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ABSTRACT 

In this paper we present a new low-cost navigation system designed for small size Unmanned 
Aerial Vehicles (UAVs) based on Vision-Based Navigation (VBN) and other avionics sensors. 
The main objective of our research was to design a compact, light and relatively inexpensive 
system capable of providing the Required Navigation Performance (RNP) in all phases of 
flight of a small UAV, with a special focus on precision approach and landing, where Vision 
Based Navigation (VBN) techniques can be fully exploited in a multisensor integrated archi-
tecture. Various existing techniques for VBN were compared and the Appearance-Based 
Approach (ABA) was selected for implementation. Feature extraction and optical flow tech-
niques were employed to estimate flight parameters such as roll angle, pitch angle, deviation 
from the runway and body rates. Additionally, we addressed the possible synergies between 
VBN, Global Navigation Satellite System (GNSS) and MEMS-IMU (Micro-Electromechanical 
System Inertial Measurement Unit) sensors, as well as the aiding from Aircraft Dynamics 
Models (ADMs). In particular, by employing these sensors/models, we aimed to compensate 
for the shortcomings of VBN and MEMS-IMU sensors in high-dynamics attitude determina-
tion tasks. An Extended Kalman Filter (EKF) was developed to fuse the information provided 
by the different sensors and to provide estimates of position, velocity and attitude of the 
UAV platform in real-time. Two different integrated navigation system architectures were 
implemented. The first used VBN at 20 Hz and GPS at 1 Hz to augment the MEMS-IMU 
running at 100 Hz. The second mode also included the ADM (computations performed at 
100 Hz) to provide augmentation of the attitude channel. Simulation of these two modes was 
accomplished in a significant portion of the AEROSONDE UAV operational flight envelope 
and performing a variety of representative manoeuvres (i.e., straight climb, level turning, 
turning descent and climb, straight descent, etc.). Simulation of the first integrated navigation 
system architecture (VBN/IMU/GPS) showed that the integrated system can reach position, 
velocity and attitude accuracies compatible with CAT-II precision approach requirements. 
Simulation of the second system architecture (VBN/IMU/GPS/ADM) also showed promising 
results since the achieved attitude accuracy was higher using the ADM/VBS/IMU than using 
VBS/IMU only. However, due to rapid divergence of the ADM virtual sensor, there was 
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a need for frequent re-initialisation of the ADM data module, which was strongly dependent 
on the UAV flight dynamics and the specific manoeuvring transitions performed. 

Keywords: 
Vision-Based Navigation, Integrated Navigation System, MEMS Inertial Measurement Unit, 
Unmanned Aerial Vehicle, Low-cost Navigation Sensors. 

INTRODUCTION 

The use of Unmanned Aerial Vehicles (UAVs) in civil and military applica-
tions has much increased as these vehicles provide cost-effective and safe alterna-
tives to manned flights in several operational scenarios. These robotic aircraft employ 
a variety of sensors, as well as multi-sensor data fusion algorithms, to provide autonomy 
to the platform in the accomplishment of mission- and safety-critical tasks. UAVs 
are characterized by higher manoeuvrability, reduced cost, longer endurance and 
less risk to human life compared to manned systems. UAV guidance and control 
depend primarily upon accurate and continuous knowledge of vehicular position and 
attitude. These tasks can be accomplished by a remote pilot and, frequently, imple-
menting automatic flight modes. Technical requirements for air navigation systems 
primarily include accuracy, physical characteristics such as weight and volume, 
support requirements such as electrical power, and system integrity. One of the most 
important concepts is to use a multi-sensor integrated system to cope with the re-
quirements of long/medium range navigation and landing. This would reduce cost, 
weight/volume and support requirements and, with the appropriate sensors and inte-
gration architecture, give increased accuracy and integrity of the overall system. The 
best candidates for such integration are indeed satellite navigation receivers and 
inertial sensors. In recent years, computer vision and Vision-Based Navigation (VBN) 
systems have started to be applied to UAVs. VBN can provide a self-contained 
autonomous navigation solution and can be used as an alternative (or an addition) to 
the traditional sensors (GPS, INS and integrated GPS/INS).  

The required information to perform autonomous navigation can be obtained 
from compact and lightweight cameras. Sinopoli [22] used a model-based approach to 
develop a system which processes image sequences from visual sensors fused with 
readings from GPS/INS to update an inaccurate 3D model of the surroundings that 
was built with Digital Elevation Maps (DEM). Occupancy Grid Mapping was used 
to divide the map into cells. The probability of an obstacle being present in a cell is 
associated with each one. Using this ‘risk map’ and the images from the visual sensors, 
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the UAV can update its stored virtual map. Se [21] proposed a system which deals 
with Vision-Based SLAM using a trinocular stereo system. In this study, Scale- 
-Invariant Feature Transform (SIFT) was used for tracking natural landmarks and to 
build the 3D maps. The algorithm built submaps from multiple frames which were 
merged together. The SIFT features detected in the current frame were matched to 
the pre-built database map in order to obtain the location of the vehicle. A stereo 
Vision-Based navigation system was implemented on the 2004 twin Mars Explora-
tion Rovers, Spirit and Opportunity. They were equipped with three types of stereo 
cameras which allowed them to navigate the Martian surface for long distances.  
A stereo Vision-Based navigation system for lunar rovers was proposed by Cui [6]. 
The system performed robust motion estimation and disparity estimation using ste-
reo images for accurate lunar navigation, obstacle avoidance and DEM reconstruc-
tion. The position of the rover while descending was found using sequence images 
taken by a descent camera and the reading were integrated with measurements from 
a laser altimeter and DEM. Image processing was carried out using feature detec-
tion, tracking and stereo matching. Levenberg-Marquardt non-linear estimation was 
used for motion estimation and Weighted Zero Sum of Squared Differences gave the 
disparity estimation. Matsumoto [12] proposed a representation of the visual route 
taken by robots in appearance-based navigation. This approach was called the View- 
-Sequenced Route Representation (VSRR) in which the visual route connected the 
initial position and destination was used for localisation and guidance in the 
autonomous run. Pattern recognition was achieved by matching the features detected 
in the current view of the camera with the stored images. The visual route was learnt 
while the robot was manually guided along the required trajectory. A matching error 
between the previous stored image and current view was used to control the capture 
of the next key image. The key image with the greatest similarity to the current view 
represented the start of the visual route. The location of the robot depended purely 
on the key image used and no assumption was made of its location in 3D space. 
During the autonomous run, the matching error between the current view and key 
images was monitored in order to identify which image should be used for guidance. 
The robot was controlled so as to move from one image location to another and fi-
nally reach its destination. This ‘teach-and-replay’ approach was adopted by Cour-
bon [4, 5], Chen [3] and Remazeilles [15]. In the case of [5] and [4], a single camera 
and natural landmarks were used to navigate a quadrotor UAV along the visual 
route. The key images were considered as waypoints to be followed in sensor space. 
Zero Normalised Cross Correlation was used for feature matching between the current 
view and the key images. A control system using the dynamic model of the UAV 
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was developed. Its main task was to reduce the position error between the current 
view and key image to zero and to stabilize and control the UAV. Vision algorithms 
to measure the attitude of a UAV using the horizon and runway were presented by 
Xinhua [26] and Dusha [9]. The horizon is used by human pilots to control the pitch 
and roll of the aircraft while operating under visual flying rules. A similar concept is 
used by computer vision to provide an intuitive means of determining the attitude of 
an aircraft. This process is called Horizon-Based Attitude Estimation (HBAE). In [26] 
and [9], grayscale images were used for image processing. The horizon was assumed 
to be a straight line and appeared as an edge in the image. Texture energy method 
was used to detect it and this was used to compute the bank and pitch angle of the 
UAV. The position of the UAV with respect to the runway was found by computing 
the angles of the runway boundary lines. During this research, it was observed that 
the image processing frontend was susceptible to false detection of the horizon if 
any other strong edges were present in the image. Therefore, an Extended Kalman 
Filter (EKF) was implemented to filter out these incorrect results. The performance 
of the algorithms was tested via test flights with a small UAV and a Cessna 172. 
During this research new VBN sensor specifically tailored for approach/landing 
applications were design and tested. Furthermore, during approach phase runaway 
features extraction was employed. Additionally, various candidates were considered 
for integration with the VBN sensor, including Global Navigation Satellite Systems 
(GNSS) and Micro Electro Mechanical Systems (MEMS) based Inertial Measure-
ment Units (IMUs). MEMS-IMUs are low-cost and low-volume/ weight sensors 
particularly well suited for small/medium size UAV applications. However, their 
integration represent a challenge, which need to be addressed either by finding im-
provements to the existing analytical methods or by developing novel algorithmic 
approaches that counterbalance the use of less accurate inertial sensors. In line with 
the above discussions, the main objective of our research was to develop a low-cost 
and low-weight/volume Navigation and Guidance System (NGS) based on VBN and 
other low-cost and low-weight/volume sensors, capable of providing the required 
level of performance in all flight phases of a small/medium size UAV, with a special 
focus on precision approach and landing (i.e., the most demanding and potentially 
safety-critical flight phase), where VBN techniques can be fully exploited in a mul-
tisensory integrated architecture. The NGS is composed by a Multisensor Integrated 
Navigation System (MINS) using an Extended Kalman Filter (EKF) and an existing 
controller that employs Fuzzy logic and Proportional-Integral-Differential (PID) 
technology. 
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VBN SENSOR DESIGN, DEVELOPMENT AND TEST 

VBN techniques use optical sensors to extract visual features from images 
which are then used for localization in the surrounding environment. Cameras have 
evolved as attractive sensors as they help design economically viable systems with 
simpler hardware and software components. Computer vision has played an impor-
tant role in the development of UAVs [13]. Considerable work has been made over 
the past decade in the area of Vision-Based techniques for navigation and control [26]. 
UAV Vision-Based systems have been developed for various applications ranging 
from autonomous landing to obstacle avoidance. Other applications looked into the 
possible augmentation INS and GPS/INS by using VBN measurements [17]. The 
vast majority of VBN sensor schemes fall into one of the following two categories 
[7]: Model-based Approach (MBA) and Appearance-based Approach (ABA). MBA 
uses feature tracking in images and create a 3D- model of the workspace in which 
robots or UAV operates [20]. The 3D maps are created in an offline process using  
a priori information of the environment. Localisation is carried out using feature 
matching between the current view of the camera and the stored 3D model. MBA is 
the most common technique currently implemented for Vision-Based navigation. 
However, the accuracy of this method is dependent on the features used for tracking, 
robustness of the feature descriptors and the algorithms used for matching and re-
construction. The reconstruction in turn relies on proper camera calibration and sensor 
noise. Knowledge of surroundings so as to develop the 3D models is also required 
prior the implementation. ABA algorithms eliminate the need for a metric model as 
they work directly in the sensor space. This approach utilizes the appearance of the 
whole scene in the image, contrary to model-based approach which uses distinct 
objects such as landmarks or edges [12]. The environment is represented in the form 
of key images taken at various locations using the visual sensors. In this approach, 
localisation is carried out by finding the key image with the most similarity to the 
current view. The vehicle of interest is controlled by either coding the action re-
quired to move from one key image to another or by a more robust approach using 
visual servoing [15, 16]. The ABA approach is relatively new and has gained active 
interest. Modelling of the surrounding using a set of key images is more straightfor-
ward to implement compared to 3D modelling. However, a major drawback of this 
method is its limited applicability since the key images need to be recaptured each 
time the vehicle moves to a new workspace. It is limited to work in the explored 
regions which have been visualised during the learning stage [1]. The ABA approach 
has a disadvantage in requiring a large amount of memory to store the images and is 
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computationally more costly than MBA. Nevertheless, due to improvements in 
computer technology, this technique has become a viable solution in many applica-
tion areas. We selected the ABA approach for the design of our VBN sensor system. 

L e a r n i n g  S t a g e  

During this stage, a video is recorded using the on-board camera while guiding 
the aircraft manually during the landing phase. The recorded video is composed of  
a series of frames which form the visual route for landing. This series of frames is 
essentially a set of images connecting the initial and target location images. The key 
frames are first sampled and the selected images are stored in the memory to be used 
for guidance during autonomous landing of the aircraft. During the learning stage, 
the UAV is flown manually meeting the Required Navigation Performance (RNP) 
requirements of precision approach and landing. If available, Instrument Landing 
System (ILS) can also be used for guidance. It should be noted that if the UAV 
needs to land at multiple runways according to its mission, the visual route for all 
the runways is required to be stored in the memory. The following two methods can 
be employed for image capture during the learning stage. 

• Method 1: Frames are captured from the video input at fixed time intervals. Key 
frames are selected manually.  

• Method 2: Frames are captured using a matching difference threshold [12]. This 
matching difference threshold is defined in number of pixels and can be obtained 
by tracking the features in the current view and the previously stored key image. 
The key images can then be selected based on the threshold and stored in the 
memory. 

The algorithm starts by taking an image at the starting point. Let this image 
be Mi captured at location i. As the aircraft moves forward, the difference between 
the current view (V) and the image Mi increases. This difference keeps increasing 
until it reaches the set threshold value (x). At this point, a new image Mi+1 is taken 
(replacing the previous image Mi) and the process is repeated until the aircraft 
reaches its destination.  

L o c a l i s a t i o n  

Localisation aims to determine the current location of the aircraft at the start 
of autonomous run. This process identifies the key image which is the closest match 
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to the current view. The current view of the aircraft is compared with a certain number 
of images, preferably the ones at the start of the visual route. The key image with the 
least matching difference is considered to be the start of the visual route to be fol-
lowed by the aircraft. At the start of the autonomous run, the aircraft is approxi-
mately at the starting position of the visual route. The current view, captured from 
the on-board camera is compared with a set of images (stored previously in the 
memory during the learning stage) in order to find the location of aircraft with re-
spect to the visual route. The key image with the least matching difference with the cur-
rent view is considered to be the location of the aircraft and marks the start of the 
visual route to be followed. In this example, the number of images to be compared 
(X) is taken as 20. First, the algorithm loads the current view (V) and the first key 
frame (Mi). Then the difference between the current view and the current key frame 
is computed. The algorithm then loads the next key frame Mi+1 and again computes 
the difference with the current view. If this difference is less than the previous dif-
ference, Mi+1 replaces Mi, and the process is repeated again. Otherwise, Mi is considered 
as the current location of the aircraft. 

A u t o n o m o u s  R u n  

During the autonomous run phase, the aircraft follows the visual route (pre-
viously stored in memory during the learning stage) from the image identified as the 
current location of the aircraft during localisation. The set of key images stored as the 
visual route can be considered as the target waypoints for the aircraft in sensor space. 
The current view is compared to the key images so as to perform visual servoing. 
The approach followed to identify the key image to be used for visual servoing, is 
describes as follows. Let Mj be the current key frame, i.e. image with the least 
matching difference with the current view. During the autonomous run, the current 
key image and the next key image (Mj+1) are loaded. The matching differences of the 
current view V with Mj and Mj+1 (which are DMj,V and DMj+1,V respectively) are 
tracked. When the matching difference DMj,V exceeds DMj+1,V, Mj+1 is taken as the 
current key image replacing Mj and the next key image is loaded as Mj+1. This same 
process keeps repeating until the aircraft reaches its destination, that is the final key 
frame. The proposed vision based navigation process is depicted in fig. 1. The key frames 
represent the visual route the aircraft requires to follow.  
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Key frame 1

Key frame 2
(start of visual route)

Key frame 3

Key frame 4
Key frame 5

(end of visual route)

 
Fig. 1. VBN process [own study] 

 
The figure shows that the key frame 2 is identified as the starting point of 

the visual route during the localisation process. The on-Dboard computer tracks the 
matching difference between current view and the second and third key frames until 
the difference for key frame 2 and the current view exceeds the difference of key 
frame 3 and the current view. At this stage, key image 3 is used to control the UAV 
and the matching differences between key frames 3, 4 and the current view are 
monitored. This process is repeated until the UAV reaches its destination. To capture 
the outside view, a monochrome Flea camera from Point Grey Research was used. 
This camera was also used in a previous study on stereo vision [14] and was selected 
for this project. The Flea camera is a pinhole charged coupled device (CCD) camera 
with a maximum image resolution of 1024 x 768 pixels. It is capable of recording 
videos at a maximum rate of 30 fps. An IEEE 1394 connection was used to interface 
the camera and computer with a data transfer speed of 400 Mbps. A fully manual 
lens which allows manual focus and zoom was fitted to the camera. A UV filter was 
employed to protect the lens and to prevent haziness due to ultraviolet light.  

I m a g e  P r o c e s s i n g  M o d u l e  

The Image Processing Module (IPM) of the VBN system detects horizon 
and runway centreline from the images and computes the aircraft attitude, body rates 
and deviation from the runway centreline. As a first step of IPM reprocessing, the 
size of the image is reduced from 1024 x 768 pixels to 512 x3 84 pixels. It was found 
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that this size reduction speeds up the processing without significantly affecting the 
features detection process. The features such as the horizon and the runway centre-
line are extracted from the images for attitude computation. The horizon is detected 
in the image by using Canny edge detector while the runway centreline is identified 
with the help of Hough Transform. The features are extracted from both, the current 
view (image received from the on-board camera) and the current key frame. The roll 
and pitch are computed from the detected horizon while the runway centreline in 
used to compute the deviation of aircraft from the runway centreline. Then the roll 
and pitch difference are computed between the current view and the current key 
frame. Optical flow is determined for all the points on the detected horizon line in 
the images. The aircraft body rates are then computed based on the optical flow values. 
The image processing module provides the aircraft attitude, body rates, pitch and 
roll differences between current view and key frame, and deviation from the runway 
centreline. The attitude of the aircraft is computed based on the detected horizon and 
the runway. The algorithm calculates the pitch and roll of the aircraft using the horizon 
information while aircraft deviation from the runway centreline is computed using 
the location of runway centreline in the current image. Fig. 2 shows the relationship 
between the body (aircraft) frame (Ob, Xb,Yb, Zb), camera frame (Oc, Xc,Yc, Zc) and 
Earth frame coordinates (Ow, Xw, Yw, Zw). 
 
 

 

Fig. 2. Relation between the used coordinate systems [own study] 
 

The position of a 3D space point P in Earth coordinates is represented by  
a vector Xp

w with components xp, yp and zp in the Earth frame. The position of aircraft 
centre with respect to the Earth coordinates is represented by the vector Xb

w with 
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components xb, yb and zb in the Earth frame. The vector Xp
c represents the position of 

the point P with respect to the camera frame with components xcp, ycp and zcp in the 
camera frame. The position of centre of camera lens with respect to the body frame 
is represented by the vector Xc

b. The vector Xc
w represents the position of lens centre 

with respect to the ground frame with components xc, yc and zc in the ground frame. 
The position of point P with respect to body frame with components in the Earth 
frame can be computed as Xp

w-Xb
w. From [18] the optical flow equation is:  

   (1) 

where ( , ,  are the coordinates of P in the image plane and the vector ( , ,  
correspond to the rotational rates of the vehicle of interest. To minimize the effect of 
errors, a Kalman filter was employed. The state vector consists of the roll angle, pitch 
angle and body rates of the aircraft. It is assumed that the motion model of the aircraft is 
disturbed by uncorrelated zero-mean Gaussian noise. The measurement equations 
are comprised of direct observations of the pitch and the roll from the horizon and  
optical flow observations on the detected horizon line. The relation between meas-
urement vector and states is represented by following linear equations [18]:  

 

1 0 0 0 0
0 1 0 0 0
0 0

0 0

0 0

0 0

   (2) 

V B N  S e n s o r  P e r f o r m a n c e  

Based on various laboratory, ground and flight test activities with small aircraft 
and UAV platforms, the performance of the VBN sensor were evaluated. Fig. 3(a), (b) 
shows a sample image used for testing the VBN sensor algorithms and the results of 
the corresponding horizon detection process for attitude estimation purposes. The algo-
rithm detects the horizon and the runway centreline from the images. The horizon is 
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detected in the image by using Canny edge detector with a threshold of 0.9 and standard 
deviation of 50. threshold and the standard deviation values were selected by hit- 
-and-trial method. The resulting image after applying the Canny edge detector is  
a binary image. The algorithm assigns value ‘1’ to the pixels detected as horizon 
while the rest of the pixels in the image are assigned value ‘0’. From this test image, 
the computed roll angle is 1.26° and the pitch angle is –10.17°. To detect the runway 
in the image, kernel filter and Hough Transform are employed. The runway detected 
from the same test image is shown in fig. 3(a), (c). For this image, the location of the 
runway centreline was computed in pixels as 261. The features were extracted from 
both the current view (image received from the on-board camera) and the current 
key frame. After the pitch, roll and centreline values were determined, the roll/pitch 
differences and the deviation from centreline are computed between the current view 
and the current key frame. 
 

 
  (a)                b)          (c) 

Fig. 3. Original image of the runway (a), identified runway (b), and horizon (c) during  
the landing phase [own study] 

 
The algorithm also computes the optical flow for all points on the detected 

horizon line in the images. The optical flow is determined based on the displacement 
of points in two consecutive frames of a video. The algorithm takes two consecutive 
frames at a time and determines the motion for each point on the horizon. These 
optical flow values are used to compute the body rates of the aircraft. An example of 
the optical flow calculation is shown in fig. 4, where the original image (from the 
camera) is shown on the left and the image on the right shows the optical flow vec-
tors (in red) computed for the detected horizon line. The vectors are magnified by  
a factor of 20. Since the vectors on the right half of the horizon line are pointing 
upwards and the vectors on the left half are pointing downwards, the aircraft is per-
forming roll motion (clockwise direction).  
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The performance of the VBN sensor is strongly dependent on the characteristics 
of the employed camera. The developed algorithms are unable to determine the attitude 
of the aircraft in case of absence of horizon in the image. Similarly, the deviation of 
the aircraft from the runway centreline cannot be computed in the absence of runway 
in the image. The most severe physical constrain is imposed by the FOV of the camera. 
The maximum vertical and horizontal FOVs of the Flea Camera are 57.6° and 77.6° 
respectively [16]. Due to this limitation, the VBN sensor can perform computations 
with a minimum pitch angle of –28.8° and a maximum of +28.8°. Additionally, en-
vironmental factors such as fog, night/low-light conditions or rain also affect the 
horizon/runway visibility and degrade the performance of the VBN system. 

INTEGRATION CANDIDATE SENSORS 

There are a number of limitations and challenges associated to the employment 
VBN sensors in UAV platforms. VBN is best exploited at low altitudes, where suf-
ficient features can be extracted from the surrounding. The FOV of the camera is 
limited and, due to payload limitations, it is often impractical to install multiple 
cameras. When multiple cameras are installed, additional processing is required for 
data exploitation. In this case, also stereo vision techniques can be implemented. 
Wind and turbulence disturbances must be modelled and accounted for in the VBN 
processing. Additionally the performance of VBN can be very poor in low-visibility 
conditions (performance enhancement can be achieved employing infrared sensors 
as well). However, despite these limitations and challenges, VBN is a promising 
technology for small-to-medium size UAV navigation and guidance applications, 
especially when integrated with other low-cost and low-weight/volume sensors cur-
rently available. In our research, we developed an integrated NGS approach employing 
two state-of-the-art physical sensors: MEMS-based INS and GPS, as well as augmenta-
tion from Aircraft Dynamic Models (Virtual Sensor) in specific flight phases.  

G N S S  a n d  M E M S - I N S  S e n s o r s  C h a r a c t e r i s t i c s  

GNSS can provide high-accuracy position and velocity data using pseudo-
range, carrier phase, Doppler observables or various combinations of these measure-
ments. Additionally, using multiple antennae suitably positioned in the aircraft, 
GNSS can also provide attitude data. In this research, we considered GPS Standards 
Positioning Service (SPS) pseudorange measurements for position and velocity 
computations. Additional research is currently being conducted on GPS/GNSS Carrier 
Phase Measurements (CFM) for attitude estimation. Tables 2 lists the position and 
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velocity of state-of-the-art SPS GPS receivers. Position error parameters are from 
[23] and velocity error parameters are from [8], in which an improved time differencing 
carrier phase velocity estimation method was adopted. Typically, GPS position and 
velocity measurements are provided at a rate of 1 Hz. 

 
Table 2. GPS position and velocity errors [own study] 

Errors Mean Standard Deviation 
North Position Error (m) –0.4 1.79 
East Position Error (m) 0.5 1.82 

Down Position Error (m) 0.17 3.11 
North Velocity Error (mm/s) 0 3.8 
East Velocity Error (mm/s) 0 2.9 

Down Velocity Error (mm/s) 2.9 6.7 
 
An Inertial Navigation System (INS) can determine position, velocity and atti-

tude of a UAV based on the input provided by various kinds of Inertial Measurement 
Units (IMUs). These units include 3-axis gyroscopes, measuring the roll, pitch and 
yaw rates of the aircraft around the body-axis. They also comprise 3-axis accelerometers 
determining the specific forces in the inertial reference frame. In our research, we 
considered a strap-down INS employing low-cost MEMS Inertial Measurement 
Units (IMUs). MEMS-based IMUs are low-cost and low-weight/volume devices that 
represent an attractive alternative to high-cost traditional INS sensors, especially for 
general aviation or small UAVs applications. Additionally, MEMS sensors do not 
necessitate high power and the level of maintenance required is far lower than for 
high-end INS sensors [24]. The main drawback of these sensors is the relatively poor 
level of accuracy of the measurements that they provide. In our research, INS-MEMS 
errors are modeled as White Noise (WN) or as Gauss-Markov (GM) processes [10, 
25]. The error parameters in [18] were considered for our simulation. 

A D M  V i r t u a l  S e n s o r  C h a r a c t e r i s t i c s  

The ADM Virtual Sensor is essentially a knowledge-based module used to 
augment the navigation state vector by predicting the UAV flight dynamics (airtcraft 
trajectory and attitude motion). The ADM can employ either a 6-Degree of Freedom 
(6-DOF) or a 3-DOF variable mass model with suitable constraints applied in the 
different phases of the UAV flight. The input data required to run these models are 
made available from aircraft physical sensors (i.e., aircraft data network stream) and 
form ad-hoc databases. Additionally, for the 3-DOF case, an automatic manoeuvre 
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recognition module is implemented to model the transitions between the different 
UAV flight phases. Typical ADM error parameters are listed in [10, 25]. Table 3 
lists the associated error statistics obtained in a wide range of dynamics conditions 
for 20 seconds runtime. 

 
Table 3. ADM error statistics [own study]  

 Mean Standard Deviation 
North Velocity Error 4.48E-3 3.08E-2 
East Velocity Error –3.73E-2 1.58E-1 

Down Velocity Error –4.62E-2 5.03E-2 
Roll Error 4.68E-5 7.33E-3 
Pitch Error 3.87E-3 2.41E-3 
Yaw Error –1.59E-3 7.04E-3 

MULTISENSOR SYSTEM DESIGN AND SIMULATION 

The data provided by all sensors were blended using suitable data fusion al-
gorithms. Due to the non-linearity of the sensor models, an EKF was developed to 
fuse the information provided by the different MINS sensors and to provide estimates 
of position, velocity and attitude of the platform in real-time. Two different integrated 
navigation system architectures were defined, including VBN/IMU/GPS (VIG) and 
VIG/ADM (VIGA). The VIG architecture used VBN at 20 Hz and GPS at 1 Hz to 
augment the MEMS-IMU running at 100 Hz. The VIGA architecture included the 
ADM (computations performed at 100 Hz) to provide attitude channel augmentation. 
The corresponding VIG and VIGA integrated navigation modes were simulated 
using MATLABTM covering all relevant flight phases of the AEROSONDE UAV 
(straight climb, straight-and-level flight, straight turning, turning descend/climb, 
straight descent, etc.). The navigation system outputs were fed to a hybrid Fuzzy- 
-logic/PID controller designed at Cranfield University for the AEROSONDE UAV 
and capable of operating with stand-alone VBN, as well as with VIG/VIGA and other 
sensors data. 

V I G  a n d  V I G A  A r c h i t e c t u r e s  

The VIG architecture is illustrated in fig. 8. The INS position and velocity 
provided by the navigation processor are compared to the GPS position and velocity to 
form the measurement input of the data fusion block containing the EKF. A similar 
process is also applied to the INS and VBN attitude angles, whose differences are 
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VIG AND VIGA SIMULATION 

Both the VIG and VIGA multisensor architectures were tested by simulation 
in an appropriate sequence of flight manoeuvres representative of the AEROSONDE 
UAV operational flight envelope. An FLC/PID controller was used for simulation. 
The duration of the simulation is 1150 seconds (approximately 19 minutes). The 
horizontal and vertical flight profiles are shown in fig. 10.  
 
 

   
(a)            (b) 

 

Fig. 10. Horizontal and vertical flight profiles [own study] 
 
The list of the different simulated flight manoeuvres and associated control 

inputs is provided in table 4. The numbered waypoints are the same shown in fig. 10. 
 

Table 4. Flight manoeuvres and control inputs [own study] 

Flight Maneuver Required Roll 
(°) 

Required Pitch 
(°) 

Time (s) Legs (Waypoints) 

Straight Climb  
(Take off) 

0 10.00 100 [0,1] 

Right Turning Climb –2 4.00 150 [1,2] 

Straight and Level 0 2.25 150 [2,3] 

Level Left Turn 3 2.25 100 [3,4] 

Straight Descent 0 –0.7 150 [4,5] 

Straight and Level 0 2 150 [5,6] 

Level Right Turn –2 2 150 [6,7] 

Left Turning Descent 3 –0.5 100 [7,8] 

Straight Descent 0 –1 100 [8,9] 
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The VIG position error time histories (east, north and down) are shown in 
fig. 11. For comparison, also the GPS position errors (unfiltered) are shown. Table 5 
presents the position error statistics associated to each flight phase.  

 
 

 
 
 
 
 

 
 

 
 

 
 

Fig. 11. VIG position error time histories [own study] 
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Table 5. VIG position error stastics [own study] 

Phase of Flight 

North Position East Position Down Position 

Mean 
(m) 

σ 
(m) 

Mean 
(m) 

σ 
(m) 

Mean 
(m) 

σ 
(m) 

Straight Climb 1.22 4.38E-01 –4.34E-01 6.20E-01 –1.80E-01 5.30E-01 

Right Turning 
Climb 9.88E-01 8.68E-01 –1.36 4.86E-01 –2.40E-01 6.02E-01 

Straight and Level –8.01E-01 4.71E-01 –1.51 5.02E-01 –4.38E-01 6.82E-01 

Level Left Turn 1.16 1.32 –1.66 5.68E-01 –5.28E-01 6.57E-01 

Straight Descent 2.77 3.60E-01 –7.20E-01 4.48E-01 –4.92E-01 6.36E-01 

Level Right Turn 2.06 1.07 –1.86 5.92E-01 –1.29E-01 8.37E-01 

Left Turning Descent 1.65 7.29E-01 –1.63 5.35E-01 –2.66E-01 6.23E-01 

 
The VIG velocity error time histories are shown in fig. 12. For comparison, 

the GPS velocity error time histories are also shown. GPS is the dominating sensor 
for velocity computations but a significant improvement is with the VIG system on 
the accuracy of the vertical data. Table 6 shows the velocity error statistics associated 
to each flight phase.  

 
Table 6. VIG velocity error statistics [own study] 

Phase of Flight 

North Velocity East Velocity Down Velocity 

Mean 
(m/s) 

σ 
(m/s) 

Mean 
(m/s) 

σ 
(m/s) 

Mean 
(m/s) 

σ 
(m/s) 

Straight Climb –6.40E-03 1.73E-02 –4.14E-03 2.14E-02 1.30E-02 1.89E-01 

Right Turning  
Climb –7.97E-03 1.11E-02 –7.59E-03 7.93E-03 –2.90E-04 6.79E-03 

Straight and Level –7.19E-03 1.00E-02 3.63E-03 1.08E-02 –4.20E-04 6.78E-03 

Level Left Turn 1.44E-02 1.51E-02 3.61E-03 6.99E-03 –1.80E-04 6.90E-03 

Straight Descent –4.50E-03 3.64E-02 –3.71E-03 3.32E-02 –3.80E-04 9.55E-03 

Level Right Turn –3.11E-02 1.08E-01 1.21E-02 4.91E-02 7.64E-04 9.82E-03 

Left Turning Descent –3.28E-02 1.13E-01 –6.33E-03 3.71E-02 –1.32E-03 1.54E-02 
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Fig. 12. VIG velocity error time histories [own study] 
 
The attitude error time histories of the VIG system are shown in fig. 13.  

Table 7 presents the associated attitude error statistics. 
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Fig. 13. Attitude error time histories [own study] 
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Table 7. VIG attitude error statistics [own study] 

Phase of Flight 
Roll (Phi) Pitch (Theta) Yaw (Psy) 

Mean (m/s) σ (m/s) Mean 
(m/s) 

σ (m/s) Mean 
(m/s) 

σ (m/s) 

Straight Climb –6.07E-02 5.54E-01 3.16E-01 2.92E-01 –2.17E-01 1.06 

Right Turning 
Climb –4.25E-01 3.09E-01 –5.10E-02 4.65E-01 –5.39E-01 6.99E-01 

Straight and Level –4.22E-01 3.44E-01 –2.24E-02 3.80E-01 –1.38 8.02E-01 

Level Left Turn 6.13E-01 4.96E-01 –1.39E-01 4.27E-01 1.39 1.36 

Straight Descent 3.89E-01 4.60E-01 –3.68E-01 3.50E-01 2.03 1.08 

Level Right Turn 7.58E-01 7.69E-01 –5.46E-01 8.54E-01 3.91E-01 8.59E-01 

Left Turning Descent 1.22 7.06E-01 –5.37E-01 7.84E-01 –3.36E-01 8.86E-01 

 
As discussed above, the ADM data were used in the VIGA architecture to 

update the attitude channel (the position and velocity channels are derived from the VIG 
system). Therefore, only the attitude error statistics of the VIGA system are pre-
sented here. The time histories of the VIGA attitude errors are shown in fig. 14 and 
compared with the corresponding VIG attitude errors. Table 8 presents the VIGA 
attitude error statistics. 

 
Table 8. VIGA attitude error statistics [own study] 

Phase of Flight 

Roll (Phi) Pitch (Theta) Yaw (Psy) 

Mean 
(deg) 

σ 
(deg) 

Mean 
(deg) 

σ 
(deg) 

Mean 
(deg) 

σ 
(deg) 

Straight Climb –6.76E-02 5.19E-01 3.58E-01 2.08E-01 –1.19E-01 1.01 

Right Turning 
Climb –4.42E-01 2.64E-01 –8.37E-02 4.07E-01 –6.07E-01 6.97E-01 

Straight and Level –4.38E-01 3.06E-01 –3.61E-02 3.27E-01 –1.44 7.92E-01 

Level Left Turn 6.16E-01 4.77E-01 –1.60E-01 3.70E-01 1.45 1.31 

Straight Descent 3.92E-01 3.58E-01 –4.22E-01 2.37E-01 2.07 1.08 

Level Right Turn 7.79E-01 6.99E-01 –6.49E-01 7.39E-01 4.73E-01 8.30E-01 

Left Turning Descent 9.00E-02 1.44E-01 3.74E-01 4.50E-01 –1.78E-01 8.59E-01 

 



R. SABAT

94 

 

 

 

TINI, C. BARTEL

Fig. 14. C

VIGA

VIG

EL, A. KAHARKA

Comparison of

KAR, T. SHAID,

                  

                     

f VIGA and V

L. RODRIGUEZ

VIG attitude er

Z, D. ZAMMIT-M

ANNUAL O

 

 

rrors [own stu

-MANGION, H.

OF NAVIGAT

udy] 

H. JIA 

TION 

      

             



LOW-COST NAVIGATION AND GUIDANCE SYSTEMS FOR UNMANNED AERIAL VEHICLES… 

19/2012/part 2 95 

During the initial VIGA simulation runs it was evidenced that the ADM data 
cannot be used without being reinitialised regularly. For the AEROSONDE UAV 
manoeuvres listed in table 10, it was found that the optimal period between ADM 
reinitialisation was in the order of 20 seconds. Converting the data in table 6 and 6 to 
the corresponding RMS (95%) values, we obtain the error data in table 9. Comparing 
the two tables, it is evident that the ADM virtual sensor contributes to a moderate 
reduction of the overall attitude error budget in all relevant flight phases. 

 
Table 9. VIG and VIGA attitude RMS-95% errors in degrees [own study] 

Phase of Flight RMS-95% 
Phi VIG 

RMS-95% 
Phi VIGA 

RMS-95% 
Theta VIG 

RMS-95% 
Theta VIGA 

RMS-95% 
Psy VIG 

RMS-95% 
Psy VIGA 

Straight Climb 1.11 1.05 9.24E-01 7.56E-01 2.13 1.97 
Right Turning 
Climb 

1.05 1.03 9.44E-01 8.20E-01 1.85 1.76 

Straight and Level 1.09 1.07 7.63E-01 6.55E-01 3.30 3.18 
Level Left Turn 1.58 1.56 9.13E-01 7.90E-01 3.97 3.82 
Straight Descent 1.20 1.06 1.10 8.76E-01 4.67 4.60 
Level Right Turn 2.16 2.09 2.14 1.84 1.96 1.84 
Left Turning Descent 2.46 1.42 1.90 1.17 1.89 1.76 

 
To conclude the simulation data analysis, table 10 shows a comparison of 

the VIG/VIGA horizontal and vertical accuracy (RMS-95%) with the required accuracy 
levels for precision approach [2, 11]. The VIG/VIGA performances are in line with 
CAT II precision approach requirements. Future research will address the possible 
synergies of the VIG/VIGA architectures with GPS/GNSS space, ground and aircraft- 
-based augmentation systems.  

 
Table 10. VIGA attitude RMS-95% errors [own study] 

Category  
of approach 

Horizontal Accuracy (m) 
2D RMS-95% 

Vertical Accuracy (m) 
RMS-95% Down 

Required VIG/VIGA Required VIG/VIGA 
CAT I 16 

5,8 
4 

1.61 CAT II 6.9 2 
CAT III 4.1 2 

CONCLUSIONS 

In this paper we have described the research activities performed to design a low- 
-cost and low-weight/volume integrated NGS suitable for small/medium size UAV ap-
plications. As a first step, we designed and tested a VBN sensor employing appearance-based 
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techniques and specifically tailored for UAV low-level flight, including precision ap-
proach and landing operations. In addition to horizon detection and image-flow, the 
VBN sensor also employed runway features extraction during the approach phase. Various 
candidates were considered for integration with the VBN sensor and, as a result, GPS 
and MEMS-IMUs (with possible augmentation from ADM) were finally selected. The 
multisensory integration was accomplished with an EKF. The attitude/attitude-rate accu-
racies obtained with the VBN sensor were evaluated by a combination of laboratory, 
ground and flight test activities. The results were satisfactory in low-level flight and 
during the approach and landing phase of the UAV flight. However, the VBN sensor 
performance was strongly dependent on the characteristics of the employed camera. The 
algorithms developed are unable to determine the attitude of the aircraft in case of ab-
sence of horizon in the image. Similarly, the deviation of the aircraft from the runway 
centreline cannot be computed in the absence of runway in the image. The most severe 
physical constrain is imposed by the angular FOV of the camera. The maximum vertical 
and horizontal FOVs of the employed camera are 57.6° and 77.6° respectively. Due to 
this limitation, the VBN sensor can compute a minimum pitch angle of –28.8° and a 
maximum of +28.8°. Current research shows that for wind speeds greater than 20m/s, 
the VBN/IPM algorithms are marginally usable for navigation purposes as well as for 
guidance. Environmental factors such as fog, night/low-light conditions or rain also 
affect the horizon/runway visibility and degrade the performance of the VBN system. To 
cope with these limitations, current research is investigating the potential synergies ob-
tained by integrating daylight camera vision sensors with Infrared and Night Vision 
Imaging Sensors (IR/NVIS). Simulation of the VIG integrated navigation mode showed 
that this integration scheme can achieve horizontal/vertical position accuracies in line 
with CAT-II precision approach requirements, with a significant improvement com-
pared to stand-alone SPS GPS. An improvement was also observed in the accuracy of 
the vertical velocity data. Additionally, simulation of the VIGA navigation mode 
showed promising results since, in most cases, the attitude accuracy is higher using the 
ADM/VBS/IMU rather than using VBS/IMU only. However, due to rapid divergence of 
the ADM virtual sensor, there is a need for a frequent re-initialisation of the ADM data 
module, which is strongly dependent on the UAV flight dynamics and the specific  
manoeuvres/flight-phase transitions performed. In the considered portion of the UAV 
operational flight envelope, the required re-initialisation interval was approximately 20 
seconds. To cope with this issue, the original ADM is being modified to take into ac-
count specific manoeuvre constraints and the transition states between various manoeu-
vres are being carefully modelled. Additionally, an automatic manoeuvre recognition 
algorithm is being developed for updating the ADM in real-time and providing direct 
feedback to the VBN sensor. It is expected that, adopting this approach, the perform-
ances of the multisensory integrated NGS will be significantly enhanced both in terms of 
data accuracy and data continuity. 
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