s)) = 0(s)Na(s).

Differentiating (3.11) and by using the Frenet equations, we obtain
E1(0(s)N1 (9 (5)) ¢ (5) = —0(s)k2(s)N1(s) + &' (5) Na(s)

(3.12) + 0(s)ks(s)N3(s).

Since N1 (i (s)) is expressed by linear combination of Ny (s) and N3(s), it
holds that ¢’(s) = 0. That is, d(s) is a non-zero constant function. Also
from (3.8), we can write

(3.13) o (s)=—=.
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Since A # 0, it follows ¢' (s) # 0. Hence there exists a regular map ¢ :
I — I defined by s = ¢ (s) = —%s —+ n, where 7 is a real constant. We can
rewrite (3.12) as k1(¢(s)))N1 (¢ (s)) @' (s) = —dka(s)Ni(s) + dks(s)N3(s).
and we can easily see that

(3.14) (' () Fr(p(5)))” = 62 [(ha(s))* + (ks (5))%]

By substituting (3.13) into (3.14) and using ki(p(s)) = 1, we obtain the
relation (3.1-c). From (3.12), we have

— o _5]{}2(8) s (51@‘3(8) s
Wi lp () = 22 M)+ T2 N,
where
o _(51@‘2(8) sinf (s) = 5]{}3(8)
(3.15) cosf (s) = 2 (s)’ 0 (s) 2 (5)°

Differentiating (3.4) with respect to s and using the Frenet equations, we
obtain

©'(5) ka((s))T(0(5)) — ¢ (5) k1 (o(5)) N2 (0 (5))
(3.16) = (cos 6 (s)) N1(s) + (sin 6 (s))" N3(s)
+ (cos O (s) ka(s) —siné (s) kz(s)) T'(s) — cos 8 (s) k1(s)Na(s)

for all s € I. From the above fact, it holds

(3.17) (cosf(s)) =0, (sinf(s)) =0.
That is, 6 is a constant function on L with value 6. Let v = (cos 6g) (sin ) "
be a constant number. So from (3.15) , we get ]]zz—gg = —rv. Thus we obtain

the relation (3.1-d).

Conversely, we assume that o : I C R — E% is a null curve with cur-
vature functions ki(s) = 1, ka(s) and k3(s) # O satisfying the relation
(31—a), (3.1 -0), (3.1 —c¢) and (3.1 —d) for constant numbers A, J, v
and . Then we define a null curve 8 : I C R — Ef such as

(3.18) B(s) = a(s) + AN1(s) + uN3(s)

for all s € I. Differentiating (3.18) with respect to s and by using the Frenet
equations, we have

%t(j) = (1 4+ Mka(s) — pks(s)) T (s) + (—Ak1(s)) Na(s).
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By using (3.1-b), we obtain
dp (s)

ds = —)\k‘l(S)NQ(S)

for all s € I. From (3.1-a), it follows di(:) # 0. We consider that the curve

« is not a straight line, that is, the first curvature of the curve « is equal
to one. So we can write

(3.19) B (s) = —=ANy(s).
Differentiating (3.19) with respect to s, we get
B"(s) = A(ka(s)N1(s) — ks(s)Ns(s)) -
There exists a regular map ¢ : I — I defined by
$ 1
5 = o(s) = / g(B"(1).5" )T dt,  (Vsel)
0

where 5 denotes the pseudo-arc length parameter of the curve 5. From
(3.1-c), we obtain

(3.20) ' (s) =e€=

>0
<0’

o™
1
—N—
| =
[
> >

Thus the curve 3 is rewritten as follows:

(3.21) B(5) = B(p(5)) = o (s) + AN1(5) + uNas).
Differentiating (3.21) with respect to s, we obtain
o (s dﬁdf) — (14 Ma(s) — piks()) T (s) — ANo(s).
5=¢p(s)
From (3.1-b)
(322) T(e(s)) = ~ 2= M),
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where T(p(s)) = di(s). By substituting (3.20) into (3.22), we get

(3.23) T(p(s)) = —€dNa(s)

for all s € I. Differentiating (3.23) with respect to s and by using the Frenet
equations, we have

dT(p(s) _ edka(s) ooy €Oka(s)
s ¢ (s) 1(5) o' (s) N (s)

and
(3.2 |{Ttton) 5 Gt + i)

ds (¢ (5))°

Since the curve «a is a null (1, 3)-Bertrand curve, the curvatures of « satisfy
(3.1-c). If we substitute (3.1-c) into (3.24), we get

(3.25) k1(p(s)) = H@H =1

Then we can define a unit vector field N1(y(s)) along the curve 3 by

~ _ 1 dT(e(s))
Milpls) = ==
6(51@‘2(8)

= (pl (8) N1 (8)_

6(51@‘3(8)
¢ (s)

N3 (8) .
Since N1(p(s)) is expressed by linear combination of Ni(s) and N3(s), we
can put N1(¢(s)) = cosT(s) N1 (s) + sin (s) N3 (s), where

6(51@‘2(8)
¢ (s)

B 65]{}3(8)
¢ (s)

(3.26) cosT(s) = sinT (s) =
for all s € I and 7 (s) is a C*°—function. (3.1-c) and (3.1-d) imply that
the curvatures of the curve a ko(s) and ks(s) are constants. On the other
hand, ¢'(s) = % =constant. Thus cos7 (s) and sin 7 (s) are constants, that
is, 7 (s) = 19 =constant. We can rewrite as

(3.27) Ni(¢(s)) = cosToNy (s) + sin o N3 (s) .
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Differentiating (3.27) with respect to s and by using the Frenet equations,
we have

%{?S))SO (s) = (k2 cosTo — k3sinTo) T'(s) — cos o N2 (s) .

By using (3.26) in the above equality, we get

dN1(p(s)) _ € (s) — €dko
ds 0 (¢ (5))°

N2 (8)

for all s € I. From the Frenet equations

325 alpla) = —go (T A -
Thus we can define a unit vector field No(¢(s)) along the curve 3 by
Na(p(s)) = Falis))T((s)) — UL,

that is, )
Na(p(s)) = =5T(s)

Next we can define a unit vector N3 (¢ (s)) along the curve 8 by N3(¢(s)) =
—sin9N1 (s) + cos 79 N3 (), that is,

— _ €bks(s)

Na(o(s)) = s edka(s)

Ny (s) + 2 ()

N3 (8) .

Thus we obtain

B2 Folel) = - (TR o)) = 20

Notice that g(T,T) = g(NQ,NQ) = O, g(Nl,Nl) = g(Ng,Ng) =1
and g(iwl) = Q(T,N3) = Q(NbNi%) = Q(N1,N2) = 9(N2,N3) =
0, g (T, Ng) = 1 for all s € I, where {T, Nl,NQ,Ng} is moving Frenet
frame along null curve 3 in Ef. And it is trivial that the Frenet (1,3)-
normal plane at each point « (s) of the curve a coincides with the Frenet
(1,3)-normal plane at corresponding point f (3) of the curve 5. Hence « is
a null (1,3)- Bertrand curve in E{. This completes the proof. O
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Corollary 3.1. Let a : I C R — Ef be a null (1,3)-Bertrand curve
with curvature functions k1(s) =1, ka(s), k3(s) #0 and B: T C R — Ef be
a null (1,3)-Bertrand mate of the curve a with curvature functions ki (3),
k2(3), k3(3) where s and 5 denote the arc-length parameter of the curves a
and B, respectively. Then the relations between these curvature functions

wee _ ko(s) - s (s)
k s)) =1,k s)) = ——"—"=, =
(o) = 1, Faple) = 20

where ¢ : I — 1,5 = p(s) is a reqular C>°—function for all s € I.

Proof. It is obvious from the Theorem (3.1). O

Corollary 3.2. Let a : I C R — Ef be a null (1,3)-Bertrand curve
with curvatures ky(s) = 1, ka(s), ks(s) # 0 and B be a null (1, 3)-Bertrand
mate of the curve o and ¢ : I — 1,5 = ¢(s) is a regular C*®°— function such
that each point a(s) of the curve o corresponds to the point 3(3) = B(¢(s))
of the curve B for all s € 1. Then the distance between the points a(s) and
B (5) is constant for all s € I.

Proof.Let o : I € R — E} be a null (1,3)-Bertrand curve with
curvatures ki(s) = 1, kao(s), k3(s) # 0 and 8 be a null (1,3)-Bertrand
mate of the curve a. We assume that 5 is distinct from «. Let the pairs
of a(s) and B(3) = B(¢(s)) (where ¢ : I — I,5 = ¢(s) is a regular
C*°—function) be corresponding points of the curves a and . Then we
can write 3(3) = (¢ (s)) = a(s) + AN1(s) + uN3(s), where A and p are
non-zero constants. Thus we can write £ (5) — a(s) = ANy (s) + uN3(s) and
I8 (3) — a(s)|| = VA2 + 2. So, d(a(s),(3)) = constant. This completes
the proof. O

Corollary 3.3. Let o : I C R — E} be a null (1,3)-Bertrand curve
with curvature functions ki(s) = 1, ka(s), k3(s) # 0 and 5 be a null (1,3)-
Bertrand mate of the curve a with curvature functions k1(o(s)), k2(¢(s)),
k3(p(s)). Then the curvatures of the curves o and (3 are constants.

Proof. We assume that o : I C R — Ef is a null (1, 3)-Bertrand curve
with curvatures ki(s) = 1, kao(s) # 0, k3(s) # 0 and § is a null (1, 3)-
Bertrand mate of the curve a. In that case, the relations (3.1-c) and (3.1-d)
imply that ka(s), ks(s) are constant. From the Corollary 3.1, it can be
easily seen that the curvatures of the curve § are constant curvatures. [
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Corollary 3.4. If a: I C R — E} is a null (1,3)-Bertrand curve with
non-zero curvatures and 5 is a null (1,3)-Bertrand mate of o then a and
B are null helices.

Proof. We assume that a : I C R — E{ is a null (1, 3)-Bertrand curve
with curvatures ki(s) = 1, ka(s), k3(s) # 0 and 3 is a null (1, 3)-Bertrand
mate of the curve a. Then both the curvatures ko(s), k3(s) belong to the
curve o and the curvatures k2(¢(s)), k3(¢(s)) belong to the curve 3 are
nonzero constants. Hence they are null helices. O

Corollary 3.5. Let a : I C R — E{ be a null (1,3)-Bertrand curve
and B be a null (1,3)-Bertrand mate of a. Then the curvatures ka(s), ks(s)
belong to the curve a and the curvatures ka(p(s)), k3(¢(s)) belong to the
curve (8 satisfy koks + koks = 0.

Proof. It is obvious from (3.28) and (3.29). O

Example 3.1. Let a be a null curve in Ef given by

a(s) = —= (sinh (s) , cosh (s),sin (s), cos (s)) .

N

The Frenet frame of the curve « is given by

T(s) = % (cosh (s) , sinh () , cos (s) , — sin (s)) .
Ni(s) = %(sinh(s),cosh(s),—sin(s),—cos(s)),
Na(s) = % (— coshs, — sinh s, cos (s) , — sin (s))
Ny(s) = —= (sinh(s),cosh (s),sin (s),cos ().

S

Then we get the curvatures of «v as follows kq (s) =1, ko(s) =0, ks(s)=
—1. By using the Theorem B, the curve « is not a null Bertrand curve.
But if we take constants A\, §, yand pas A=1, §d=1, v=0, pu= -1,
then it is trivial that the relations (3.1-a), (3.1-b), (3.1-c) and (3.1-d) hold.
Therefore, the curve a is a null (1, 3)-Bertrand curve in Ef. In this case, the
null (1, 3)-Bertrand mate of the curve « is given by

1 . .
B(s) = 7 (sinh (s), cosh (s), —sin (s), —cos (s)) .
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By using (3.25), (3.28), (3.29), we obtain the curvatures of the curve 3 as
]{lel, kQZO and k3:1
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