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Abstract 

China has highly emphasized the research and operational application of numerical weather prediction. This paper 

determines the objective function parameters, such as CAPE and SRH, to apply an ensemble numerical prediction model 

in weather forecasting. Preprocessing and evaluating rainfall data is necessary to construct the WRF-ARW numerical 

weather prediction model. The WRF-ARW model is applied to simulate the weather forecasts in Henan Province, and the 

difficulties and challenges faced in the efficient implementation of the parameterized scheme are outlined. The WRF-

ARW model’s prediction errors for the maximum rainfall and total rainfall in Henan Province range from 1.78%-13.51% 

and 0.16%-3.78%, respectively, which are significantly less than 15%, and the model is more predictive than the others. 

The raw data test set’s credibility ranges from 0.957 to 0.997, which is close to 1, indicating that the raw data collected 

in this paper are highly credible. The WRF-ARW model’s qualification rates for forecasting maximum rainfall and total 

rainfall are 86.7% and 93.3%, respectively, and its overall accuracy is grade B and grade A, respectively. The pass rates 

for the peak occurrence time of maximum rainfall and total rainfall were 93.3% and 86.7%, respectively, and the overall 

prediction accuracy was Grade A and Grade B, respectively. The WRF-ARW model is effective in weather forecasting 

throughout Henan Province. In summary, the WRF-ARW model is very effective in improving the efficiency of ensemble 

numerical weather prediction and parameterization schemes in Henan Province. 
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1 Introduction 

Numerical weather prediction refers to the method of predicting the weather phenomena in a certain 

period in the future by solving the numerical calculations depicting the weather evolution process 

through a large-scale computer based on the actual atmospheric conditions and under certain 

conditions of initial and marginal values. The foresight period of numerical weather prediction is 

generally able to reach 1~15 days or even longer [1-2]. Henan Province is located in the Central 

Plains. The terrain is extremely complex: the northwestern part of the Taihang Mountains, the western 

part of the Zhongtiao Mountains, the Banshan Mountains, the southwestern part of the Xiong’er 

Mountains, the outer Fangshan Mountains, the FuNiu Mountains, the central part of the Songshan 

Mountains, MangShan Mountains, the southern part of the TongBaShan Mountains, the Dabie 

Mountains, and so on, and in the east of the region for the plains, the central part of the north of the 

Yellow River running across the east and west. These complex topographies have a great influence 

on the boundary layer meteorological elements, especially on the distribution of wind fields [3]. Every 

year in summer, many strong convective weather occurs in Henan, such as thunderstorms and 

hailstorms over a wide area of Henan, gales and hailstorms in Zhengzhou, and shipwrecks caused by 

gales in Xiaolangdi, Jiyuan, all of which caused great losses to people’s lives and properties [4]. 

Although every strong convective weather has its large-scale weather background, the influence of 

small- and medium-scale systems and topography is not negligible, which increases the difficulty of 

strong convective forecasting in our practical work [5]. Therefore, in order to improve the timeliness 

and accuracy of the ensemble numerical weather prediction model in Henan and to provide some 

reference ideas for the forecasters, it is of great significance to study the effect of the efficiency of 

parameterization scheme on the strong convective weather in Henan [6-8]. 

In order to improve the accuracy of weather forecasting, people have never stopped on the road of 

exploring weather forecasting techniques. Murray, S.A stated that as the space weather community 

has been exploring and researching more and more deeply on the application of emerging 

technologies and combining them with the traditional body of knowledge established based on the 

physical principles, which has achieved remarkable results in operational forecasting work, the 

application of ensemble techniques in space weather forecasting operations will continue to push The 

application of ensemble technology in space weather forecasting operations will continue to promote 

the development of operational forecasting work to a higher level [9]. Ren, X et al. pointed out that 

the new idea of “deep learning-based” brings infinite possibilities for future development, which can 

help people better understand the subtle connections behind complex systems, can also provide more 

accurate and reliable weather regression analysis results, and most importantly, will promote the rapid 

development of the entire industry in the direction of intelligence and autonomy, and further meet 

people’s growing demand for high-quality services [10]. Wang, T et al.’s method of multi-model 

ensemble prediction based on a convolutional neural network and feed-forward neural network is 

very effective for improving the temperature prediction in Henan Province, and this study provides 

an important reference for the future in-depth understanding of the SAT weather in Henan Province 

in the next few tens of hours and provides reliable support for the application in related fields [11]. 

Zheng et al. emphasized that in order to improve the prediction ability of extreme precipitation events, 

it is necessary to strengthen the research and improvement of the interaction mechanism between the 

atmospheric circulation systems within each model, and only by more accurately grasping the 

complex relationship between various meteorological elements and incorporating them into a more 

complete and reliable numerical weather prediction system can we effectively deal with the problem 

of extreme weather events such as heavy rainfall that may have catastrophic impacts [12]. 

Nowadays, ensemble forecasting is a widely used numerical forecasting technique, particularly in 

Chinese numerical weather prediction research. In this paper, a brief overview of the application of 

ensemble numerical modeling in weather forecasting is first presented, and then the algorithms for 
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determining specific parameters, such as CAPE and SRH, are introduced to provide support for the 

construction of the objective function of the WRF-ARW numerical weather prediction model. The 

pre-processing and evaluation methods for the collected raw rainfall datasets are briefly discussed. 

The WRF-ARW model is utilized to simulate the weather prediction in Henan Province, and the 

difficulties and challenges that come with implementing the parameterized scheme are discussed. It 

is expected to guide future development trends of ensemble numerical computation in the efficient 

implementation of parameterized schemes for weather forecasting in Henan Province. 

2 Method 

2.1 Application of Ensemble Numerical Prediction Models to Weather Forecasting 

2.1.1 Application in Data Assimilation 

Numerical weather prediction systems provide important information on the atmosphere, oceans, and 

land surface by extensively assimilating a large number of observations from the ground, satellites, 

and ships with the help of data assimilation techniques. With the improvement of the quality of 

observation data, especially the increasing number of observation data from satellites, as well as the 

continuous upgrading of Earth system models and data assimilation techniques, the level of modern 

medium-term weather prediction has been significantly enhanced. Data-driven methods, represented 

by deep learning, have become a hot topic in weather forecast data assimilation. 

2.1.2 Applications in the development of numerical refinement 

The evolution of numerical weather prediction models continues, with significant improvements in 

model resolution. For subgrid processes that cannot be resolved by models, such as small-scale 

radiation, convection, and diffusion processes within the atmospheric system and with the outside 

world, researchers have developed various parameterization schemes to describe the heat and 

momentum gain and loss of subgrid processes to improve the quality of numerical forecasts. The deep 

neural network parameterization schemes driven by big data can significantly improve model 

forecasts and computational efficiency. 

2.1.3 Applications in target observation 

The ensemble numerical prediction method is able to mine the hidden high-dimensional information 

from the massive simulation data of numerical weather prediction so as to construct the numerical 

weather prediction product bias characteristics, which opens up a new direction for the numerical 

weather prediction bias revision research and business practice. Supported by enough training data, 

the results of the ensemble numerical prediction model are generally better than traditional statistical 

post-processing methods. It is foreseeable that the quality of forecast products, and thus the early 

warning capability for catastrophic weather and climate, will be significantly improved by 

continuously improving the neural network model as well as the optimization algorithm, driven by 

the meteorological, oceanic big data. 

2.1.4 Applications in Probabilistic Forecasting 

By reanalyzing the data or observations for training, data-driven models can avoid the limitations 

present in numerical forecasting models. Large ensembles help improve the prediction level of 

extreme weather events in both short-term and long-term forecasts. The Earth system, as a complex 
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system, is governed by physical laws at different spatial and temporal scales. The numerical solution 

of partial differential equations (PDEs) using finite difference, finite element, and spectral methods 

has been a great success in interfacing multi-scale physical processes. Through the in-depth study of 

the artificial intelligence framework with embedded physical constraints, a new generation of data-

driven and physically-driven numerical weather prediction systems are developed, which can ensure 

the accuracy, real-time, and reliability requirements of numerical prediction products. 

2.2 WRF-ARW numerical weather prediction model construction 

The WRF model [13-14] was developed as a mesoscale numerical weather prediction system for 

atmospheric research and operational forecasting applications. Two main dynamic cores are present: 

the data assimilation system and the software architecture. The physical range of the model is also 

extremely wide, from tens of meters in the low-altitude phase to thousands of kilometers in the high-

altitude phase for effective meteorological applications. The WRF model can be simulated under real 

natural atmospheric conditions, such as observation data and analysis data, or under idealized 

conditions for meteorological simulations. In this paper, we mainly use the WRF-ARW of the WRF 

model [15-16]. 

In accordance with Laprise’s method, the following derivation process can be carried out firstly for 

the following equations: take the coordinates of the terrain perpendicular to the static air pressure, 

take    as the perpendicular mass coordinates, and take    as the corrected surface coordinates 

corresponding to it, which have the following form: 

 ( ) /h htp p = −  (1) 

hs htp p = −  here, where Ph  is the component of the hydrostatic equilibrium of the air pressure, 

htp  is the air pressure at the top of the boundary, and hsp  is the air pressure at the surface of the 

terrain. At ( ),x y  grid points within the model area, ( ),u x y  is the mass of the air column per unit 

horizontal area at the corresponding grid point, so for the conservative quantities above, we can 

express them in the form of flux approximations: 

 ( , , ), ,
V

V U V W  = =  =  =  (2) 

Next, we define the deviation of the perturbation quantity with respect to the reference state to obtain: 

 '( )p p z p= +  (3) 

 ( ) 'z  = +  (4) 

 ( ) 'z  = +  (5) 

 ( ) 'z  = +  (6) 

In general, the coordinate plane in  -coordinates has a non-horizontal character, so the reference 

state quantity , ,p    therein is usually expressed as a function of ( ), ,x y  . We can directly refer 

to the above perturbation quantities to eliminate the static equilibrium part within the equation, and 

then applying the above-conserved quantities associated with the reference state deviations, we obtain 

the Laprise system of equations of the following form, i.e.: 
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' '

)
'

'( ( )') ( U

U p p
W F

t x x x x
 

     
     

     
+ + + + + − =  (7) 

 
' '

)
'

'( ( )') ( V

V p p
V F

t y y y y
 

     
      

     
+ + + + + − =  (8) 

 ( ) )
'

'( W

W p
W g F

t


 
  

 
+ − − =  (9) 

 ( ) F
t

 


+   =


 (10) 

 ( ) 0W
t




+  =


 (11) 

 ( ) gw
t







+   =


 (12) 

After obtaining the above system of Laprise equations in the form of flux forecasts, the following 

static pressure diagnostic relations need to be satisfied: 

 
'

' '


 


= − −  (13) 

and the gas equation of the state 

 
0

r

R
p

p 

 
=  
 

 (14) 

Here g  is the gravitational acceleration, the Possion index r  takes the value of / 1.4pr c c= = , 

and the other parameters are meteorologically generalized quantities. 

The five key parameters in the new KFCPS are related to the rate of descending air flux and onset 

height, the ambient entrained flux rate, the turbulent kinetic energy (TKE) in the subcloud layer, and 

the time of depletion of the convective available potential energy (CAPE). In WRF, the CPS of KF is 

considered important, but the range of possible values is quite wide. 

The strengths of both the downward and entrained fluxes are proportional to the mass flux of the 

upward flux at the top of the USL in the KF. In this study, two parameters, dP  and eP , are defined 

as additional scaling factors that regulate the rates of the downwelling and entrainment fluxes, 

respectively, to 1/2 to 2 times their original values. 

 2 (1 ) 2 , ( 1,1)d

USL
Pd

dUSL

u

M
RH P

M
=  −   −  (15) 

 
0.03

2 , ( 1,1)ePe
eUSL

u

M p
P

M R

 − 
=   −  (16) 
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In Eqs. 
USL

uM  and 
USL

uM  are the rising and falling mass fluxes at the top of USL , respectively. 

RH  is the average relative humidity of the ambient air from the starting layer of the descending 

airflow to the bottom of the cloud. R   is the cloud radius, p   is the pressure thickness of the 

modeled layer, and eM  is the maximum possible entrainment rate of the layer. 

In criterion KF , it is assumed that the downdraft starts from 150hPa  above USL . The starting 

height of the downdraft hP   controls the structure of the downdraft and also influences the 

atmospheric properties in the subclouds. We set the range of P% to 50 350hPa−   to allow for a 

greater degree of freedom in the downdraft structure from larger and narrower to shorter and wider. 

The TKE and average CAPE consumption times are referred to as tP  and cP , and take values of 
2 25m s−   and 2700s   in the standard KF. The range of intervals for values taken for tP   is 

2 2 2 2[3 ,12 ]m s m s− −
, and the range of intervals for values taken for cP  is  900 ,7200s s . 

2.3 Environmental instability parameters of the WRF-ARW model 

2.3.1 Convective Effective Potential Energy CAPE 

The area enclosed by the laminar curve and the state curve between the upper free convection height 

(LFC) and the equilibrium height (EL) is called the positive area (PA), which is proportional to the 

magnitude of the kinetic energy generated by the positive buoyancy force between the LFC and the 

EL. The positive area on the thermodynamic diagram is currently referred to as the daily convective 

effective potential energy CAPE [17-18], defined in the following equation: 

 ( )
EL

LFC

Z vp ve

Z
ve

T T
CAPE g dz

T

−
=   (17) 

Where vT   - imaginary temperature, ,  e p   denotes physical quantities related to the environment 

and to the gas block, respectively: LFCZ   - free convection height, which is the height at which 

vp veT T−  turns from a negative to a positive value; ELZ  - equilibrium height, which is the height at 

which vp veT T−  the height from positive to negative values. Geometrically, CAPE is proportional to 

the positive area on a thermodynamic diagram (e.g., T-LnP diagram), characterizing the unstable 

energy of strong convection in the atmosphere. 

1) Steps for calculating convective effective potential energy CAPE 

(1) Select the horizontal coordinate as temperature and the vertical coordinate as logarithmic 

air pressure. 

(2) Temperature, dew point laminar curve production: the vertical layer of airborne data 

temperature, air pressure, and dew point temperature data, coordinates are connected to 

each point in turn, the temperature, dew point laminar curve can be obtained. 

(3) State curve production: after selecting the starting lifting point, according to the dry 

adiabatic process to pick up the condensation height ( ),  L LT P . 
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2840

55
3.5ln ln 4.805

L

k

T
T e

= +
− −

 (18) 

 0

273
( )
273

d

d

C

Rk
L

L

T
P P

T

+
=

+
 (19) 

where kT  , 0P   are the starting point temperature and air pressure. According to the principle of 

conservation of potential temperature   in a dry adiabatic process, the corresponding temperature 

values are calculated by iteration. The formula for calculating the potential temperature   is: 

 
30.2854(1 0.28 10 )

0

1000
( ) r

kT
P


−− =  (20) 

Where kT   is the absolute temperature at the starting point, T   is the temperature at the pick-up 

condensation height, 0P  is the air pressure at the starting point, r  is the mixing ratio of the gas 

block, and e  is the water vapor pressure at the pick-up condensation height. After the gas block 

reaches the lifting condensation height, according to the principle of pseudo-equivalent potential 

temperature conservation, use the iterative or bifurcation method to calculate the state curve, pseudo-

equivalent potential temperature se  calculation formula for: 

 
33.376

exp[( 0.00254) (1 0.81 10 )]se

L

r r
T

  −= −  +   (21) 

(4) Compare the lamination curve with the state curve, and when the temperature of the gas 

block is greater than the ambient temperature, the unstable energy integration starts and 

ends when the temperature of the gas block is less than the ambient temperature. The 

value obtained from the integration is the size of CAPE. 

2) Convective effective potential energy calculated by density temperature 

The density temperature T  is a widely used quantity in recent years in the theory of wet-

atmosphere convection. Similar to the process of introducing imaginary temperature vT , the 

density temperature T  is defined as: 

 
1 /

1
T T



 



+
=

+
 (22) 

Where T   is the temperature,    is the mixing ratio of the water substance, i i   = + +  , 

, ,i i    are the mixing ratios of water vapor, liquid water, and ice respectively.   is the ratio of dry 

air gas constant Rd to water vapor gas constant Rv. When there is no water condensate,  = , then: 

 
1 /

(1 0.608 )
1

T T T T 

 




+
=   + =

+
 (23) 
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vT  is a special case of T . Density temperature T  can be regarded as the temperature at which air 

should be when the density of dry air equals the density of wet air and air containing solid water at 

the same pressure. The introduction of density temperature T  then reflects the temperature of a 

multiphase system, i.e. /dR T p = . 

In the atmospheric wet process, we consider T  instead of vT  to calculate the convective effective 

potential energy, which gives CAPE as: 

 
1

( )
z

z
CAPE g T T dz

T




 



= −  (24) 

2.3.2 Parameters related to wind shear 

Helicity is a parameter used to measure the strength of the incoming flow of a t-storm as well as the 

horizontal vorticity component along the direction of the incoming flow. Helicity is the volume 

fraction of the dot product of the wind speed vector and the vorticity vector, expressed as: 

 t

r

H V Vd=   (25) 

The dot product of the wind speed vector and the vorticity vector is called the local helicity, denoted 

as: 

 DH V V=   (26) 

V  in the above two equations is the three-dimensional wind speed. Defined as: 

 0( )h

s r TH V C dz− − =  −   (27) 

The storm-relative helicity size unit is 
2 -2m s . The average storm-relative helicity) is simply a high 

average of the total helicity. The above equations can be rewritten as formulas based on the properties 

of analytic geometry: 

 
1

1 1
0

[( )( ) ( )( )]
N

s r T n x n y n x n y
n

H u c c u c c 
−

− − + +
=

=  − − − − −  (28) 

In this case, the storm speed was determined by selecting the mass-weighted average wind in the 850 

hPa to 400 hPa air layer, with the wind deflected 30° to the right and 75% of the magnitude of the 

wind speed as the storm speed at that point. 

2.4 Precipitation data assessment and fusion methods 

2.4.1 Precipitation Data Assessment Methods 

Before fusing the numerical forecast data, the precipitation data needs to be evaluated as a way to 

judge the reliability of that precipitation data. In this paper, relative deviation, mean absolute error, 

correlation coefficient, and root mean square error are selected, which are defined as follows: 
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1

1

1

n
i

pred

i

n
i

obs

i

y

RelativeBias

y

=

=

= −



 (29) 

 
1

1
| |

n
i

pred

i

MAE y y
n =

= −  (30) 

 
( )
( )

2

1

1

CC 1

n i i

i pred obs

n i

i obs

y y

y y

=

=

 −
= −

 −
 (31) 

 
( )

2

1

n
i i

pred obs

i

y y

RMSE
n

=

−

=
  (32) 

Where n   is the number of observations at each grid point, i

predy   represents the predicted 

precipitation for that grid, 
i

obsy  represents the measured observed precipitation for that grid, 
predy−  

represents the mean value of the predicted precipitation for that grid, and obsy−
 represents the mean 

value of the measured observed precipitation for that grid. ,pred obsY Y   represents the forecast 

precipitation sequence and observed precipitation sequence, respectively. 

The principle of the empirical orthogonal function analysis method is to decompose the variable field 

that changes with time into a spatial function that does not change with time and a temporal function 

that only depends on the change of time, and its expression is as follows: 

 m m m nX EOF PC =   (33) 

Where: m  is the number of spatial lattice points; n  is the length of the time series; EOF  is the 

spatial modality, which mainly expresses the spatial distribution characteristics of the element; PC  

is the time-related part, reflecting the change of each spatial modality over time. Whether the spatial 

modality obtained in the actual data is random, the North test is needed to determine how many modes 

the data set needs to be divided into before conducting the EOF analysis. North et al. pointed out in 

their study that the m mEOF  -matrix eigenroot error at the 95% confidence level is: 

 
2

N
  =  (34) 

   is the characteristic root and N   is the effective degree of freedom of the data. Check    in 

sequential order by labeling the margin of error. If there is an overlap of error ranges between the two 
  before and after, the test of significance has not been passed. Determine the modality of the data 

set based on the significance test. 
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2.4.2 Precipitation Data Fusion Methods 

For the fused data, the data were extracted with a resolution of 0.1 0.1   and a latitude/longitude 

range of 28 ~ 29 30' N  , 120 30' ~122  . The data were converted to decimals in the interval (0, 1) 

using the min-max normalization method, and finally, the daily 6-hour cumulative data were sorted 

by date. 

 normalization

x Min
x

Max Min

− 
=  

− 
 (35) 

Where, normalizationx  is the value after the data normalization process, x  is the raw precipitation data, 

Min  is the minimum value of the whole data set and Max  is the maximum value of the whole data 

set. The downscaling method used is Inverse Distance Weight Interpolation (IDW). The principle of 

IDW is shown below: 

 2 2( ) ( )i i iD x A y B= − + −  (36) 

 

2

1

( , )
2

1

(

(
1

)

)

N i
i

i
A B

N

i

i

Z

D
Z

D

=

=



=


 (37) 

Where iD  is the distance from ( ),i ix y  to grid point ( ),A B  and ( , )A BZ  is the estimate on grid 

point ( ),A B , i.e., the estimate obtained by accumulating the nearest N  grid points to point ( ),A B  

according to the weight of the distance. In this paper, take 4N =  for calculation. 

3 Results and discussion 

3.1 Analysis of simulation results of the WRF-ARW model 

3.1.1 Parameter Optimization and Accuracy Grading 

In the process of parameter rate determination, the selection of the objective function is involved. The 

objective function is used to reflect the degree of agreement between the measured weather process 

and the simulated process, and the purpose of the automatic parameter rate determination is to find 

the parameter value that optimizes the value of the objective function, so the selection of the objective 

function is extremely important. The deterministic coefficient is used as the objective function for 

parameter optimization, and the WRF-ARW algorithm is used as the algorithm for parameter 

optimization to rate the model to obtain the optimal parameter combinations for the study basin. 

According to the evaluation standard of weather forecasting specification, three evaluation items of 

maximum precipitation, total precipitation and precipitation process are selected to evaluate the 

simulation effect of rainy days. Three error indexes of relative error of maximum precipitation, 

relative error of total precipitation and certainty coefficient are selected to analyze comprehensively. 

The permissible error of total precipitation is proposed to be 10%, and that of maximum precipitation 

is proposed to be 15%. The qualified evaluation standard is that the relative error is less than the 
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permitted error, and the overall accuracy level of the simulation can be graded according to the size 

of the qualified rate or the certainty coefficient, as shown in Table 1 below. 

Table 1. The prediction accuracy scale 

Grade Level A level B level C level D level 

Conformity rate (%) 90-100 85-90 70-85 ≤70 

Certainty coefficient [1-0.9] [0.9-0.85] [0.85-0.7] [≤0.7] 

3.1.2 WRF-ARW Model Predictions for the Detection Set 

Before assessing the credibility of the test set data, the WRF-ARW model needs to predict the test set, 

and the predicted value of the model is used as the truth estimate. 

The prediction results of the WRF-ARW model for the maximum rainfall test set in Henan Province 

are shown in Figure 1. From Fig. 1, it can be seen that the predicted and actual observed values of the 

WRF-ARW model for the maximum rainfall in Henan Province are very consistent in the numerical 

magnitude and data trend, and the error between its predicted and true values ranges from 1.78% to 

13.51%, which are all less than 15%. It shows that the model has a better prediction effect, which 

illustrates that the WRF-ARW model fully learns the characteristics of the data and has better 

prediction ability. 

 

Figure 1. The WRF-ARW model is the prediction curve for maximum rainfall 

The prediction results of the WRF-ARW model for the total rainfall detection set in Henan Province 

are shown in Fig. 2. The experimental results show that the predicted values of the WRF-ARW model 

and the actual observed values are very consistent in the numerical magnitude and data trends, and 

the errors between its predicted values and the real values are less than 10% in the range of 0.16%-

3.78%. The model’s prediction effect is extremely good, which indicates that it fully learns the data’s 

characteristics and has a good prediction ability. 
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Figure 2. The prediction curve of total rainfall is based on the WRF-ARW model 

3.1.3 Data credibility assessment for information fusion 

Based on the prediction results of the model, the data credibility of the test set is evaluated according 

to the credibility measure algorithm, and the results of the data credibility evaluation of the test set of 

raw data are shown in Figure 3. For the undisturbed test set data, the data credibility given by this 

assessment method is very high. The confidence values of all the test samples are in the range of 

0.957-0.997, and the confidence level is greater than 0.9 and close to 1. Thus, the raw data collected 

in this paper has a high level of confidence. The WRF-ARW model-based credibility assessment 

algorithm has a high degree of accuracy in assessing raw data, as demonstrated by this. 

 

Figure 3. The credibility assessment of the original data set 

3.2 Analysis of weather forecasting results of Henan by WRF-ARW model 

3.2.1 Prediction of maximum rainfall by the WRF-ARW model 

In order to analyze the precipitation simulation effect of the WRF-ARW model in Henan Province, 

the daily rainfall data from 10 national standard meteorological stations and 5 rainfall stations in 
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Henan Province, totaling 15 stations, were selected as measured data, and the data period was from 

2022 to 2023. The daily precipitation data of the 10 national standard weather stations were provided 

by the National Meteorological Information Center of the China Meteorological Administration 

(CMA), and a group company in Henan Province provided the daily precipitation data of the 5 rainfall 

stations. 

The maximum rainfall and relative error of the forecast for 2022-2023 in Henan Province are 

displayed in Figure 4 below. All the relative errors of the predicted maximum rainfall at 15 points are 

within 10%, as shown by the experimental results. The WRF-ARW model’s prediction of maximum 

rainfall at number 12th has the largest relative error of 9.21% among them. This was followed by the 

numbered 5th, 14th, and 6th determinations with relative errors of 8.19%, 7.92%, and 7.35%, 

respectively. Number 7 was the measurement number with the lowest relative error, with a relative 

error of 1.23%. Overall, the relative errors of the 15 times of maximum rainfall in Henan Province 

predicted by the WRF-ARW model during 2022-2023 are all within 10%, indicating that the 

experimental data predicted by the WRF-ARW model have high credibility. The accuracy of the 

maximum rainfall predicted by the WRF-ARW model is >90%, and the model accuracy parameter 

reaches A level. 

 

Figure 4. The WRF-ARW model predicts maximum rainfall and error in 2022 to 2023 

3.2.2 Prediction of maximum rainfall by the WRF-ARW model 

The results of total rainfall and relative errors predicted based on the WRF-ARW model for 2022-

2023 in Henan Province are shown in Figure 5 below. According to the experimental results, the 

predicted total rainfall errors at all 15 points are within 10%. The total rainfall predicted at number 

10 has the largest relative error of 6.81%, followed by numbers 9 and 4, which have relative errors of 

6.2% and 5.47%, respectively. The remaining numbering has a lower relative error rate of less than 

5%. Especially numbered 3rd, 14th, and 15th have relative errors of 0.14%, 0.26%, and 0.37% for 

the total precipitation predicted by using the WRF-ARW model, and the relative error of the total 

precipitation predicted by the WRF-ARW model is <1%. It can be seen that the similarity between 

the total rainfall values predicted by the WRF-ARW model and the measured values 15 times in 

Henan Province from 2022 to 2023 is infinitely close to that of the measured values, which indicates 

that the experimental data are extremely credible. The accuracy of the prediction results of the total 

rainfall by the WRF-ARW model is >90%, and the parameters of the model accuracy are still up to 

the level of A. The total rainfall predicted by the WRF-ARW model is >1%. 
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Figure 5. The WRF-ARW model predicts total rainfall and error in 2022 to 2023 

3.2.3 Efficiency statistics of parameterized schemes for the WRF-ARW model 

The qualification rate of the WRF-ARW model weather forecasting scheme is depicted in Table 2 

below. It is found that after the post-processing of the WRF-ARW model forecast precipitation data, 

the number of forecast maximum rainfall events in Henan Province totaled 15 maximum rainfall 

events, and the number of qualified events of maximum rainfall was 13, with a qualification rate of 

86.7%, and the overall forecast accuracy was grade B. The maximum rainfall time of peak occurrence 

was 14, with a qualification rate of 93.3%. The total number of rainfall events in Henan Province 

after the post-processing of precipitation data forecasted by the WRF-ARW model is 15, and the total 

number of qualified rainfall events is 14, with a qualification rate of 93.3%, and the overall forecast 

accuracy is A. The total number of qualified rainfall events in Henan Province after the post-

processing of precipitation data forecasted by the WRF-ARW model is 15, and the total number of 

qualified rainfall events is 14, with a qualification rate of 93.3%, and the overall forecast accuracy is 

A. The number of qualified rainfall peak times was 13, with a qualification rate of 86.7%, and the 

overall accuracy of the forecast was Grade B. It was predicted that the maximum and total rainfall 

would be 15, with a qualification rate of 14 and a qualification rate of 93.3%. Both the maximum 

rainfall and total rainfall have been certified with a B grade. Overall, the WRF-ARW model is very 

effective in improving the efficiency of parameterized scenarios in Henan Province. 

Table 2. The results of the quality rate of the WRF-ARW model weather forecast scheme 

Weather forecast project Total number Qualified number Conformity rate (%) Grade Level 

Maximum rainfall 15 13 86.7% B level 

Emergence time 15 14 93.3% A level 

Total rainfall 15 14 93.3% A level 

Emergence time 15 13 86.7% B level 
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3.3 Difficulties and Challenges in Implementing Parametric Program Efficiency 

3.3.1 Deficiencies in the Use of Parametric Schemes for Low Precipitation 

The post-processing model of the WRF-ARW parameterization scheme used in this paper is not good 

at extracting information of low values, which will lead to the difficulty of extracting the smaller 

precipitation events, which will often cause a certain degree of error on the accuracy of weather 

prediction, thus affecting the accuracy of the weather forecast, so it is necessary to process the raw 

data to make the spatial information of the small amount of precipitation can be obtained by the model 

to obtain a higher-quality Spatial precipitation information. We can compare additional deep-learning 

models and examine the ones that are better suited for precipitation post-processing. 

3.3.2 Quantitative post-processing of WRF-ARW models 

The model involved in this study is a precipitation prediction model for Henan Province, which 

utilizes the division of subunits and the Muskingum method of convergence for precipitation 

forecasting. In subsequent studies, the rationality of the conclusions can be further verified using 

numerical weather prediction coupled with distributed weather models. Meanwhile, because of the 

lack of station data, low selection rate, and not very abundant precipitation fields for validation, more 

continuous and detailed hour-by-hour rainfall and runoff data from real stations should be collected 

for the validation of the model stability rate so as to improve the accuracy of the precipitation forecasts. 

The watershed involved in this study is in the central-southern region, while in the northern region, 

because of the low precipitation, the amount of data may not be enough to support the post-processing 

of precipitation with the deep learning model as in this paper, but the method can be used to do the 

rainfall grading. Models such as TOPMODEL can be used to perform precipitation forecasting work 

in the northern region. 

3.3.3 Trends in future modeling of collective values 

In order to meet the future business needs for refined and seamless weather forecasting and climate 

prediction, as well as the challenges of the future development of heterogeneous multicore high-

performance computers, we will develop a new framework for high-precision scalable and 

conservative atmospheric modeling and scale-adaptive physical processes, and gradually carry out 

the study of coupled numerical forecasting technology to meet the challenges of the future 

development of local 100-meter and global 1,000-meter level resolution and coupled numerical 

forecasting. 

4 Conclusion 

This paper first introduces the application of the ensemble numerical forecasting model in weather 

forecasting and then constructs the WRF-ARW numerical weather forecasting model by selecting the 

deterministic coefficient as the objective function of parameter optimization for the specific climatic 

characteristics of the Henan region. After that, the WRF-ARW model’s parameters are optimized and 

graded for accuracy, and the reliability and validity of the original dataset are assessed using this 

model. Finally, the WRF-ARW model is used to simulate weather prediction in Henan Province, and 

the impact of the difficulties encountered in implementing the parameterized scheme is analyzed. 

1) The errors between the predicted and real values of maximum rainfall and total rainfall in 

Henan Province by the WRF-ARW model are 1.78%-13.51% and 0.16%-3.78%, which are 

less than 15% and 5%, respectively. The model’s prediction effect is better, which 
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demonstrates that the WRF-ARW model fully understands the data’s characteristics and has 

a stronger prediction ability. 

2) The WRF-ARW model forecasts the maximum rainfall and the time of peak occurrence of 

maximum rainfall with 13 and 14 qualified fields, respectively, with a qualification rate of 

86.7% and 93.3%, and the overall forecasting accuracy is grade B and grade A, respectively. 

The total rainfall and peak rainfall occurrence time were qualified in 14 and 13 cases, with 

pass rates of 93.3% and 86.7%, respectively, and the overall prediction accuracy was Grade 

A and Grade B, respectively. The WRF-ARW model is highly effective in weather forecasting 

in Henan Province overall. 
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