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1. Introduction

In the paper we study the following optimal control problem (denoted as
P (0, x0)):

Minimize the continuous function l(x(T )) over the solutions (trajecto-
ries) of

(1) ẋ(t) ∈ F (x(t)), x(0) = x0, t ∈ [0, T ].

Here F : Rn ⇒ R
n, l : Rn → R. Denote by V (0, x0) the minimal value of

l(x(T )).

Let x̄(·) be an optimal trajectory for P (0, x0). If x̄(τ) = α for some
τ ∈ [0, T ], then due to Bellman principle x̄(·) is an optimal trajectory also
for the following problem P (τ, α) (with value V (τ, α)), i.e.

Minimize l(x(T )) over the trajectories of

ẋ(t) ∈ F (x), x(τ) = α, τ ∈ [0, T ], x ∈ R
n.
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Description of the properties and behavior of the value function is one
of the most important question in optimal control theory. We refer to
[2, 7, 14, 17], where the value function is studied under Lipshitz conditions.

It is shown in [13] that the value function is the unique lower semicon-
tinuous solution of the corresponding Hamilton–Jacoby equation, if l(·) is
lower semicontinuous.

The generalized Hamilton–Jacobi equations are used in [9, 19] in order
to describe the minimal time function as well as in [4, 11, 16] to describe
the reachable set of optimal control problems.

We refer to [15], where the value function is comprehensively studied for
optimal control problems and for differential games.

The main target of the paper is to describe the value function as the
unique continuous solution of proximal Hamilton–Jacobi inequalities under
one sided Perron condition on the right-hand side.

This result is well known, when F (·) is locally Lipschitz [7, 14, 15, 18].
We show that our assumptions are essentially weaker.

2. Preliminaries

We refer to [1, 7, 8, 18] for all concepts used in this paper. For U ⊂ R
n we

denote U c = R
n \U . Further clA = Ā is the closure of the set A. For closed

bounded sets A,B denote by DH(A,B) = max{Ex(A,B), Ex(B,A)}– the
Pompeiu–Hausdorff distance, where dist(a,B) = infb∈B |a−b| and Ex(A,B)
= supa∈A dist(a,B). The multifunction F (·) from R

n into R
n is said to be

continuous, when it is continuous with respect to the Pompeiu–Hausdorff
metric. It is called upper semicontinuous (USC) at x when for every ε > 0
there exists δ > 0 such that F (x)+εB ⊃ F (x+δB). With B we have denoted
the open unit ball and by B̄ its closure. The multifunction F : I×R

n → R
n

is called almost continuous (almost USC), when for every ε > 0 there exists
a compact set Iε ⊂ I with Lebesgue measure meas(I \ Iε) < ε such that
F (·, ·) restricted to Iε × R

n is continuous (USC). Given a closed set S ⊂ E
and x /∈ S, we let projS(x) = {s ∈ S : |x− s| = dist(x, S)} – the projection
set of x on S. Notice that projS(x) 6= ∅, for every x ∈ R

n.

For p ∈ R
n and bounded set A ⊂ R

n, the support function is σ(p,A) =
supv∈A〈v, p〉. Let F : R

n → 2R
n

have nonempty compact values. The
upper Hamiltonian of F (·) is HF (x, p) = σ(p, F (x)), the lower Hamiltonian
is hF (x, p) = minv∈F (x)〈v, p〉 = −σ(−p, F (x)).

Notice that for any compact valued multifunction F (·), the set {y ∈
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F (x) : 〈p, y〉 = hF (x, p)} is nonempty for every p ∈ R
n.

Let M be complete metric space. The subset A ⊂ M is said to be
residual (on second Baire category) if it contains a countable intersection
of open dense sets. The set B is on first Baire category if M\B is residual.

The continuous function w : R+ → R
+ is said to be Perron function,

when w(0) = 0, w(·) is monotone nondecreasing and the unique solution of
ṙ = w(r), r(0) = 0 is r(t) ≡ 0.

Definition 1. The multifunction F (·) is said to be locally full Perron
(continuous) when on every bounded set A ⊂ R

n there exists a Perron
function w(·) such that DH(F (x), F (y)) ≤ w(|x − y|), for every x, y ∈
A. Similarly F (·) is called locally one sided Perron continuous (OSP) if
hF (x, x− y)− hF (y, x− y) ≤ w(|x− y|)|x− y|, for every x, y ∈ A (here the
lower Hamiltonian can be replaced by the upper one). When w(r) = Lr,
i.e. hF (x, x− y)−hF (y, x− y) ≤ L|x− y|2 for some L ∈ R (notice that here
L < 0 is possible) the multifunction F (·) is called locally one sided Lipschitz
(OSL). We refer the reader to [10] for the properties of OSL multimaps.

Now we give some concepts of nonsmooth analysis used in the paper.

Let f be extended real valued lower semicontinuous function. Recall
that domf := {x ∈ R

n : f(x) <∞} and epif := {(x, r) ∈ domf × R : r ≥
f(x)}.

Let S ⊂ R
n be closed. The proximal normal cone (cf. [5, 7]) at x ∈ S is

NP
S (x) := {ζ ∈ R

n : ∃ γ > 0, η > 0; 〈ζ, y−x〉 6 γ|y−x|2, ∀y ∈ S∩x+ηB}.

A vector ξ ∈ R
n is called a proximal subgradient of the lower semicontinuous

function f at x ∈ domf if (ξ,−1) ∈ NP
epif (x, f(x)). The set of all proximal

subgradients is denoted by ∂P f(x) and is called proximal subdifferential of
f at x.

Let the function f : Rn → R be upper semicontinuous. Then proximal
superdifferential of f at x ∈ domf is defined as ∂P (f(x)) = −∂P (−f(x)).

Let Ω ⊂ R
n be an open set. Denote by F(Ω) the set of all lower

semicontinuous functions ϕ : Ω → R which are not identically −∞.

Definition 2. Suppose ϕ ∈ F(Ω). The system ẋ(t) ∈ F (x(t)) is said to
be ϕ–weakly decreasing if for any a ∈ Ω there exists a trajectory x(·) which
lies in Ω with x(0) = a such that the map t → ϕ(x(t)) is decreasing. We
will write further the system (ϕ,F ) is weakly decreasing.
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The system (ϕ,F ) is said to be ϕ–strongly decreasing if for every tra-
jectory x(·) which lies in Ω the map t → ϕ(x(t)) is decreasing. It is said to
be strongly increasing if (−ϕ,F ) is strongly decreasing.

The following proposition can be found in [7], p. 67.

Proposition 1. Let f ∈ F(Ω), and (ζ, 0) ∈ NP
epif (x, f(x)). Then for

every ε > 0 there exists y with |x− y| < ε and (η,−λ) ∈ NP
epif (y, f(y)) such

that:

λ > 0, |f(x)− f(y)| < ε, ‖(ζ, 0) − (η,−λ)‖ < ε.

Consider the following differential inclusion:

(2) ẋ(t) ∈ G(t, x(t)), x(0) = x0, t ∈ [0, T ].

Here G : R×R
n ⇒ R

n is with nonempty values. In the paper we study the
case when G(t, x) ⊂ F (x) is a submultifunction of F (·). Although F (·) is
autonomous, the submultifunctions depend in general on t.

Take a subdivision ∆ = {0 < t1 < · · · < tN = T}. If the approximate
solution y(·) is already defined on [0, tk], then we take y(t) = y(tk)+(t−tk)fk
on (tk, tk+1], where fk ∈ G(tk, y(tk)) is arbitrary. Let |∆| = maxk |tk+1 −
tk|. The absolutely continuous function x(·) is said to be Euler arc of the
system ẋ ∈ G(t, x), x(0) = x0 on the interval [0, T ] if there exists a net of
subdivisions ∆ with corresponding approximate solutions y∆(·) such that
x(t) = lim|∆|→0 y∆(t). Notice that the differential inclusion (2) may have no
solutions, however, the set of Euler arcs is nonempty. Clearly every Euler
arc (called feasible arc) is a solution of (1).

3. One sided Perron differential inclusions

In this section we study OSP continuous differential inclusions.

In the sequel we will use the following assumptions:

A1: The multifunction F (·) is continuous with nonempty convex com-
pact values. Furthermore there exist constants α > 0 and β > 0 such that
‖F (x)‖ ≤ β + α‖x‖ (linear growth condition).

A2: F (·) is OSP with Perron functions w(·).
First we demonstrate the strength of our results in comparison with

existing results in the literature.
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Given a compact set D ⊂ R
n and continuous set-valued mappings F

and G acting from R
n to itself, consider the distance

CD(F,G) := max
x∈D

DH (F (x), G(x))

and define the following metric in the set, denoted by CC(Rn,Rn)), of all
continuous set-valued mappings form R

n to itself with convex and compact
values:

ρH(F,G) :=
∞
∑

m=1

CDm
(F,G)

2m (1 + CDm
(F,G))

.

Here Dm = x0 + mB̄. Endowed with this metric, CC(Rn,Rn) becomes a
complete metric space.

Since every continuous function is uniformly continuous on Dm, it admits
modulus of continuity:

wm
F (r) := max{DH(F (x), F (y)) : |x− y| ≤ r; x, y ∈ Dm}.

It is shown in [9] (Theorem 3.1) that for almost all (in Baire sense)
continuous multifunctions F (·) the function r → wm

F (r) is full Perron for
every natural m and hence almost all F ∈ CC(Rn,Rn) are locally full
Perron. Furthermore it is shown in [9] that the set of locally OSL (and,
moreover, locally Lipschitz) is on first Baire category. Furthermore, the
one sided Perron condition is evidently weaker than Perron one. Notice
that OSP multimaps are in general discontinuous, also co F (·) is OSP iff
F (·) is OSP (which is not true if F (·) is full Perron).

We give an example of OSP differential inclusion in one dimension, which
is neither full Perron, nor one sided Lipschitz.

Example 1. Let {pk}∞k=1 be the set of the rational numbers of the
interval [0, 1] ordered in sequence. Define:

g(x) =
∞
∑

k=1

1

3k
(

3
√
pk − x− 3

√
pk + x

+sign(x− pk)
√

|x− pk|+ sign(x+ pk)
√

|pk + x|
)

,

where sign(t) is 1 for t > 0, −1 for t < 0 and 0 for t = 0.
It is easy to see that for every constant p the function v(x) = sign(x+

p)
√

|x+ p|− 3
√
x+ p is OSL with a constant less than 1

5 . Since
∑∞

k=1
1
3k

= 1
2

one has that g(·) is OSL with a constant less than 1
5 .
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Furthermore, let F : Rn ⇒ R
n be full Perron and not OSL. For example,

we can take F (x) = [−f(|x|), f(|x|)], where

f(x) =











0 x ≤ 0

−x ln(x) 0 < x ≤ e−1

x e−1 < x.

.

Consider the following differential inclusion

ẋ(t) ∈ g(x) + F (x), x(0) = 0.

Since r → wm
F (r) is monotone non decreasing, one has that g(·) + F (·) is

OSP (cf. [3]).
However, it is not full Perron.

Further in this section we will study the system (1) for t ∈ (−∞,+∞).

Proposition 2. If A1, A2 hold for every closed interval [τ, T ], then

the solution set of (1) is nonempty compact subset of C([τ, T ],Rn) which

depends continuously on the initial condition x(τ) = α.

Proof. The fact that the solution set is nonempty compact subset of
C([τ, T ],Rn) is well known ([1, 8]). We prove the continuity of the solution
set w.r.t. α on a fixed interval [τ, T ]. Let z(·) be a solution of ẋ(t) ∈
F (x), x(τ) = α. We define the multifunction

G(t, x) = {v ∈ F (x) : 〈z(t)− x, ż(t)− v〉 ≤ w(|z(t) − x|)|z(t) − x|}.

Since y → 〈z(t)−x, y〉 is linear function, one has that G(t, x) admits convex
values. Fix ε > 0, there exists a set Iε ⊂ [τ, T ] with measure greater than
T − ε such that ż(·) is continuous on Iε. If ti → t, xi → x and gi → g
with gi ∈ G(ti, xi) then it is easy to see that 〈z(ti) − xi, ż(ti) − gi〉 →
〈z(t)−x, ż(t)−g〉. Consequently 〈z(t)−x, ż(t)−g〉 ≤ w(|z(t)−x|)|z(t)−x|.
Thus G(t, x) ⊂ F (x) is almost USC with nonempty convex and compact
values. Thus there exists a solution y(·) of ẋ(t) ∈ G(t, x(t)), x(τ) = β.
Denote r(t) = ‖z(t) − y(t)‖. One has that d

dt
r2(t) = 2〈z(t) − y(t), ż(t) −

ẏ(t)〉 ≤ 2w(r(t))r(t). Furthermore, r(·) is absolutely continuous and hence
a.e. differentiable. If r(t) > 0, then d

dt
r2(t) = 2r(t)ṙ(t) ≤ 2w(r(t))r(t), i.e.

ṙ(t) ≤ w(r(t).
Let A = {t : r(t) = 0}. Recall that the point t′ ∈ A is said to be point of

(right) density when limh−1meas(A∩ [t′, t′ +h]) = 1. It is well known that
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A′ (density points of A) has full measure. Thus the set of density points of A,
where r(·) is differentiable has the same measure as A. Clearly in this case
ṙ(t) = 0, because r(t) = 0 is constant on A. Consequently r(τ) = |x0 − y0|
and ṙ(t) ≤ w(r(t)) for a.a. t. Therefore |x(t) − y(t)| ≤ r(t) ≤ v(t), where
v(·) is the maximal solution of v̇(t) = w(v(t)), v(τ) = |x0 − y0|. The proof
is complete, because w(·) is Perron function. �

It follows from Proposition 2 and the continuity of l(·), that the value
function is continuous, and moreover, for every bounded interval [a, b] there
exist constants N and M such that |x(t)| ≤ N and |F (x(t) + B)| ≤M − 1,
where x(·) is an arbitrary solution of ẋ ∈ F (x+ B), x(a) = α. We will use
implicitly these estimations and assume that every (approximate) solution
is Lipschitz with a constant M .

Further we will use the following proposition:

Proposition 3 (Proposition 2.1 of [7] p. 189). Let S ⊂ E be closed and

f(t, x) ∈ F (x), where F (·) satisfies A1. Suppose that for every t ∈ [a, b] ⊂ R

and every y ∈ Ω there exists s ∈ projS(y) such that 〈f(t, y), y − s〉 ≤ 0. If

x(·) is Euler arc of ẋ(t) = f(t, x(t)), then dist(x(t), S) ≤ dist(x(a), S), for
every t ∈ [a, b].

The following theorem is Theorem 5.7 of [7] p. 212.

Theorem 1. Under A1 the system (ϕ,F ) is weakly decreasing on Ω iff

hF (x, ∂pϕ(x)) ≤ 0, for every x ∈ Ω.

We need the following two lemmas to prove Theorem 2 below:

Lemma 1. Let S be closed. If (S,F ) is weakly invariant, where F (·)
satisfies A1 and A2, then there exists a selection g(z) ∈ F (z) under which

S is invariant, i.e. if x(·) is Euler arc of ẋ = g(x), x(0) ∈ S then x(t) ∈ S,
for all t ∈ [0, T ].

Proof. Since (S,F ) is weakly invariant, one has that hF (x, p) ≤ 0, for
every p ∈ NP

S (x) (cf. [12]).

First we define an auxiliary function f(x) as follows:
We choose any s

.
= s(x) ∈ projS(x) and let f(x) = v ∈ F (s(x)) to be

such that 〈v, x− s〉 = hF (s, x− s) (such v exists). Since x− s ∈ NP
S (s(x)),

then 〈f(x), x− s(x)〉 ≤ 0.

Let y(·) be Euler arc of ẋ(t) = f(s(x(t))), then y(t) ∈ S due to the
definition of f and Proposition 3. However, y(t) = f(x(t)) = x(t) for
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y(0) ∈ S, i.e. y(·) is a solution of ẋ(t) ∈ F (x). Since f(x) ∈ F (x), one has
that the submultifunction

Ḡ(x) = {r ∈ F (x) : 〈s(x)− x, f(x)− r〉 ≤ w(|s(x) − x|)|s(x)− x|}
is with nonempty convex compact values due to A2. Let g(x) ∈ Ḡ(x) be a
single valued selection, then

〈g(x), x − s〉 = 〈s− x, f(x)− g(x)〉 + 〈f(x), x− s〉 ≤ w(|s − x|)|s− x|.
We will prove that g(·) is the required selection.

Denote dist(x(t), S) = m(t). Clearly m(0) = 0. Using standard calcu-
lations (see eg [7, 12]), one can show that

(3) m2(t)−m2(τ) ≤ 2

∫ t

τ

w(m(s))m(s)ds, for any 0 ≤ τ < t ≤ T.

The function s → w(m(s))m(s) is continuous. Divide the both sides of
the inequality (3) on t − τ and passing to limit we derive d

dt
m2(t) ≤

2w(m(t))m(t)
Furthermore, m(t) is absolutely continuous and hence almost every-

where differentiable. Dealing as in the proof of Proposition 2 one can show
that x(t) ∈ S on [0, T ]. �

Lemma 2. Under A1 and A2, an arc x̄(·) on [a, b] is a solution to (1)
(with another initial condition) if and only if there exists (not necessarily

autonomous) selection f(t, x) ∈ F (x) such that x̄ is Euler solution on [a, b]
of the problem: ẋ = f(t, x), x(a) = x̄(a).

Proof. Since F (·) is continuous with convex compact values, then every
Euler trajectory is a solution. Define Ba := {(t, x̄(t)) : t ≥ a}. Clearly
Ba is closed and weakly invariant for the trajectories of {1} × F (x). From
Lemma 1 we have that there exists a function (1, f(t, x)) ∈ {1}×F (x) such
that every Euler solution of ẋ = f(t, x), x(a) = x̄(a) satisfies (t, x(t)) ∈ Ba.
Therefore x(t) = x̄(t) for t ∈ [a, b], i.e. x̄(·) is the unique Euler trajectory.�

Theorem 2. Under A1 and A2 the system (ϕ,F ) is strongly decreasing

on Ω if and only if HF (x, ξ) ≤ 0, for every x ∈ Ω and every ξ ∈ ∂pϕ(x).

Proof. Suppose (ϕ,F ) is strongly decreasing and ξ ∈ ∂P (ϕ(ν)), where
ν ∈ Ω. Let v0 ∈ F (ν) be arbitrary. We have to show that 〈v0, ξ〉 ≤ 0. Let
δ > 0 be such that ν + δB̄ ⊂ Ω and let

S := {(x, r) ∈ R
n × R : x ∈ ν + δB̄, ϕ(x) ≤ r}.
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It is easy to see that S is a closed set. Let f(x) = v = projF (x)(v0). We
claim that f(·) is continuous. Indeed it is enough to prove that f(·) has
a closed graph, because it is a single valued selection of F (·). Let xi → z
and vi → w. Evidently w ∈ projF (z)(v0), because F (·) is continuous with
convex compact values. Thus f(·) is continuous. Let

G̃(x) =

{

(f(x), 0) for x ∈ ν + δB,

co {f(y) : |y − ν| = δ} × {0} otherwise,

Therefore G̃(x) is USC with convex compact values. Since (S, G̃(x)) is
weakly invariant, one has that 〈(f(ν), 0), (ξ,−1)〉 = 〈v0, ξ〉 ≤ 0.

Conversely. Let a ∈ R and let x̂(·) be feasible arc such that HF (x,
∂Pϕ(x̂(a))) ≤ 0. We have to show that for every b > a sufficiently close
to a the following inequality is true ϕ(x̂(a)) ≥ ϕ(x̂(b)). To this end we let
S = {(x, r) : x ∈ Ω, r ≥ ϕ(x)} and pick M > 0 such that x̂(a) + 4M B̄ ⊂
Ω and ‖x̂(t) − x̂(a)‖ < M for every t ∈ [a, b]. Consequently (x, r) ∈
(

x̂(a) +M B̄
)

× (ϕ(x̂(a)) + [−M,M ]) and |(x′, r′)− (x̂(a), ϕ(x̂(a)))| < 4M ,
for every (x′, r′) ∈ projS(x, r).

Due to Lemma 2 there exists a selection f(t, x) ∈ F (x) whose unique
Euler arc starting at (a, x̂(a)) is x̄. If (x, r) ∈ (x̂(a)+M B̄)×(ϕ(x̂(a))+M B̄)
then (η, λ) := (x − x′, r − r′) ∈ NP

S (x′, r′) and hence (η, λ) ∈ NP
epiϕ(x

′, r′).
If λ < 0 then − η

λ
∈ ∂Pϕ(x

′). Therefore 〈f(x′),− η
λ
〉 ≤ λ, when 〈f(x′), η〉 ≤

0. If λ = 0 then (η, 0) ∈ NP
epiϕ(x̂(a), ϕ(x̂(a)). Due to Proposition 1

there exist xi → x′, ϕ(xi) → ϕ(x′), εi → 0+ and ηi → η such that
(ηi,−εi) ∈ NP

S (xi, ri). Since F (·) is continuous there exists vi ∈ F (xi)
with vi → f(x′). Furthermore, 〈ηi, vi〉 ≤ 0 and hence passing to limit
〈η, f(x′)〉 ≤ 0. We apply Proposition 3 to S with (x, r) → (f(x), 0). Since
the unique Euler arc starting at (x̂(a), ϕ(x̂(a))) is (x̂(·), ϕ(x̂(·))), we have
dist[(x̂(t), ϕ(x̂(a))), S] ≤ dist[(x̂(a), ϕ(x̂(a))), S] = 0, for every t ∈ [a, b].
Therefore ϕ(x̂(b)) ≤ ϕ(x̂(a)) due to the definition of S. �

Similar result to Theorem 2 is proved in [6] when F (·) is Lipschitz.
Proposition 4. Under A1 and A2 the system (ϕ,F ) is strongly increa-

sing on Ω iff hF (x, ξ) ≥ 0, ∀ξ ∈ ∂Pϕ(x) and ∀x ∈ Ω.

Proof. The system (ϕ,F ) is strongly increasing on Ω iff the system
(−ϕ,F ) is strongly decreasing on Ω. It follows from Theorem 2 that
HF (x, ξ) ≤ 0,∀ξ ∈ ∂P (−ϕ(x)). The latter is clearly equivalent to −HF (x,
−ξ) ≥ 0, for every ξ ∈ −∂P (−ϕ(x)) = ∂P (ϕ(x)). However, −HF (x,−ξ) =
hF (x, ξ), i.e. hF (x, ξ) ≥ 0, for every ξ ∈ ∂P (ϕ(x)). �
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4. Value function

In this section we prove the main results of the paper.
Let ϕ : R× Ω → R be continuous. Clearly then Theorem 1 and Propo-

sition 4 can be rewritten as:

Proposition 5. a) Under A1 the system (ϕ,F ) is weakly decreasing iff

ϑ+ hF (x, ξ) ≤ 0, ∀(ϑ, ξ) ∈ ∂Pϕ(t, x), ∀(t, x) ∈ R× Ω.
b) Under A1, A2 the system (ϕ,F ) is strongly increasing iff ϑ+hF (x, ξ) ≥

0, ∀(ϑ, ξ) ∈ ∂Pϕ(t, x), ∀(t, x) ∈ R× R
n.

Proposition 6. Suppose A1 and A2 are satisfied. Let x̄(·) be feasible

trajectory, i.e. x(·) is a solution of (1).
If there exists a continuous function ϕ(x) on R

n, satisfying

ϑ+ hF (x, ξ) ≥ 0, ∀(ϑ, ξ) ∈ ∂Pϕ(t, x), ∀(t, x) ∈ R× R
n(4)

ϕ(T, x) = l(x), ϕ(τ, α) = l(x̄(T )).(5)

then x̄ solves P (τ, α) and the value of the problem P (τ, α) is ϕ(τ, α).

Proof. Due to Proposition 4, the system (ϕ,F ) is strongly increasing.
Then ϕ(x(0)) = l(x̄(T )) the value of the problem P (x0). Furthermore x̄(·)
is its solution, because the minima is attained at l(x̄(T )). �

Theorem 3. Under A1 and A2 there is unique continuous function

ϕ : (−∞, T ]× R
n → R satisfying:

ϑ+ hF (x, ξ) ≥ 0,∀(ϑ, ξ) ∈ ∂Pϕ(t, x) and ∀(t, x) ∈ (0, T ) × R
n,

ϑ+ hF (x, ξ) ≤ 0,∀(ϑ, ξ) ∈ ∂Pϕ(t, x) and ∀(t, x) ∈ (0, T ) ×R
n,

l(x) = ϕ(T, x), ∀x ∈ R
n.

This function ϕ(·) is the value function V (·).

Proof. From Proposition 6 we know that V (·) satisfies ϑ + hF (x, ξ) ≥
0, ∀(ϑ, ξ) ∈ ∂Pϕ(x) and ∀(t, x) ∈ (0, T ) × R

n, ϕ(T, x) = l(x), ∀x ∈ R
n. It

remains to show that ϑ + hF (x, ξ) ≤ 0, ∀(ϑ, ξ) ∈ ∂Pϕ(t, x) and ∀(t, x) ∈
(−∞, T ]× R

n.
When V (τ, α) is finite, there exists an optimal arc x̄ for P (τ, α) and

along x̄, V (·) is constant, i.e. t→ V (t, x̄(t)) is constant on [τ, T ]. Thus the
system (V, F ) is weakly decreasing. By virtue of Proposition 5 we derive
ϑ+ hF (x, ξ) ≤ 0, ∀(ϑ, ξ) ∈ ∂Pϕ(t, x).
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Let ψ be another function, satisfying proximal Hamilton–Jacobi inequa-
lities.

We know that (ψ,F ) is weakly decreasing and hence ψ(t, x(t))≤ψ(τ, x(τ))
when t≥τ . Letting t ↑ T we deduce l(x(T )) = ψ(T, x(T )) ≤ ψ(τ, x(τ)) ⇒
V (τ, x(τ)) ≤ ψ(τ, x(τ)), i.e V ≤ ψ.

Let (τ, α) be any point with τ < T . Thus there exists an optimal
trajectory x̄ for P (τ, α).

Due to Proposition 4 (ψ,F ) is strongly increasing. Thus ψ(T, x̄(T )) ≥
ψ(τ, α). Furthermore ψ(T, x̄(T )) = l(x̄(T )) = ψ(τ, x) ⇒ V (τ, α) ≥ ψ(τ, α),
i.e. V ≥ ψ and hence V (τ, α) = ψ(τ, α). �

Remark 1. Theorem 3 implies that the value function is the unique
viscosity solution of the proximal Hamilton–Jacobi equation

ϑ+ hF (x, ξ) = 0, ϕ(T, x) = l(x), ∀(ϑ, ξ) ∈ ∂Pϕ(t, x)

and ∀(t, x) ∈ (0, T )× R
n.(6)

Clearly all the results hold true if one replace full OSP condition on F (·)
to locally OSP one.

As it was pointed out CC(Rn,Rn) is a complete metric space w.r.t.
ρH(·, ·). Denote by C = {R ∈ CC(Rn,Rn): A1 holds}. Since C is a closed
subset of CC(Rn,Rn), one has that it is also a complete metric space and
almost every G ∈ C is locally full Perron and almost every R ∈ C is not
locally OSL.

As a corollary of Theorems 3 we obtain the following result:

Theorem 4. Under A1 there exists a residual subset B of C such that

for every F ∈ B the value function V (·) is the unique viscosity solution of

the proximal Hamilton–Jacobi equation (6).

Proof. As we have seen almost every (in Baire sense) F ∈ C is locally
full Perron w.r.t. ρH(·, ·). Since our results are true for every locally OSP
and clearly also for locally full Perron, the proof is therefore complete. �

5. Conclusion

We prove that the value function of optimal control problem governed
by differential inclusion is the unique viscosity solution of the proximal
Hamilton–Jacobi equation (6).
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The commonly used Lipschitz condition in the literature is essentially
relaxed to one sided Perron one. It follows from the results of [9, 11] that the
derived Hamilton Jacobi proximal equation holds for almost all (in Baire
sense) continuous multifunctions from R

n ⇒ R
n. We assume that F (·) is

globally OSP, however, the results can be proved when F (·) is only locally
OSP with obvious changes of the proofs.
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