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Abstract. In this paper we present a short proof of the Hermite’s formula for
polynomial interpolation using the theory of linear algebra, without using Taylor series
expansion as in the classic proof of this formula. In this construction we use a schema of
interpolation defined by the inverse of a matrix.
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The Hermite’s formula for polynomial interpolation is well known and it
is successfully used in practice. It is described in many books of numerical
analysis, e.g. [2, 3, 8]. Our goal is to offer a way to build the Hermite’s in-
terpolation polynomial and Hermite’s formula for its representation. Based
on the idea from [1], which is extended in an interpolation scheme in [4], we
take a certain base in the space of polynomials of degree at most n−1 ∈ N.
Then with the interpolation scheme, we represent the Hermite interpolation
polynomial and we obtain the Hermite’s formula.

Further, we consider a particular case of this schema. Let n ∈ N
∗, X

be a vector space, Y a n-dimensional subspace of X and U : X → R
n a

linear operator. We denote by V : Rn → Y an isomorphism between the
two spaces. We assume that the operator UV : Rn → R

n is invertible.

We define the operator PU : X → Y by PU = V (UV )−1U and we call it
an interpolation operator ofX by elements of Y , relative to the operator U .
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Lemma 1. The following statements are true:

a) U(x) = UPU (x), for all x ∈ X;

b) PU (y) = y, for all y ∈ Y ;

c) Let x ∈ X. If y0 ∈ Y verifies U(x) = U(y0), then y0 = PU (x).

Proof. a) We have U(x)− UPU (x) = U(x)− UV (UV )−1U(x) = 0.

b) The operator U restricted to Y is injective. Indeed, let us consider
y, z ∈ Y with U(y) = U(z) and y1, z1 ∈ R

n such that y = V (y1) and
z = V (z1). It results that UV (y1) = UV (z1) and because UV is bijective
we deduce that y1 = z1, and because V is bijective we obtain y = z.

From a) it results that U(y)− UPU (y) = 0 and from the fact that U is
injective we obtain y = PU (y).

c) We have U(PU (x)) = U(x) = U(y0) and because restriction of U at
Y is injective, it results that y0 = PU (x). �

We consider the next data system (noted by (SH)):

• n ∈ N
∗;

• the points x1, x2, . . . , xn ∈ [a, b] ⊂ R;

• m ∈ N
∗ the number of distinct points;

• y1, y2, . . . , ym ∈ R the distinct points;

• n1, n2, . . . , nm ∈ N
∗ the multiplicity order of distinct points (n1+n2+

. . . + nm = n).

Let X = {f : [a, b] → R | f is ni − 1-times differentiable at yi, for all
i ∈ 1,m}, Y = Pn−1. Let U : X → R

n be defined by

Uf = (f(y1), f
′(y1), . . . , f

(n1−1)(y1), . . . , f(ym), f ′(ym), . . . , f (nm−1)(ym))

and let V be the canonical isomorphism between R
n and Pn−1. If we

consider the canonical basis e1, e2, . . . , en in R
n, then the operator UV has

the following matrix representation

UV =









M1

M2

· · ·
Mm









,
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where

Mj =

















1 yj y2j . . . yn−1
j

0 1 2yj . . . (n− 1)yn−2
j

0 0 2 . . . (n− 1)(n − 2)yn−3
j

...
...

...
. . .

...

0 0 0 . . . A
nj−1
n−1 y

n−nj

j

















, ∀ j = 1,m.

Since the determinant of this matrix is
∏m

i=1

(

∏ni−1
j=0 j!

)

∏

1≤i<j≤m(yj −

yi)
ninj 6= 0 (see [5]), then there exists (UV )−1.
Let PU : X → Y, PU = V (UV )−1U be the interpolation operator of

X by elements of Y , relative to the operator U . For f ∈ X the element
PU (f) ∈ Pn−1 is the Hermite polynomial attached to the function f and to
the data system (SH).

Using Lemma 1 it results that U(f) = UPU (f), so PU (f) is the unique
real n− 1 degree polynomial which has the property

(PU (f))
(j)(yi) = f (j)(yi), ∀ j = 0, ni − 1, ∀ i = 1,m.

Further, using the theory of linear algebra, we are proving the Hermite
representation formula for the Hermite polynomial interpolation.

Lemma 2. Let ω(x) =
∏m

i=1(x− yi)
ni . Then the family of polynomials

pij(x) =
ω(x)

(x−yi)ni−j , j = 0, ni − 1, i = 1,m forms a basis in the space Pn−1.

Proof. It is enough to show that the polynomials (pij)j=0,ni−1, i=1,m ⊂
Pn−1 are linearly independent. Let us consider (aij)j=0,ni−1, i=1,m ⊂ R such
that

(1)

m
∑

i=1

ni−1
∑

j=0

aijpij(x) = 0.

We have p
(l)
ij (yk) = 0 if k 6= i or k = i and l 6= j, and p

(j)
ij (yi) 6= 0. Let

i ∈ 1,m. Then taking x = yi in (1) it results that ai0 = 0. We consecutively
derive the same equality up to the order ni− 1 and taking x = yi we obtain
aij = 0 for j = 0, ni − 1. Hence aij = 0, ∀ j = 0, ni − 1, ∀ i = 1,m. �

We consider V the isomorphism between R
n and Pn−1 given by

(2) V ((aij)j=0,ni−1 i=1,m) =
m
∑

i=1

ni−1
∑

j=0

aijhij(x).



212 DANIEL STĂNICĂ 4

If we take e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , en = (0, 0, . . . , 1) the
canonical basis in R

n, the operator UV has the following blocks-diagonal
matrix representation:

UV =











M1 0 . . . 0
0 M2 . . . 0
...

...
. . .

...
0 0 . . . Mm











,

where each matrix Mi is square, lower triangular, with ni-dimension, i.e.

Mi =



















ω(x)
(x−yi)ni

∣

∣

∣

x=yi
0 . . . 0

(

ω(x)
(x−yi)ni

)′

x=yi

(

ω(x)
(x−yi)ni−1

)′

x=yi
. . . 0

...
...

. . .
...

(

ω(x)
(x−yi)ni

)(ni−1)

x=yi

(

ω(x)
(x−yi)ni−1

)(ni−1)

x=yi
. . .

(

ω(x)
(x−yi)

)(ni−1)

x=yi



















,

for all i = 1,m. Let j ∈ 0, k with k ∈ 0, ni − 1. We have

(

ω(x)

(x− yi)ni−j

)(k)

x=yi

=

(

(x− yi)
j ω(x)

(x− yi)ni

)(k)

x=yi

=j!Cj
k

(

ω(x)

(x− yi)ni

)(k−j)

x=yi

.

If we denote ω(x)
(x−yi)ni

by gi(x), then

Mi =



















gi(yi) . . . 0 . . . 0
...

. . .
...

. . .
...

g(k)(yi)
... j!Cj

kg
(k−j)
i (yi) . . . 0

...
. . .

...
. . .

...

g(ni−1)(yi) . . . j!Cj
ni−1g

(ni−j−1)
i (yi) . . . (ni − 1)!g

(ni−1)
i (yi)



















.

Lemma 3. The inverse of the matrix UV is

(UV )−1 =











M−1
1 0 . . . 0

0 M−1
2 . . . 0

...
...

. . .
...

0 0 . . . M−1
m











,
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with M−1
i =

=





















hi(yi) . . . 0 . . . 0
...

. . .
...

. . .
...

1
k!h

(k)(yi)
...

C
j

k

k! h
(k−j)
i (yi) . . . 0

...
. . .

...
. . .

...

1
(ni−1)!h

(ni−1)(yi) . . .
C

j
ni−1

(ni−1)!h
(ni−j−1)
i (yi) . . . 1

(ni−1)!hi(yi)





















,

where j ≤ k and k ∈ 0, ni − 1 and hi(x) =
1

gi(x)
, ∀ i = 1,m.

Proof. Since the matrix UV is blocks-diagonal, then its inverse matrix
is blocks-diagonal. Let j ≤ k with k ∈ 0, ni − 1. Multiplying the k-row of
the matrix Mi with the j-column of the matrix M−1

i we obtain the value

k
∑

p=j

p!Cp
kg

(k−p)
i (yi)

C
j
p

p!
h
(p−j)
i (yi) = C

j
k

k
∑

p=j

C
p−j
k−jg

(k−p)
i (yi)h

(p−j)
i (yi) =

= C
j
k

k−j
∑

s=0

Cs
k−jg

(k−j−s)
i (yi)h

(s)
i (yi) = C

j
k(gihi)

(k−j)(yi) =

{

0, if j 6= k

1, if j = k
,

which proves that MiM
−1
i = Ini

, hence (UV )−1 takes the form claimed i

the statement of this lemma. �

Theorem 4. The Hermite interpolation polynomial attached to the func-

tion f and to the data system (SH) admits the following representation

formula

PU (f) =

m
∑

i=1

ω(x)

(x− yi)ni

·





ni−1
∑

j=0

f (j)(yi)
(x− yi)

j

j!

(

ni−j−1
∑

k=0

(x− yi)
k

k!

(

(x− yi)
ni

ω(x)

)(k)

x=yi

)



 .

Proof. Using the basis from Lemma 2 and the operator V defined in
(2), it results that

PU (f) = V (UV )−1U(f)

=

m
∑

i=1

ni−1
∑

j=0





ni−1
∑

k=j

ω(x)

(x− xi)ni−k

C
j
k

k!
h
(k−j)
i (yi)



 f (j)(yi)
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=

m
∑

i=1

ni−1
∑

j=0

(

ni−j−1
∑

k=0

ω(x)

(x− xi)ni−k−j

1

j!k!

(

(x− yi)
ni

ω(x)

)(k)

x=yi

)

f (j)(yi)

=
m
∑

i=1

ω(x)

(x− yi)ni

·





ni−1
∑

j=0

f (j)(yi)
(x− yi)

j

j!

(

ni−j−1
∑

k=0

(x− yi)
k

k!

(

(x− yi)
ni

ω(x)

)(k)

x=yi

)



 .

�

For example, let m = 2, y1 = 2, y2 = 3, n1 = 1 and n2 = 3. The basis
from Lemma 2 for P3 is p10(x) = x3 − 9x2 + 27x − 27, p20(x) = x − 2,
p21(x) = x2−5x+6, p22(x) = x3−8x2+21x−18. In this basis we have 1 =
−p10(x)+p20(x)−p21(x)+p22(x), x = −2p10(x)+3p20(x)−2p21(x)+2p22(x),
x2 = −4p10(x)+9p20(x)−3p21(x)+4p22(x) and x3 = −8p10(x)+27p20(x)+
9p22(x).

Remark 1. A similar technique of obtaining a representation of the
Hermites interpolation polynomials is presented in [6, 7], using the spectral
basis. By choosing the basis of Lemma 2 we obtain an explicit representation
formula. It represents a real advantage because such a formula is not found
in the above-mentioned papers.

Remark 2. In a similar way Hermite’s formula can be extended to the
exponential and trigonometric interpolation.
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