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Abstract. In this paper, we consider the development and imple-
mentation of algorithms for the solution of stiff first order initial
value problems. Method of interpolation and collocation of basis
function to give system of nonlinear equations which is solved
for the unknown parameters to give a continuous scheme that is
evaluated at selected grid points to give discrete methods. The
stability properties of the method is verified and numerical ex-
periments show that the new method is efficient in handling stiff
problems.
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1. Introduction

In this paper, we develop an exponentially fitted two step, one hybrid
point numerical integrator for initial value problems (IVPs) of first order
differential equations in the form

(1) y′ = f (x, y) , y (xn) = y0, xn ≤ x ≤ xN ,

where xn is the initial point, y : [xn, xN ] → Rm, f : [xn, xN ] × R → Rm,
m = 1 is continuously differentiable, the Jacobian arising from (1) vary
slowly and the eigenvalues have negative real part; moreover, the solution is
decaying or exhibit a pronounced exponential behavior.

Classical general purpose method developed using finite power series basis
function cannot produce satisfactory results due to the special nature of the
problems. Such problems are found in the modeling of disease outbreak,
war, radioactive decay, diffusion process in biology and chemical reactions.
Several scholars have developed exponentially fitted methods, among them
are Berghe et al. [7], Abhulimen [1], Fengjian, Xinming and Yiping [14],
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Simon [16], Ying and Yaacob [20], Carroll [8], Yang et al. [19], Xiao, Zhang
and Yi [17].

2. Methodology

We consider the approximate solution

(2) y (x) =
k∑

j=0

ajx
j +

k∑
j=1

bje
−xj

,

where aj and b’js are constants to be determined. We seek approximation
at an equidistant set of points defined by the integration interval xn < x1 <

· · · < xN−1 < xN , h =
xN − xn
N − 1

, N is a positive integer.

Interpolating (2) at xn+i, i = 0, 1, · · · , r and collocating (2) at xn+i, i =
0, 1, · · · , s give

(3) XA = U,

where

A =
[
a0 a1 · · · ak−1 ak b1 · · · bk

]T
,

U =
[
yn yn+1 · · · yn+r fn fn+1 · · · fn+s

]T
,

X =



1 xn x2n · · · xkn e−xn · · · e−x
k
n

...
...

...
...

...
...

...

1 xn+r x2n+r · · · xkn+r e−xn+r · · · e−x
k
n+r

0 1 2xn · · · kxk−1n −e−xn · · · −kxk−1n e−x
k
n

...
...

...
...

...
...

...

0 1 2xn+s · · · kxk−1n+s −e−xn+s · · · −kxk−1n+se
−xk

n+s


.

We then impose the following conditions on y (x) in (2)

(4) y (xn+i) = yn+i, i = 0, 1 · · · , r, y′ (xn+i) = fn+i, i = 0, 1, · · · , s,

where r and s are the numbers of interpolation and collocation points respec-
tively. Solving (3)using Crammer’s rule, substituting the result into (2) and
after some algebraic simplifications gives the continuous Linear multistep
method (LMM)

(5) yn+t = α0 (t) yn +

r∑
j=1

αj (t) yn+j + γ0 (t) fn +

s∑
j=1

γj (t) fn+j ,
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where t =
x− xn
h

. For consistency,
∑r

j=0 αj (t) = 1,
∑s

j=0 γj (t) = ht.

It should be noted that if αj and γj in (5) are not functions of t or if they
are constants, then it is referred to as discrete LMM. Evaluating (5) at the
grid points gives a discrete method implemented in block to give

(6) ζ(1)Ym+1 = ζ(0)Ym + h
(
η(0)Fm + η(1)Fm+1

)
,

where ζ(1) being the coefficients of yn+t in matrix is r × r identity matrix,
ζ(0) = η(0) being the coefficients of yn and fn respectively are r× r matrices
in the form 

0 0 · · · 1
0 0 · · · 1
...

... · · · 1
0 0 0 1


η(1) being the coefficients of fn+j is r × r matrix

Ym+1 =
[
yn+1 yn+2 · · · yn+r

]T
, Fm =

[
fn−1 fn−2 · · · fn

]T
,

Fm+1 =
[
fn+1 fn+2 · · · fn+s

]T
, Ym =

[
yn−1 yn−2 · · · yn

]T
.

Ym+1, Fm, Fm+1 and Ym are r × 1 matrices.

2.1. Stability properties

2.1.1. Order of the method

The operator ` is associated with the linear method defined by

(7) ` [y(x) : h] = yn+t−α0 (t) yn−
r∑

j=1

αj (t) yn+j−γ0 (t) fn−
s∑

j=1

γj (t) fn+j ,

where y(x) is an arbitrary function, continuously differentiable on an interval
of integration. Equation (3) can be written in Taylor expansion about the
point x to obtain

` [y(x) : h] = c0y(x) + c1hy
′(x) + c2h

2y′′(x) + ...+ cph
py(p)(x) + · · · ,

where

cp =
1

p!

 r∑
j=1

jpθj −
1

(p− 1)!

r∑
j=1

jp−1γj


equation (3) is of order p if

` [y(x) : h] = 0(hp+1), c0 = c1 = · · · = cp = 0, cp+1 6= 0.



22 A.O. Adesanya, R.O. Onsachi and M.R. Odekunle

Hence cp+1 is called the error constant and cp+1h
p+1y(p+1)(x) is called

the local truncation error (LTE) [18]

2.1.2. Consistency

A block method (6) is said to be consistent if it has order p ≥ 1.

2.1.3. Zero stability

A block method (6) is said to be zero stable if the roots zs, s = 1, 2, 3, · · ·n
of the first characteristic polynomial ρ(z), defined by

ρ(z) = det
[
zζ

(1)
1 − ζ

(0)
2

]
= 0

satisfies |zs| ≤ 1 and every root with |zs| ≤ 1 has multiplicity not exceeding
the order of the differential equation as h→ 0 [6].

2.1.4. Convergence

The necessary and sufficient condition for a method to be convergent is
that it must be consistent and zero stable [18].

2.1.5. Linear Stability

The linear stability is derived by applying the test equation y(k) = λ(k)yn
to yield ym+1 = µ (z) ym, µ (z) is the amplification equation given by

µ (z) = −
(
ζ(1) − zη(1)

)−1 (
ζ(0) + zη(0)

)
the matrix µ (z) has eigenvalues (0, 0, · · · , ξk) where ξk is called the stability
function which is a rational function with real coefficients [6].

2.1.5. Region of Absolute Stability (RAS)

A Region of absolute stability (RAS) of a LMM is the set

R =
{
h : for h where the root of the stability polynomial

are absolute less than one } . [11]

We use boundary locus method to get the region of absolute stability.
In this paper, we consider interpolation at x = xn and collocation at

x = xn+i, i = 0, 1, 32 , 2. Solving the resulting systems of equation, (5) reduces
to

(8) yn+t = yn + γ0 (t) fn + γ1 (t) fn+1 + γ2 (t) fn+ 3
2

+ γ3 (t) fn+2,
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where

γ0 = −



e−h + e−2h − 2e−
3
2
h − e−h2t2e−h − e−h2t2e−2h + 2e−h

2t2e−
3
2
h

−2he−h
2 − 4he−4h

2
+ 6he−

9
4
h2 − 6h2te−2h−h

2
+ 12h2te−h−4h

2

+8h2te−
3
2
h−h2 − 8h2te−

3
2
h−4h2 − 12h2te−h−

9
4
h2

+ 6h2te−2h−
9
4
h2

+2he−h
2
e−ht + 4he−4h

2
e−ht − 6he−

9
4
h2
e−ht + 2h2t2e−2h−h

2

−4h2t2e−h−4h
2 − 2h2t2e−

3
2
h−h2

+ 4h2t2e−
3
2
h−4h2

+3h2t2e−h−
9
4
h2 − 3h2t2e−2h−

9
4
h2


2h

[
3e−2h−h

2 − 6e−h−4h
2 − 4e−

3
2
h−h2

+ 4e−
3
2
h−4h2

+6e−h−
9
4
h2 − 3e−2h−

9
4
h2

+ e−h
2

+ 2e−4h
2 − 3e−

9
4
h2

] ,

γ1 =


−e−h2t2 + 3e−2h − 4e−

3
2
h − 3e−h

2t2e−2h + 4e−h
2t2e−

3
2
h

−12he−4h
2

+ 12he−
9
4
h2

+ 12he−4h
2
e−ht − 12he−

9
4
h2
e−ht

+12h2te−4h
2 − 12h2te−

9
4
h2

+ 4h2t2e−
3
2
h−4h2

−3h2t2e−2h−
9
4
h2 − 4h2t2e−4h

2
+ 3h2t2e−

9
4
h2

+ 1


2h

[
3e−2h−h

2 − 6e−h−4h
2 − 4e−

3
2
h−h2

+ 4e−
3
2
h−4h2

+6e−h−
9
4
h2 − 3e−2h−

9
4
h2

+ e−h
2

+ 2e−4h
2 − 3e−

9
4
h2

] ,

γ2 =

 e−h
2t2 + 2e−h − e−2h − 2e−h

2t2e−h + e−h
2t2e−2h − 4he−h

2

+4he−4h
2

+ 4he−h
2
e−ht − 4he−4h

2
e−ht + 4h2te−h

2 − 4h2te−4h
2

+h2t2e−2h−h
2 − 2h2t2e−h−4h

2 − h2t2e−h2
+ 2h2t2e−4h

2 − 1


h

[
3e−2h−h

2 − 6e−h−4h
2 − 4e−

3
2
h−h2

+ 4e−
3
2
h−4h2

+6e−h−
9
4
h2 − 3e−2h−

9
4
h2

+ e−h
2

+ 2e−4h
2 − 3e−

9
4
h2

] ,

γ3 = −1

2


e−h

2t2 + 3e−h − 2e−
3
2
h − 3e−h

2t2e−h + 2e−h
2t2e−

3
2
h

−6he−h
2

+ 6he−
9
4
h2

+ 6he−h
2
e−ht − 6he−

9
4
h2
e−ht + 6h2te−h

2

−6h2te−
9
4
h2

+ 2h2t2e−
3
2
h−h2 − 3h2t2e−h−

9
4
h2

−2h2t2e−h
2

+ 3h2t2e−
9
4
h2 − 1


h

[
3e−2h−h

2 − 6e−h−4h
2 − 4e−

3
2
h−h2

+ 4e−
3
2
h−4h2

+6e−h−
9
4
h2 − 3e−2h−

9
4
h2

+ e−h
2

+ 2e−4h
2 − 3e−

9
4
h2

] .

The order of (8) is four with LTE = 1
69 120h

5t2
(
576t3 − 3240t2 + 6240t− 4320

)
.

Evaluating (8) at t = 1, 32 and 2 give the discrete method which is im-
plemented in block.The LTE of the block is

[
− 31

2880 − 51
5120 − 1

90

]
with

stability function ξk = 25z2−175z+384
36z3−156z2+324z−288 .

The region of absolute stability of the block is shown in Figure 1.
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4. Numerical examples

We considered four problems to test the efficiency of the method and
compare the results with results of other methods established in literature.
It should be noted that error = |y (x)− yn| where y(x) is the exact results
and yn is the computed results. XXe− (xx) = XX ∗ 10−xx .

Problem 1. We consider the linear system in the range 0 ≤ x ≤ 1 solved
by Jackson and Kenue [15], Cash [10] and Ehigie, Okunuga and Sofoluwe
[11].

y′ =

(
−1 95
−1 −97

)
y, y (0) =

(
1
1

)
, y (x) =

1

47

(
95e−2x − 48e−95x

48e−96x − e−2x
)
.

The eigenvalues of the Jacobian matrix are λ1 = −2, λ2 = −96 with the
stiffness ratio 1:48.

Table 1. Comparison of results of Problem 1 with existing methods
Stepsize Method y(1) (|error|) y(1) (|error|)

J-K 0.2735523
(
3× 10−7

)
−0.002879477

(
4× 10−7

)
Cash4 0.2735498

(
3× 10−7

)
−0.002879471

(
4× 10−7

)
Cash5 0.27355005

(
1× 10−8

)
−0.002879474

(
4× 10−7

)
0.0625 ABOT 0.27354656

(
3× 10−6

)
−0.002879474

(
4× 10−7

)
SDEBDF 0.27355004

(
3× 10−6

)
−0.002879471

(
4× 10−7

)
NMTD 0.27355001

(
3× 10−8

)
−0.002879474

(
4× 10−10

)
Exact values 0.2735500405 −0.002879474114

We solved this problem using h = 0.0625 in order for comparison as
shown in Table 1. The following notations are used: J-K are the results
of Jackson and Kenue [15], Cash 4 and 5 implies results of order 4 and 5
method of Cash [10] and Cash [9] respectively, ABOT is the results of the
method of Abhulimen and Otunta [5], SDEBDF is the results of Ehigie,
Okunuga and Sofoluwe [11], NMTD implies results of the new method. The
results in Table 1 show that the new method compete favorably with the
existing methods.

Problem 2. We consider a four dimensional problems by Enright and
Pryce [12]

y′1 (x)
y′2 (x)
y′3 (x)
y′4 (x)

 =


−104y1 (x) + 100y2 (x)− 10y3 (x) + y4 (x)
−1000y2 (x) + 10y3 (x)− 10y4 (x)

−y3 (x) + 10y4 (x)
−0.1y4 (x)

 ,


y1 (0)
y2 (0)
y3 (0)
y4 (0)

 =


1
1
1
1


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within the range 0 ≤ x ≤ 1. The eigenvalues of the Jacobian matrix λ1 =
−0.1, λ2 = −1.0, λ3 = −1000 and λ4 = −10000. The exact solution is given
as

y1 (x) = −89990090

89990100
e−0.1x +

818090

89901009
e−x +

9989911

899010090
e−1000x

+
89071119179

89990100090
e−10000x,

y2 (x) =
9100

89991
e−0.1x − 910

8991
e−x +

9989911

9989001
e−1000x,

y3 (x) =
100

9
e−0.1x − 91

9
e−x,

y4 (x) = e−0.1x.

Table 2. Comparison of results of Problem 2 with existing results at x = 20
h Method y1 (20) (|error|) y2 (20) (|error|)

SDEBDF −1.35335× 10−3 1.368527× 10−2(
2.25× 10−10

) (
2.29× 10−9

)
0.1 NMTD −1.353352× 10−3 1.368526× 10−2(

8.0613× 10−13
) (

8.1517× 10−12
)

Exact Solution −1.353352× 10−3 1.368526× 10−2

h Method y3 (20) (|error|) y4 (20) (|error|)
SDEBDF 1.50372560 1.3533530× 10−1(

2.50× 10−7
) (

2.06× 10−8
)

0.1 NMTD 1.50372534 1.3533528× 10−1(
8.9570× 10−10

) (
8.0643× 10−11

)
Exact Solution 1.50372534 1.3533528× 10−1

Table 3. Comparison of resukts of Problem 2 with existing results at x = 1
h Method y1 (1) y2 (1) y3 (1) y4 (1)

0.05 AB7 3.2× 10−2 3.2× 10−2 3.3× 10−1 3.7× 10−5

NM9 2.2× 10−3 3.5× 10−2 3.2× 10−5 3.2× 10−6

CEGE 3.5× 10−5 3.8× 10−4 3.5× 10−7 3.7× 10−8

NMTD 7.446× 10−11 8.576× 10−10 8.273× 10−8 2.920× 10−9

0.1 AB7 2.5× 10−2 2.1× 10−1 2.4× 10−3 2.7× 10−5

NM9 2.7× 10−3 2.4× 10−3 2.2× 10−4 2.5× 10−6

CEGE 2.9× 10−5 2.7× 10−4 2.6× 10−6 2.6× 10−8

NMTD 1.36× 10−8 1.30× 10−8 2.12× 10−9 2.69× 10−11

The following notations are used in Tables 2 and 3. SDEBDF is the
method of Ehigie, Okunuga and Sofoluwe [11], AB7 is order seven method of
Abhulimen and Otunta [4], CEGE is the method of Abhulimen and Omeike
[2] and NMTD is the new method. Results of Tables 2 and 3 show that the
new method gives the best approximation.
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Problem 3. Consider a system in the range 0 ≤ t ≤ 10 solved by
Ezzeddine and Hojjati [13], Akinfenwa and Jator [6]

y′ =

(
−1 −30
30 −1

)
y +

(
30e−t

−30e−t

)
y,

y (0) =

(
1
1

)
y (x) =

(
e−t, e−t

)T
the stiffness ratio is 1 : 200

Table 4. Comparison of results of Problem 3 with existing
t yi EBDF HEBDF ECBBDF NMTD
1 y1 1.71× 10−13 8.15× 10−15 1.28× 10−15 4.8847× 10−15

y2 2.60× 10−12 8.48× 10−13 1.17× 10−14 4.9960× 10−15

10 y1 5.03× 10−17 9.83× 10−18 1.08× 10−19 1.8431× 10−18

y2 3.36× 10−16 7.71× 10−17 1.62× 10−18 6.2541× 10−19

20 y1 1.17× 10−20 1.29× 10−21 7.24× 10−23 9.9261× 10−24

y2 7.83× 10−21 2.79× 10−21 5.29× 10−23 1.5302× 10−23

The following notations are used in Table 4. EBDF and HEBDF are
absolute errors in the methods of Ezzeddine and Hojjati [13]. ECBBDF is
the absolute error in Akinfenwa and Jator [6] and NMTD is the new method.
The results show that the new method give best approximation.

Problem 4. We consider a nonlinear two dimensional Kaps problems
within the interval 0 ≤ x ≤ 20[

y′1
y′2

]
=

[
−1002y1 + 1000y22
y1 − y2 (1 + y2)

]
,

[
y1
y2

]
=

[
1
1

]
with the exact solution [

y1 (0)
y2 (0)

]
=

[
e−2x

e−x

]
.

Table 5 shows the comparison with the existing methods. The following
natations are used in Table 5; SDM10 and SDM14 represent second derivative
method of order 10 and 14 of Yakubu and Marcus [18] .

Table 5. Comparison of results of Problem 4 with existing results
x yi SDM10 SDM14 NMTD
5 y1 4.6889e− 03 5.8258e− 02 9.7751e− 04

y2 4.8326e− 03 3.2259e− 02 1.0556e− 06
50 y1 1.4156e− 02 6.7358e− 03 2.6559e− 05

y2 1.9419e− 02 2.6181e− 02 1.1303e− 07
150 y1 6.3883e− 04 2.4686e− 06 8.7651e− 09

y2 6.1134e− 03 5.3608e− 04 2.5430e− 09
250 y1 1.7895e− 05 8.1636e− 10 2.8923e− 12

y2 1.2275e− 03 9.7597e− 06 6.0129e− 11
500 y1 1.6011e− 09 1.6165e− 18 5.7208e− 21

y2 1.5267e− 05 4.3431e− 10 4.2348e− 15
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3. Conclusion

We have discussed the construction of order four exponentially fitted
hybrid method for the solution of first order stiff IVPs. The method has good
stability properties that is suitable for stiff problems. Results of numerical
examples show that the method is efficient and compete favourably with the
existing results established in literature.
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