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1. Introduction and main results

In this paper, we will use the standard notations of Nevanlinna,s value
distribution theory as in [3].

Let f be a nonconstant meromorphic function in the whole complex
plane C, we set E(a, f) = {z|f(z) − a = 0, counting multiplicties}, and
E(S, f) =

⋃

a∈S E(a, f), where S denotes a set of complex numbers. Let p
be a positive integer. Set

Ep(S, f) =
⋃

a∈S

{z|f(z) − a = 0,∃ i, 0 < i ≤ p, s.t. f (i)(z) 6= 0},

where each zero of f(z) − a with multiplicity m is counted m times when
m ≤ p in E(S, f).

*The research of authors was supported by NSF of Guangxi China (0728041) and NSF
of China (Grant No. 10671109), and the Scientific Research Foundation for the Returned
Overseas Chinese Scholars, State Education Ministry.



422 WEI-LING XIONG, YI ZHANG and WEI-CHUAN LIN 2

Let f and g be two nonconstant entire functions, n,m, l, t and k be
positive integers, we set

F = [fn(f l − 1)t](k), G = [gn(gl − 1)t](k),(1.1)

Hm =
(Fm)′′

(Fm)′
− 2

(Fm)′

Fm − 1
−

(Gm)′′

(Gm)′
+ 2

(Gm)′

Gm − 1
,(1.2)

and Sm = {1, ω, ω2, · · · , ωm−1}, where ω = e
2π
m

i.
Fang [1] proved the following result.

Theorem A ([1]). Let f and g be two nonconstant entire functions,

and let n, k be tow positive integer with n > 2k + 8. If [fn(z)(f(z) − 1)](k)

and [gn(z)(g(z) − 1)](k) share 1 CM, then f(z) ≡ g(z).
Zhang and Lin [7] improved Theorem A and obtained the following

results.

Theorem B ([7]). Let f and g be two nonconstant entire functions,

and let n,m and k be three positive integers with n > 2k + m1 + 4, and

a, b be constants such that |a| + |b| 6= 0. If [fn(z)(afm(z) + b)](k) and

[gn(z)(agm(z) + b)](k)share 1 CM, then:

(i) when ab 6= 0, f(z) ≡ g(z);
(ii) when ab = 0, either f(z) ≡ tg(z), where t is a constant satisfying

tn+m1 = 1, or f(z) = c1e
cz, g(z) = c2e

−cz, where c1, c2 and c are three

constants satisfying

(−1)ka2(c1c2)
n+m1{(n+m1)c}

2t = 1, or(−1)kb2(c1c2)
n+m1{(n+m1)c}

2t = 1,

when a = 0, m1 = 0, when a 6= 0, m1 = m.

Theorem C ([7]). Let f and g be two nonconstant entire functions,

and let n,m and k be three positive integers with n > 2k + m + 4. If

[fn(z)(f(z)−1)m](k) and [gn(z)(g(z)−1)m ](k) share 1 CM, then f(z) ≡ g(z),
or f and g satisfy the algebraic equation R(f, g) ≡ 0, where R(ω1, ω2) =
ωn
1 (ω1 − 1)m − ωn

2 (ω2 − 1)m.

Zhang and Xiong [8] improved Theorem B and Theorem B and ob-
tained the following results.

Theorem D ([8]). Let f and g be two transcendental entire functions,

n,m, t, l, p be positive integers. If E1(Sm, [fn(f l−1)t](p)) = E1(Sm, [gn(gl−
1)t](p)) and n > 6

m
+ 3tl + 4p, then f(z) ≡ bg(z), where bl = 1.
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In this article, we prove

Theorem 1. Let f and g be two transcendental entire functions, n,m, t,
l, k and p(≥ 2) be positive integers. If Ep(Sm, [fn(f l − 1)t](k)) = Ep(Sm,
[gn(gl−1)t](k)) and n > max{p+1

p−1 [
4
m
+2k+tl+ 2tl

p+1 ],
3t
2 }, then f(z) ≡ bg(z),

where bl = 1.

Remark 1. Under the condition of Theorem 1, let p → ∞ and m = 1,
one can check that the result of theorem 1 is still valid if E(1, [fn(f l −
1)t](k)) = E(1, [gn(gl − 1)t](k)) and n > max{4+2k+ tl, 3t2 }. Note that as p
goes to ∞ our Theorem 1 includes Theorem A , Theorem B and Theorem C
as special cases. We also note that our Theorem 1 together with Theorem
D gives the complete solution to the uniqueness problem of entire functions
sharing a set of values.

2. Lemmas

To prove the theorem, we need the following lemmas.

Lemma 1 ([4]). Let f(z) be a nonconstant meromorphic functions and

let R(f) =
∑n

k=0 akf
k/

∑m
j=0 bjf

j be an irreducible rational function in f
with constant coefficient {ak} and {bj}, where an 6= 0 and bm 6= 0. Then

T (r,R(f)) = dT (r, f) + S(r, f), where d =max{n,m}.

Lemma 2 ([6]). Let f(z) be a nonconstant meromorphic function,k be

positive integer, if f (k) 6≡ 0, then N(r, 1
f(k) ) ≤ N(r, 1

f
) + kN(r, f) + S(r, f).

Lemma 3 ([6, Second Fundamental Theorem]). Let f(z) be a noncon-

stant meromorphic function, a1, · · · , an(n ≥ 3) be complex numbers such

that when k 6= j, ak 6= aj , then

(n − 2)T (r, f) ≤ N

(

r,
1

f − a1

)

+N

(

r,
1

f − a2

)

+ · · ·+N

(

r,
1

f − an

)

−N1(r) + S(r, f),

where N1(r) = 2N(r, f) −N(r, f ′) +N(r, 1
f ′ ).

By second fundamental theorem, we have

(n− 2)T (r, f) ≤ N(r,
1

f − a1
) +N(r,

1

f − a2
) + · · · +N(r,

1

f − an
)

−N0(r,
1

f ′
) + S(r, f),
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where N0(r,
1
f ′ ) is the counting function which only counts those points such

that f ′ = 0 but f 6= ak, k = 1, · · · , n.

Lemma 4. Let F , G and Hm be defined as in (1.1) and (1.2), p(≥ 2)
be a positive integer. If Ep(Sm, F ) = Ep(Sm, G), and n > k + 2, Hm 6≡ 0,
then

m[m(r,
1

F
) +m(r,

1

G
)] ≤ N(r,

1

Fm
) +N(r,

1

Gm
)

− 2(m(n− k)− 2)[N(r,
1

f
) +N(r,

1

g
)]

+
2m

p+ 1
(T (r, F ) + T (r,G)) + S(r),

where S(r) = max{S(r, f), S(r, g)}.

Proof. Since Ep(Sm, F ) = Ep(Sm, G),we have Ep(1, F
m) = Ep(1, G

m).
Suppose that z0 is a common simple zero-point of Fm − 1 and Gm − 1. It
follows from (1.2) that z0 is a zero-point of Hm. Moreover, we know that
the zero-points of Fm−1 and Gm−1 with multiplicity q(≤ p) are not poles
of Hm, the simple pole and simple zero-points of Fm or Gm also are not
poles of Hm. Thus, we have

N1)(r,
1

Fm − 1
) = N1)(r,

1

Gm − 1
) ≤ N(r,

1

Hm
)

≤ T (r,Hm) +O(1) ≤ N(r,Hm) + S(r).

Furthermore, by the definition of Hm, we obtain

N1)(r,
1

Fm − 1
) = N1)(r,

1

Gm − 1
) ≤ N (2(r,

1

Fm
) +N (2(r,

1

Gm
)

+N0(r,
1

(Fm)′
) +N0(r,

1

(Gm)′
)

+N (p+1(r,
1

Fm − 1
) +N (p+1(r,

1

Gm − 1
) + S(r)(2.1)

≤ N (2(r,
1

Fm
)+N (2(r,

1

Gm
)+N0(r,

1

(Fm)′
)+N0(r,

1

(Gm)′
)

+
m

p+ 1
[T (r, F ) + T (r,G)] + S(r).
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By the second fundamental theorem, we have

m(T (r, F ) + T (r,G)) = T (r, Fm) + T (r,Gm) ≤ N(r, Fm)

+N(r,
1

Fm
) +N(r,

1

Fm − 1
) +N(r,Gm) +N(r,

1

Gm
)

+N(r,
1

Gm − 1
)− [N0(r,

1

(Fm)′
) +N0(r,

1

(Gm)′
)] + S(r)(2.2)

= N(r,
1

Fm
) +N(r,

1

Fm − 1
) +N(r,

1

Gm
) +N(r,

1

Gm − 1
)

− [N0(r,
1

(Fm)′
) +N0(r,

1

(Gm)′
)] + S(r).

By Lemma 2, we get N(r, 1
(Gm)′ ) ≤ N(r, 1

Gm ) + S(r). Thus

N0(r,
1

(Gm)′
) +N (2(r,

1

Gm − 1
) +N(2(r,

1

Gm
)−N (2(r,

1

Gm
)

≤ N(r,
1

(Gm)′
) ≤ N(r,

1

Gm
) + S(r).

It follows that

(2.3) N0(r,
1

(Gm)′
) +N (2(r,

1

Gm − 1
) ≤ N(r,

1

Gm
) + S(r).

Similarly, we have

(2.4) N0(r,
1

(Fm)′
) +N (2(r,

1

Fm − 1
) ≤ N(r,

1

Fm
) + S(r, f).

From (2.1)-(2.4), we have

m(T (r, F ) + T (r,G)) ≤ 2[N (2(r,
1

Fm
) +N (2(r,

1

Gm
)] + 2[N(r,

1

Fm
)

+N(r,
1

Gm
)] +

2m

p+ 1
[T (r, F ) + T (r,G)] + S(r).(2.5)

Since

N(r,
1

Fm
) +N (2(r,

1

Fm
) ≤ N(r,

1

Fm
)− [N(3(r,

1

Fm
)− 2N (3(r,

1

Fm
)]

and

N(3(r,
1

Fm
)− 2N (3(r,

1

Fm
) ≥ [m(n− k)− 2]N(r,

1

f
),
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we have

(2.6) N(r,
1

Fm
) +N (2(r,

1

Fm
) ≤ N(r,

1

Fm
)− [m(n− k)− 2]N(r,

1

f
).

Similarly,

(2.7) N(r,
1

Gm
) +N (2(r,

1

Gm
) ≤ N(r,

1

Gm
)− [m(n− k)− 2]N(r,

1

g
).

Combine (2.5)-(2.7), we have

m[T (r, F ) + T (r,G)] ≤ 2[N(r,
1

Fm
)− (m(n− k)− 2)N(r,

1

f
)]

+ 2[N(r,
1

Gm
)− (m(n − k)− 2)N(r,

1

g
)]

+
2m

p+ 1
[T (r, F ) + T (r,G)] + S(r),

thus

m[m(r,
1

F
)+m(r,

1

G
)]≤N(r,

1

Fm
)+N(r,

1

Gm
)−2(m(n − k)− 2)[N(r,

1

f
)

+N(r,
1

g
)] +

2m

p+ 1
(T (r, F ) + T (r,G)) + S(r),

which completes the proof of Lemma 4.

Lemma 5. Let F , G and Hm be defined as in (1.1) and (1.2), k(≥ 2) be
positive integer. If Ep(Sm, F ) = Ep(Sm, G), and n > p+1

p−1(
4
m
+2k+tl+ 2tl

p+1),
then Hm ≡ 0.

Proof. Let F1 = fn(f l − 1)t, G1 = gn(gl − 1)t. Since Ep(Sm, F ) =
Ep(Sm, G), we get Ep(1, F

m) = Ep(1, G
m).

If Hm 6≡ 0, by Lemmas 1 and 4, we have

mT (r, F ) +mT (r,G) = T (r, Fm) + T (r,Gm),m[m(r,
1

F
)

+m(r,
1

G
)] ≤ N(r,

1

Fm
) +N(r,

1

Gm
)

− 2(m(n − k)− 2)[N(r,
1

f
) +N(r,

1

g
)](2.8)

+
2m

p+ 1
[T (r, F ) + T (r,G)] + S(r).
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Since F
(k)
1 = F , G

(k)
1 = G, thus

(2.9) m(r,
1

F1
) ≤ m(r,

1

F
) + S(r, f),m(r,

1

G1
) ≤ m(r,

1

G
) + S(r, g).

By Lemma 2, we have

(2.10) N(r,
1

F
) ≤ N(r,

1

F1
) + S(r, f), N(r,

1

G
) ≤ N(r,

1

G1
) + S(r, g).

Combining (2.8)-(2.10) we have

m(1−
2

p+ 1
)[m(r,

1

F1
) +m(r,

1

G1
)] ≤ m(1 +

2

p+ 1
)[N(r,

1

F1
) +N(r,

1

G1
)]

− 2(m(n− k)− 2)[N(r,
1

f
) +N(r,

1

g
)] + S(r).

Thus

m(1−
2

p+ 1
)[T (r,

1

F1
) + T (r,

1

G1
)] ≤ 2m[N(r,

1

F1
) +N(r,

1

G1
)]

− 2(m(n− k)− 2)[N(r,
1

f
) +N(r,

1

g
)] + S(r),

we get

m(1−
2

p+ 1
)(n+ lt)[T (r, f) + T (r, g)] ≤ (2mk + 4)[N(r,

1

f
) +N(r,

1

g
)]

+ 2mt[N(r,
1

f l − 1
) +N(r,

1

gl − 1
)] + S(r)

≤ (2mk + 4 + 2mtl)[T (r, f) + T (r, g)] + S(r),

which contradicts the assumption that n > p+1
p−1(

4
m
+2k+tl+ 2tl

p+1) . Therefore
Hm ≡ 0, which completes the proof of Lemma 5.

Lemma 6 ([6]). Let f be a transcendental entire function, k be a positive

integer, and c be a nonzero finite complex number. Then

T (r, f) ≤ N(r,
1

f
) +N(r,

1

f (k) − c
)−N(r,

1

f (k+1)
) + S(r, f)

≤ Nk+1(r,
1

f
) +N(r,

1

f (k) − c
)−N0(r,

1

f (k+1)
) + S(r, f),
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where N0(r, 1/f
(k+1)) is the counting function which only counts those points

such that f (k+1) = 0 but f(fk − c) 6= 0.

Lemma 7 ([6]). Let f be a transcendental meromorphic function, a1
and a2 be two meromorphic functions such that T (r, aj) = S(r, f)(j = 1, 2)
and a1 6≡ a2, then

T (r, f) ≤ N(r, f) +N(r,
1

f − a1
) +N(r,

1

f − a2
) + S(r, f).

Lemma 8 ([2]). Let f and g be two entire functions. If there exists

two nonconstant polynomials p and q such that p ◦ f(z) = q ◦ g(z), then
there exists entire function h and rational functions U(z) and V (z) such

that f(z) = U ◦ h(z), g(z) = V ◦ h(z).

Lemma 9. Let U and V be two rational functions, n and t be two

positive integers such that n > 3t
2 , and set Un(U − 1)t ≡ aV n(V − 1)t. If

there exists z0 such that U(z0) = 0, and z0 is a zero of V −1 with multiplicity

q < 4, then U j(U − 1) ≡ akV j(V − 1), where j = 2 or j = 3, kt = 1.

Proof. Suppose that z0 is a zero of U(z) with multiplicity p, by Un(U−
1)t ≡ aV n(V − 1)t, we have np = qt.

If q = 1, then np = t, which contradicts with n > 3t
2 .

If q = 2, then np = 2t. Since n > 3t
2 , we get p = 1, so n = 2t and

U2(U − 1) ≡ akV 2(V − 1), where kt = 1.

If q = 3, then np = 3t. Since n > 3t
2 , we get p = 1, so n = 3t and

U3(U − 1) ≡ akV 3(V − 1), where kt = 1. Which completes the proof of
Lemma 9.

3. Proof of Theorem 1

Let F , G and Hm be defined as in (1.1) and (1.2). By Lemma 5, we have

Hm ≡ 0, that is (Fm)′′

(Fm)′ − 2 (Fm)′

Fm−1 ≡ (Gm)′′

(Gm)′ − 2 (Gm)′

Gm−1 . Thus

(3.1)
1

Gm − 1
≡

A

Fm − 1
+B,

where A 6= 0 and B be two constants. Hence E(1, Fm) = E(1, Gm),
T (r, F ) = T (r,G) + S(r, F ).

We will prove the theorem by the following four steps.
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Step I. We claim that

(3.2) fn(f l − 1)t ≡ agn(gl − 1)t.

To see this, we consider the following two cases.
Case 1. When B = 0, by (3.1), we have

(3.3) Fm = AGm + (1−A).

Case 1.1. IfA = 1, by (3.3), we have Fm = Gm, and hence fn(f l−1)t ≡
agn(gl − 1)t.

Case 1.2. If A 6= 1, by (3.3) we have

(3.4) Fm−1F ′ = AGm−1G′.

From (3.3) and (3.4), we get:
when F = 0, we have Gm 6= 0, 1 and G′ = 0; when G = 0, we have

Fm 6= 0, 1 and F ′ = 0. Hence

(3.5) N(r,
1

F
)−N0(r,

1

(Gm)′
) = S(r, F ), N (r,

1

G
)−N0(r,

1

(Fm)′
) = S(r, F ).

By the second fundamental theorem, we have

T (r, Fm) ≤ N(r, Fm) +N(r,
1

Fm
)

+N(r,
1

Fm − (1−A)
)−N0(r,

1

(Fm)′
) + S(r, F )

≤ N(r,
1

Fm
) +N(r,

1

Gm
)−N0(r,

1

(Fm)′
) + S(r, F )

= N(r,
1

F
) +N(r,

1

G
)−N0(r,

1

(Fm)′
) + S(r, F ).

Similarly, we have

T (r,Gm) ≤ N(r,
1

G
) +N(r,

1

F
)−N0(r,

1

(Gm)′
) + S(r,G).

Combining (3.5), we get

2mT (r, F ) ≤ [N(r,
1

G
) +N(r,

1

F
)] + S(r, F ) ≤ 2T (r, F ) + S(r, F ).
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Hence m = 1. By (3.3) we get

(3.6) fn(f l − 1)t ≡ agn(gl − 1)t + P (z),

where P (z) is a polynomial.
If P (z) ≡ 0, then by (3.6), we get fn(f l − 1)t ≡ agn(gl − 1)t.
If P (z) 6≡ 0, then by (3.6) and Lemma 6, we have

T (r, fn(f l − 1)t) ≤ N(r, fn(f l − 1)t) +N(r,
1

fn(f l − 1)t
)

+N(r,
1

fn(f l − 1)t − P
) + S(r, f)

= N(r,
1

fn(f l − 1)t
) +N(r,

1

gn(gl − 1)t
) + S(r, f)

≤ N(r,
1

f
) +N(r,

1

f l − 1
) +N(r,

1

g
)

+N(r,
1

gl − 1
) + S(r, f) ≤ 2(1 + l)T (r, f) + S(r, f),

thus n+ tl ≤ 2(1 + l), which contradicts the assumption that n > p+1
p−1(

4
m
+

2k + tl + 2tl
p+1) .

Case 2. When B 6= 0, by (3.1), we have

(3.7)
1

Gm − 1
= B

Fm + (A
B
− 1)

Fm − 1
,

A

Fm − 1
= −B

Gm − ( 1
B
+ 1)

Gm − 1

and Gm−1G′

(Gm−1)2
= A Fm−1F ′

(Fm−1)2
. Thus

(3.8) Fm + (
A

B
− 1) 6= 0, Gm − (

1

B
+ 1) 6= 0.

Case 2.1. If A = B, by (3.7), we have F 6= 0. Since F = (fn(f l−1)t)(k)

and n > k, thus f 6= 0. Let f = eα, where α is a nonconstant entire function.
Thus fn(f l − 1)t = enα

∑t
j=0(−1)t−jCj

t e
ljα =

∑t
j=0(−1)t−jCj

t e
(n+lj)α. Let

((−1)t−jCj
t e

(n+lj)α)(k) = Pj(α
′, α′′, · · · , α(k))e(n+lj)α,

where Pj(α
′, α′′, · · · , α(k))(j = 0, 1, 2, · · · , t) are differential polynomials.

Thus

F=
t

∑

j=0

Pj(α
′, α′′, · · · , α(k))e(n+lj)α=enα

t
∑

j=0

Pj(α
′, α′′, · · · , α(k))eljα=enαF0,
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where F0 =
∑t

j=0 Pj(α
′, α′′, · · · , α(k))eljα.

Obviously, there exists j(0 ≤ j ≤ t), such that Pj(α
′, α′′, · · · , α(k)) 6≡ 0.

Suppose P0(α
′, α′′, · · · , α(k)) 6≡ 0. Since F 6= 0, thus F0 6= 0. Since f is a

nonconstant entire function, we use Lemma 7 and obtain

ltT (r, eα) = T (r, F0) ≤ N(r,
1

F0
)

+N(r,
1

F0 − P0(α′, α′′, · · · , α(k))
) +N(r, F0) + S(r, eα)

= N(r,
1

∑t
j=1 Pj(α′, α′′, · · · , α(k))eljα

) + S(r, eα)

= N(r,
1

∑t
j=1 Pj(α′, α′′, · · · , α(k))el(j−1)α

)

+ S(r, eα) ≤ l(t− 1)T (r, eα) + S(r, eα),

which is a contradiction.
Case 2.2. If A 6= B and B = −1, by (3.7), we have G 6= 0. Since

G = (gn(gl − 1)t)(k) and n > k, we have g 6= 0. Set g = eβ, where β is a
nonconstant entire function. Similar to Case 2.1, we also have ltT (r, eβ) ≤
l(t− 1)T (r, eβ) + S(r, eβ), which is a contradiction.

Case 2.3. If A 6= B and B 6= −1, we consider the following two
subcases.

Case 2.3.1. When m > 1, by (3.8) and the second fundamental theo-
rem, we have

T (r,Gm) ≤ N(r,
1

Gm
) +N(r,

1

Gm − ( 1
B
+ 1)

) +N(r,Gm)−N0(r,
1

(Gm)′
)

+ S(r,G) ≤ N(r,
1

G
)−N0(r,

1

G′
) + S(r,G)

and

T (r, Fm) ≤ N(r,
1

Fm
) +N(r,

1

Fm − (1− A
B
)
) +N(r, Fm)−N0(r,

1

(Fm)′
)

+ S(r, F ) ≤ N(r,
1

F
)−N0(r,

1

F ′
) + S(r, F ),

thus m[T (r,G) + T (r, F )] ≤ T (r, F ) + T (r,G) + S(r,G), which is a contra-
diction.
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Case 2.3.2. When m = 1, by (3.8), we have F + (A
B

− 1) 6= 0, thus

(fn(f l − 1)t)(k) + (A
B
− 1) 6= 0. Since f is a nonconstant entire function, we

use Lemma 6 to obtain

(n+ lt)T (r, f) = T (r, fn(f l − 1)t) ≤ Nk+1(r,
1

fn(f l − 1)t
)

+N(r,
1

(fn(f l − 1)t)(k) + (A
B
− 1)

)

−N0(r,
1

(fn(f l − 1)t)(k+1)
) + S(r, f)

≤ Nk+1(r,
1

fn(f l − 1)t
) + S(r, f) ≤ (k + 1)N (r,

1

f
)

+Nk+1(r,
1

(f l − 1)t
) + S(r, f) ≤ (k + 1 + lt)T (r, f) + S(r, f),

thus n ≤ k + 1, which contradicts the assumption that n > p+1
p−1(

4
m

+ 2k +

tl + 2tl
p+1) .
Combining case 1 and case 2, we get (3.2).
Step II. By the first step, we claim that if f l 6≡ gl, then l = 1.
By (3.2), we have

(3.9) fn−1(f l − 1)t−1(f l −
n

n+ tl
)f ′ = agn−1(gl − 1)t−1(gl −

n

n+ tl
)g′.

From (3.2) and (3.9), we obtain the following three cases:
(i) when f = 0, we get g = 0 or gl = 1,
(ii) when f l = 1, we get gl = 1 or g = 0,
(iii) when f l = n

n+tl
, we get gl = n

n+tl
or g′ = 0 (such that gl 6= n

n+tl
,

g 6= 0, gl 6= 1).
Combining (3.2), (i) and (ii) we have

N(r,
1

f l − 1
)−N(r,

1

f l − 1
,

1

gl − 1
) ≤

t

n
N(r,

1

f l − 1
)(3.10)

N(r,
1

f
)−N(r,

1

f
,
1

g
) ≤

t

n
N(r,

1

gl − 1
).(3.11)

Using the second fundamental theorem we have

2lT (r, f) ≤ N(r,
1

f
) +N(r,

1

f l − 1
) +N(r,

1

f l − n
n+tl

)

+N(r, f)−N0(r,
1

f ′
) + S(r, f)(3.12)
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and

2lT (r, g) ≤ N(r,
1

g
) +N(r,

1

gl − 1
) +N(r,

1

gl − n
n+tl

)

+N(r, g) −N0(r,
1

g′
) + S(r, g).(3.13)

If f l 6≡ gl, then by (3.10)-(3.13),(i)-(iii), we have

4lT (r, f) = 2l[T (r, f) + T (r, g)] + S(r, f) ≤ 2N (r,
1

f
,
1

g
)

+ 2N (r,
1

f l − 1
,

1

gl − 1
) + 2N(r,

1

f l − n
n+tl

,
1

gl − n
n+tl

)

+
2t

n
N(r,

1

f l − 1
) +

2t

n
N(r,

1

gl − 1
) + 2N(r, f) + S(r, f)(3.14)

≤ 2N(r,
1

f l − gl
) +

2t

n
N(r,

1

f l − 1
) +

2t

n
N(r,

1

gl − 1
) + S(r, g)

≤ (2l +
4tl

n
)T (r, f) + S(r, f).

When l ≥ 2, by (3.14), we obtain that 2l ≤ 4tl
n
, which contradicts the

assumption that n > p+1
p−1(

4
m

+ 2k + tl+ 2tl
p+1). Therefore, we get l = 1.

Step III. We claim that if l = 1, then f ≡ g.
In fact, we consider the following two cases.
Case 1. We shall prove that f ≡ g, or there exists positive integer j

such that f j(f − 1) ≡ agj(g − 1), where j = 2 or j = 3. Since l = 1, by
(3.2), we have

(3.15) fn(f − 1)t = agn(g − 1)t.

By Lemma 8 and (3.15), then there exists entire function h and rational
functions U(z) and V (z) such that f = U(h), g = V (h) and

(3.16) Un(U − 1)t ≡ aV n(V − 1)t

and

(3.17) Un−1(U − 1)t−1(U −
n

n+ t
)U ′ ≡ aV n−1(V − 1)t−1(V −

n

n+ t
)V ′.

Hence T (r, U) = T (r, V ) + S(r, U).
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Since f and g are entire functions, thus U and V are polynomials or be
rational functions and only have one common pole.

By the second fundamental theorem, we have

2T (r, U) ≤ N(r,
1

U
) +N(r,

1

U − 1
) +N(r, U)

+N(r,
1

U − n
n+t

)−N0(r,
1

U ′
) + S(r, U)(3.18)

and

2T (r, V ) ≤ N(r,
1

V
) +N(r,

1

V − 1
) +N(r, V )

+N(r,
1

V − n
n+t

)−N0(r,
1

V ′
) + S(r, U).(3.19)

By Lemma 9 and f = U(h), g = V (h), we get f j(f − 1) ≡ akgj(g − 1),
where j = 2 or j = 3, kt = 1, and

- when there exists z0 such that U(z0) = 0, we have V (z0) = 0 or
V (z0) = 1 with multiplicity q ≥ 3;

- when there exists z0 such that U(z0) = 1, we have V (z0) = 1 or
V (z0) = 0 and U(z0) = 1 with multiplicity q1 ≥ 3;

- when there exists z0 such that U(z0) =
n

n+t
, we have V (z0) =

n
n+t

or
U ′(z0) = 0 such that V (z0) 6=

n
n+t

and U(z0) 6= 0, 1.

If U 6≡ V , by (3.18) and (3.19), we have

2T (r, U) ≤ N(r,
1

U
,
1

V
) +N(r,

1

U − 1
,

1

V − 1
)

+N(r,
1

U − n
n+t

,
1

V − n
n+t

) +N(r,
1

U
,

1

V − 1
) +N(r,

1

V
,

1

U − 1
)

+N(r, U) + S(r, U) ≤ N(r,
1

U − V
) +

1

3
(N(r,

1

V − 1
)

+N(r,
1

U − 1
)) +N(r, U) + S(r, U)

≤ (1 +
2

3
)T (r, U) +N(r, U) + S(r, U).

Thus

(3.20) T (r, U) ≤ 3N(r, U) + S(r, U).
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Since U is a polynomial or rational function which has only one pole,
then by (3.20), we have dU ≤ 3, where

U(z) =

m1
∑

k=0

akz
k/

m2
∑

j=0

bjz
j, V (z) =

n1
∑

k=0

ckz
k/

n2
∑

j=0

djz
j,

dU =max{m1,m2}, dV =max{n1, n2}. Combining (3.16), we get dV ≤ 3.

If there exists z0, such that U(z0) = 0 and V (z0) = 1, since dV ≤ 3, by
Lemma 8 and f = U(h), g = V (h), we get f j(f − 1) ≡ akgj(g − 1), where
j = 2 or j = 3, kt = 1.

If U and V IM 0, by (3.16), we obtain that U and V CM 0. Since U
and V CM ∞, there exists constant A such that U ≡ AV , hence, we get
f ≡ Ag. By (3.15), we have A = 1, thus f ≡ g.

Summarizing the above discussion we obtain f ≡ g or there exists posi-
tive integer j, such that f j(f −1) ≡ agj(g−1), where j = 2 or j = 3, which
completes the proof Case 1.

Case 2. We shall prove that if U j(U − 1) ≡ akV j(V − 1), where j = 2
or j = 3, kt = 1, then f ≡ g.

By f = U(h), g = V (h) and U j(U − 1) ≡ aV j(V − 1), we have

(3.21) f j(f − 1) ≡ akgj(g − 1).

Let h1 = f
g
, then by (3.21) we have hj1(h1 −

1
g
) = c(1 − 1

g
), thus (h31 −

ak)g = hj1 − ak.

If h1 is constant, we have h1 = 1, thus f ≡ g.

If h1 is nonconstant, we have g =
h
j
1−ak

h
j
1−ak

, which contradicts the assump-

tion that g be transcendental entire function.

Step IV. If f l ≡ gl, then there exists constant b, such that f ≡ bg,
where bl = 1.

Summarizing the above discussion we obtain the proof of Theorem 1.
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