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1. Introduction

In this paper by meromorphic functions we will always mean meromor-
phic function in the complex plane.

Let f and g be two non-constant meromorphic functions and let a be a
finite complex number. We say that f and g share a CM, provided that
f − a and g− a have the same zeros with the same multiplicities. Similarly,
we say that f and g share a IM, provided that f − a and g − a have the
same zeros ignoring multiplicities. In addition we say that f and g share ∞
CM, if 1

f and 1
g share 0 CM, and we say that f and g share ∞ IM, if 1

f and
1
g share 0 IM.

We adopt the standard notations of value distribution theory (see [8]).
We denote by T (r) the maximum of T (r, f) and T (r, g). The notation S(r)
denotes any quantity satisfying S(r) = o(T (r)) as r → ∞, outside of a
possible exceptional set of finite linear measure.

Throughout this paper, we need the following definition.

Θ(a; f) = 1− lim
r→∞

sup
N̄(r, a; f)

T (r, f)
,

where a is a value in the extended complex plane.
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In 1959, Hayman [7] proved the following result.

Theorem A. Let f be a transcendental entire function, and let n(≥ 1)
be an integer. Then fnf ′ = 1 has infinitely many zeros.

In 2002, Fang and Fang [6] proved the following result.

Theorem B. Let f and g be two non-constant entire functions, and let
n(≥ 8) be an integer. If fn(f−1)f ′ and gn(g−1)g′ share 1 CM, then f ≡ g.

In the same year Fang [5] investigated the value sharing of more general
non-linear differential polynomial than that was considered in Theorem B
and obtained the following result.

Theorem C. Let f and g be two non-constant entire functions, and let n,
k be two positive integers with n ≥ 2k+ 8. If [fn(f −1)](k) and [gn(g−1)](k)

share 1 CM then f ≡ g.

In 2004, Lin and Yi [14] considered the case of meromorphic function in
Theorem B and obtained the following.

Theorem D. Let f and g be two non-constant meromorphic functions
with Θ(∞, f) > 2

n+1 , and let n(≥ 12) be an integer. If fn(f − 1)f ′ and
gn(g − 1)g′ share 1 CM, then f ≡ g.

Natural inquisition would be to investigate the situation for meromorphic
function in Theorem C. In this direction in 2008, Zhang [20] proved the
following result.

Theorem E. Suppose that f is a transcendental meromorphic function
with finite number of poles, g is a transcendental entire function, and let n, k
be two positive integers with n ≥ 2k + 6. If [fn(f − 1)](k) and [gn(g − 1)](k)

share 1 CM, then f ≡ g.

To proceed further we require the following definition known as weighted
sharing of values introduced by I. Lahiri [9] which measure how close a
shared value is to being shared CM or to being shared IM.

Definition 1. Let k be a non negative integer or infinity. For a ∈
C
⋃
{∞} we denote by Ek(a; f) the set of all a-points of f where an a-point

of multiplicity m is counted m times if m ≤ k and k + 1 times if m > k. If
Ek(a; f) = Ek(a; g), we say that f , g share the value a with weight k.

The definition implies that if f , g share a value a with weight k, then z0
is an a-point of f with multiplicity m(≤ k) if and only if it is an a-point of g
with multiplicity m(≤ k) and z0 is an a-point of f with multiplicity m(> k)
if and only if it is an a-point of g with multiplicity n(> k), where m is not
necessarily equal to n.

We write f , g share (a, k) to mean that f , g share the value a with
weight k. Clearly if f , g share (a, k) then f , g share (a, p) for any integer
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p, 0 ≤ p < k. Also we note that f , g share a value a IM or CM if and only
if f , g share (a, 0) or (a,∞) respectively.

In 2009, using the notion of weighted sharing of values, Xu, Yi and Cao
[15] proved the following result.

Theorem F. Let f and g be two non-constant meromorphic functions,
and n(≥ 1), k(≥ 1) and l(≥ 0) be three integers such that Θ(∞, f) +
Θ(∞, g) > 4

n . Suppose [fn(f − 1)](k) and [gn(g − 1)](k) share (1, l). If
l ≥ 2 and n > 5k + 11 or if l = 1 and n > 7k + 23

2 , then f ≡ g.

Recently, Li [13] proved the following result which rectify and at the same
time improve Theorem F.

Theorem G. Let f and g be two non-constant meromorphic functions,
and n(≥ 1), k(≥ 1) and l(≥ 0) be three integers such that Θ(∞, f) +
Θ(∞, g) > 4

n . Suppose [fn(f − 1)](k) and [gn(g − 1)](k) share (1, l). If
l ≥ 2 and n > 3k + 11 or if l = 1 and n > 5k + 14, then f = g or
[fn(f − 1)](k)[gn(g − 1)](k) = 1.

In this direction recently Abhijith Banerjee [1] proved the following re-
sults first one of which improves Theorem G.

Theorem H. Let f and g be two transcendental meromorphic function
and n(≥ 1), k(≥ 1), l(≥ 0) be three integers such that Θ(∞, f) + Θ(∞, g) >
4
n . Suppose for two nonzero constants a and b, [fn(af + b)](k) and [gn(ag+

b)](k) share (1, l). If l ≥ 2 and n ≥ 3k + 9 or if l = 1 and n ≥ 4k + 10, or if
l = 0 and n ≥ 9k+ 18, then f = g or [fn(af + b)](k)[gn(ag+ b)](k) = 1. The
possibility [fn(af + b)](k)[gn(ag + b)](k) = 1 does not occur for k = 1.

Theorem I. Let f and g be two transcendental entire functions, and let
n(≥ 1), k(≥ 1), l(≥ 0) be three integers. Suppose for two nonzero constants a
and b, [fn(af + b)](k) and [gn(ag+ b)](k) share (1, l). If l ≥ 2 and n ≥ 2k+ 6
or if l = 1 and n ≥ 5k

2 + 7, or if l = 0 and n ≥ 5k + 12, then f = g.

In 2015, Abhijith Banerjee and Pulak Sahoo [3] obtained the following
result.

Theorem J. Let f and g be two non-entire transcendental meromorphic
functions and let n(≥ 1), k(≥ 1), l(≥ 0) be three integers such that Θ(∞, f)+
Θ(∞, g) > 4

n . Suppose for two nonzero constants a and b, [fn(af+b)](k)−P
and [gn(ag + b)](k) − P share (0, l) where P (6≡ 0) is a polynomial. If l ≥ 2
and n ≥ 3k + 9 or if l = 1 and n ≥ 4k + 10 or if l = 0 and n ≥ 9k + 18,
then f = g.

Theorem K. Let f and g be two transcendental entire functions, and let
n(≥ 1), k(≥ 1), l(≥ 0) be three integers. Suppose for two nonzero constants
a and b, [fn(af + b)](k)−P and [gn(ag+ b)](k)−P share (0, l) where P ( 6≡ 0)
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is a polynomial. If l ≥ 2 and n ≥ 2k + 6 or if l = 1 and n ≥ 5k
2 + 7 or if

l = 0 and n ≥ 5k + 12, then f = g.

The following questions are inevitable.

Quation 1. What can be said if the sharing value zero is replaced by a
small function a in the above Theorems J and K?

Quation 2. Are the Theorems J and K also true for non-constant entire
and meromorphic functions?

In this paper, taking the possible answer of the above questions into
background we obtain the following results.

Theorem 1. Let f and g be two non-constant meromorphic functions,
let P (w) = amw

m + am−1w
m−1 + . . . + a1w + a0, for a positive integer

m or P (w) ≡ c0 where a0(6= 0), a1...am−1, am( 6= 0), c0(6= 0) are complex
constants. Also we suppose that [fnP (f)](k) and [gnP (g)](k) share (a, l),
and n(≥ 1), k(≥ 1), l(≥ 0) are positive integers. Now
(I) when P (w) = amw

m + am−1w
m−1 + . . . + a1w + a0, and one of the

following conditions holds:
(a) l ≥ 2 and n > 3k +m+ 8,
(b) l = 1 and n > 4k + 3m+8

2 ,
(c) l = 0 and n > 9k + 4m+ 14,

then one of the following three cases holds:
(I1) f(z) ≡ tg(z) for a constant t such that td1 = 1, where d1 = gcd(n+

m,n+m− i, ..., n), am−i 6= 0 for some i = 0, 1, 2, . . . ,m,
(I2) f and g satisfy the algebraic equation R(f, g) ≡ 0, where R(w1, w2) =

wn
1 (amw

m
1 + am−1w

m−1
1 + . . .+ a1w1 + a0)−wn

2 (amw
m
2 + am−1w

m−1
2 + ...+

a1w2 + a0), except for P (w) = a1w + a2 and Θ(∞; f) + Θ(∞; g) > 4
n ,

(I3) [fnP (f)](k)[gnP (g)](k) ≡ a2, except for k = 1,
(II) when P (w) ≡ c0, and one of the following conditions holds:

(a) l ≥ 2 and n > 3k + 8,
(b) l = 1 and n > 4k + 9,
(c) l = 0 and n > 9k + 14,

then one of the following two cases holds:
(II1) f ≡ tg for some constant t such that tn = 1,
(II2) c20[f

n](k)[gn](k) ≡ a2. In particular when n > 2k and a(z) = d2 =
constant, we get f(z) = c1e

cz, g(z) = c2e
−cz, where c1, c2 and c are con-

stants satisfying (−1)kc20(c1c2)
n(nc)2k = d22.

Theorem 2. Let f and g be two non-constant entire functions, let
P (w) = amw

m + am−1w
m−1 + ... + a1w + a0, for a positive integer m or

P (w) ≡ c0 where a0(6= 0), a1...am−1, am(6= 0), c0( 6= 0) are complex con-
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stants. Also we suppose that [fnP (f)](k) and [gnP (g)](k) share (a, l), and
n(≥ 1), k(≥ 1), l(≥ 0) are positive integers. Now
(I) when P (w) = amw

m + am−1w
m−1 + . . . + a1w + a0, and one of the

following conditions holds:
(a) l ≥ 2 and n > 2k +m+ 5,
(b) l = 1 and n > 5k

2 + 2m+ 5,
(c) l = 0 and n > 5k + 4m+ 8,

then the conclusion of Theorem 1 holds:
(II) when P (w) ≡ c0, and one of the following conditions holds:

(a) l ≥ 2 and n > 2k + 5,
(b) l = 1 and n > 5k

2 + 5,
(a) l = 0 and n > 5k + 8,

then the conclusion of Theorem 1 holds.

Theorem 3. Let f and g be two non-constant meromorphic functions
and a(z)(6≡ 0,∞) be a small function of f and g, let P (w) = amw

m +
am−1w

m−1 + ... + a1w + a0, for a positive integer m or P (w) ≡ c0 where
a0(6= 0), a1...am−1, am(6= 0), c0(6= 0) are complex constants. Also we suppose
that fnP (f)f ′ and gnP (g)g′ share (a, l), and n(≥ 1), k(≥ 1), l(≥ 0) are
positive integers and one of the following conditions holds:

(a) l ≥ 2 and n > m+ 10,
(b) l = 1 and n > 3m

2 + 12,
(c) l = 0 and n > 4m+ 22,

then one of the following two cases holds:
(I) f(z) ≡ tg(z) for a constant t such that td3 = 1, where d3 = gcd(n+m+
1, . . . , n+m+ 1− i, . . . , n+ 1), am−i 6= 0 for some i = 0, 1, 2, . . . ,m,
(II) f and g satisfy the algebraic equation R(f, g) ≡ 0, where R(w1, w2) =

wn+1
1 (

amwm
1

n+m+1 +
am−1w

m−1
1

n+m +. . .+ a0
n+1) −wn+1

2 (
amwm

2
n+m+1 +

am−1w
m−1
2

n+m +. . .+ a0
n+1),

Theorem 4. Let f and g be two non-constant entire functions and
a(z)(6≡ 0,∞) be a small function of f and g, let P (w) = amw

m+am−1w
m−1+

...+a1w+a0, for a positive integer m or P (w) ≡ c0 where a0(6= 0), a1...am−1,
am(6= 0), c0( 6= 0) are complex constants. Also we suppose that fnP (f)f ′ and
gnP (g)g′ share (a, l), and n(≥ 1), k(≥ 1), l(≥ 0) are positive integers and
one of the following conditions holds:

(a) l ≥ 2 and n > m+ 4,
(b) l = 1 and n > 3m

2 + 6,
(c) l = 0 and n > 4m+ 11,

then the conclusion of Theorem 3 holds.
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2. Lemmas

In this section we present some lemmas which will be needed in the sequel.
Let F and G be two non-constant meromorphic functions defined in C. We
shall denote by H the following function:

H =

(
F ′′

F ′
− 2F ′

F − 1

)
−
(
G′′

G′
− 2G′

G− 1

)
.

Lemma 1 ([16]). Let f be a transcendental meromorphic function, and
let Pn(f) be a differential polynomial in f of the form

Pn(f) = anf
n(z) + an−1f

n−1(z) + ...+ a1f(z) + a0 ,

where an( 6= 0), an−1...a1, a0 are complex numbers. Then

T (r, Pn(f)) = nT (r, f) +O(1).

Lemma 2 ([21]). Let f be a non-constant meromorphic function, and
p, k be positive integers. Then

(1) Np(r, 0; f (k)) ≤ T (r, f (k))− T (r, f) +Np+k(r, 0; f) + S(r, f),

(2) Np(r, 0; f (k)) ≤ kN(r,∞; f) +Np+k(r, 0; f) + S(r, f).

Lemma 3 ([9]). Let F and G be two non-constant meromorphic functions
sharing (1, 2). Then one of the following cases holds:

(i) T (r) ≤ N2(r, 0;F ) +N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G) +S(r),
(ii) F = G ,

(iii) FG = 1. where T (r) denotes the maximum of T (r, F ) and T (r,G)
and S(r) = o{T (r)} as r →∞, possibly outside a set of finite linear measure.

Lemma 4 ([2]). Let F and G be two non-constant meromorphic functions
sharing (1, 1) and H 6≡ 0. Then

T (r, F ) ≤ N2(r, 0;F ) +N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G)

+
1

2
N(r, 0;F ) +

1

2
N(r,∞;F ) + S(r, F ) + S(r,G).

Lemma 5 ([2]). Let F and G be two non-constant meromorphic functions
sharing (1, 0) and H 6≡ 0. Then

T (r, F ) ≤ N2(r, 0;F ) +N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G)

+ 2N(r, 0;F ) +N(r, 0;G) + 2N(r,∞;F )

+ N(r,∞;G) + S(r, F ) + S(r,G).
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Lemma 6 ([4]). Let f, g be two non-constant meromorphic functions, let
n, k be two positive integers such that n > 2k. Suppose [fn](k) and [gn](k)

share d2 CM. If [fn](k)[gn](k) ≡ d22, then f = c1e
cz, g = c2e

−cz, where c1, c2
and c are constants such that (−1)k(c1c2)

n(nc)2k = d22.

Lemma 7 ([18]). If H ≡ 0, then F , G share 1CM. If further F , G share
∞ IM then F,G share ∞ CM.

Lemma 8. Let f and g be two non-constant meromorphic(entire) func-
tions. Let P (w) be defined as in Theorem 1 and k, m, n > 3k+m(> 2k+m)
be three positive integers. If [fnP (f)](k) ≡ [gnP (g)](k), then fnP (f) ≡
gnP (g).

Proof. By the assumption [fnP (f)](k) ≡ [gnP (g)]k.

When k ≥ 2, integrating we get

[fnP (f)](k−1) ≡ [gnP (g)](k−1) + Ck−1.

If possible we suppose Ck−1 6= 0.

Now in the view of the Lemma 2 for p = 1 and using the second funda-
mental theorem we get

(n+m)T (r, f) ≤ T (r, [fnP (f)](k−1))−N(r, 0; [fnP (f)](k−1))

+Nk(r, 0; fnP (f)) + S(r, f)

≤ N(r, 0; [fnP (f)](k−1)) +N(r,∞; f)

+ N(r, Ck−1; [fnP (f)](k−1))

− N(r, 0; [fnP (f)](k−1))

+ Nk(r, 0; fnP (f)) + S(r, f)

≤ N(r,∞; f) +N(r, 0; [gnP (g)](k−1)) + kN(r, 0; f)

+ N(r, 0;P (f)) + S(r, f)

≤ (k +m+ 1)T (r, f) + (k − 1)N(r,∞; g)

+ Nk(r, 0; gnP (g)) + S(r, f)

≤ (k +m+ 1)T (r, f) + (k − 1)N(r,∞; g)

+ kN(r, 0; g) +N(r, 0;P (g)) + S(r, f)

≤ (k +m+ 1)T (r, f) + (2k +m− 1)T (r, g)

+ S(r, f) + S(r, g)

≤ (3k + 2m)T (r) + S(r).

Similarly we get

(n+m)T (r, g) ≤ (3k + 2m)T (r) + S(r).
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Where T (r) = max{T (r, f), T (r, g)} and S(r) = max{S(r, f), S(r, g)}. Com-
bining these we get

(n−m− 3k)T (r) ≤ S(r).

Which is a contradiction since n > 3k +m.
Therefore Ck−1 = 0 and so [fnP (f)](k−1) ≡ [gnP (g)](k−1), Repeating

k − 1 times, we obtain

fnP (f) = gnP (g) + c0.

If k = 1, clearly integrating one we obtain the above. If possible suppose
c0 6= 0.

Now using the second fundamental theorem we get

(n+m)T (r, f) ≤ N(r, 0; fnP (f)) +N(r,∞; fnP (f))

+ N(r, c0; f
nP (f)) + S(r, f)

≤ N(r, 0; f) +mT (r, f) +N(r,∞; f)

+ N(r, 0; gnP (g)) + S(r, f)

≤ (m+ 2)T (r, f) +N(r, 0; g) +mT (r, g)

+ S(r, f) + S(r, g)

≤ (m+ 2)T (r, f) + (m+ 1)T (r, g) + S(r, f) + S(r, g)

≤ (2m+ 3)T (r) + S(r).

similarly we get

(n+m)T (r, g) ≤ (2m+ 3)T (r) + S(r)

combining these we get

(n−m− 3)T (r) ≤ S(r).

which is a contradiction, since n > m+ 3. Therefore c0 = 1 and so

fnP (f) ≡ gnP (g).

This completes the lemma. �

Lemma 9. Let f , g be two nonconstant meromorphic (entire functions)

and F = [fnP (f)](k)

a(z) , G = [gnP (g)](k)

a(z) , n(≥ 1), k(≥ 1), m(≥ 0) are positive

integers such that n > 3k+m+ 3(> 2k+m+ 2) and P (w) be defined as in
Theorem 1. If H ≡ 0 then
(I) when P (w) = amw

m + am−1w
m−1 + . . .+ a1w+ a0, one of the following

three cases holds:
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(I1) f ≡ tg for a constant t such that td1 = 1, where d1 = gcd(n +
m, . . . , n+m− i, . . . , n), am−i 6= 0 for some i = 1, 2, . . . ,m,

(I2) f and g satisfy the algebraic equation R(f, g) ≡ 0, where R(w1, w2) =
wn
1 (amw

m
1 +am−1w

m−1
1 + ...+a0)−wn

2 (amw
m
2 +am−1w

m−1
2 + ...+a0), except

for P (w) = a1w + a2 and Θ(∞; f) + Θ(∞; g) > 4
n ,

(I3) [fnP (f)](k)[gnP (g)](k) ≡ a2,
(II) when P (w) ≡ c0,, one of the following two case holds:

(II1) f ≡ tg for some constant t such that tn = 1,
(II2) c20[f

n](k)[gn](k) ≡ a2. In particular, when n > 2k and a(z) = d2
we get f(z) = c1e

cz and g(z) = c2e
−cz, where c1, c2 and c are constants

satisfying (−1)kc20(c1c2)
n(nc)2k = d22.

Proof. Since H ≡ 0, by Lemma 7, we get F and G share 1 CM. On
integration we get,

(3)
1

F − 1
≡ bG+ a− b

G− 1
,

where a, b are constants and a 6= 0. We now consider the following cases.

Case 1. Let b 6= 0 and a 6= b. If b = −1, then from (3) we have

F ≡ −a
G− a− 1

.

Therefore
N(r, a+ 1;G) = N(r,∞;F ) = N(r,∞; f).

So in view of Lemma 2 and the second fundamental theorem we get

(n+m)T (r, g) ≤ T (r,G) +Nk+1(r, 0; gnP (g))−N(r, 0;G)

≤ N(r,∞;G) +N(r, 0;G) +N(r, a+ 1;G)

+ Nk+1(r, 0; gnP (g))−N(r, 0;G) + S(r, g)

≤ N(r,∞; g) +Nk+1(r, 0; gnP (g)) +N(r,∞; f) + S(r, g)

≤ N(r,∞; f) +N(r,∞; g)

+ Nk+1(r, 0; gn) +Nk+1(r, 0;P (g)) + S(r, g)

≤ N(r,∞; f) +N(r,∞; g) + (k + 1)N(r, 0; g)

+ T (r, P (g)) + S(r, g)

≤ T (r, f) + (k +m+ 2)T (r, g) + S(r, f) + S(r, g)

without loss of generality, we suppose that there exists a set I with infinite
measure such that T (r, f) ≤ T (r, g) for r ∈ I.

So for r ∈ I we have

(n− k − 3)T (r, g) ≤ S(r, g)
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which is a contradiction since n > k + 3.
If b 6= −1, from (3) we obtain that

F − (1 +
1

b
) ≡ −a

b2[G+ a−b
b ]

.

So,

N(r,
(b− a)

b
;G) = N(r,∞;F ) = N(r,∞; f).

Using Lemma 2 and the same argument as used in the case when b = −1
we can get a contradiction.

Case 2. Let b 6= 0 and a = b. If b = −1, then from (3) we have

FG ≡ 1,

i.e.,
[fnP (f)](k)[gnP (g)](k) ≡ a2(z),

where [fnP (f)](k) and [gnP (g)](k) share a(z) CM.
Note that if P (w) ≡ c0 then we have

c20[f
n](k)[gn](k) ≡ a2(z).

In particular when n > 2k and a(z) = d2 then we get by Lemma 6 that
f(z) = c1e

cz and g(z) = c2e
−cz, where c1, c2 and c are constants satisfying

(−1)kc20(c1c2)
n(nc)2k = d22.

If b = −1, from (3) we have

1

F
≡ bG

(1 + b)G− 1
.

Therefore,

N(r,
1

1 + b
;G) = N(r, 0;F ).

So in view of Lemma 2 and the second fundamental theorem we get

(n+m)T (r, g) ≤ T (r,G) +Nk+1(r, 0; gnP (g))−N(r, 0;G) + S(r, g)

≤ N(r,∞;G) +N(r, 0;G) +N(r,
1

a+ b
;G)

+ Nk+1(r, 0; gnP (g))−N(r, 0;G) + S(r, g)

≤ N(r,∞; g) + (k + 1)N(r, 0; g) + T (r, P (g))

+ N(r, 0;F ) + S(r, g)

≤ N(r,∞; g) + (k + 1)N(r, 0; g) + T (r, P (g))

+ (k + 1)N(r, 0; f) + T (r, P (f)) + kN(r,∞; f)

+ S(r, f) + S(r, g)

≤ (k +m+ 2)T (r, g) + (2k +m+ 1)T (r, f)

+ S(r, f) + S(r, g).
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So for r ∈ I we have

(n− 3k − 3−m)T (r, g) ≤ S(r, g).

Which is a contradiction, since n > 3k +m+ 3.

Case 3. Let b = 0. From (3) we obtain

(4) F ≡ G+ a− 1

a
.

If a 6= 1 then from (4) we obtain

N(r, 1− a;G) = N(r, 0;F ).

We can similarly deduce a contradiction as in case 2. Therefore a = 1 and
from (4) we obtain

F ≡ G,
i.e.,

[fnP (f)](k) ≡ [gnP (g)](k).

Note that n > 3k +m+ 3 > 3k +m.
So by Lemma 8, we have

(5) fnP (f) ≡ gnP (g).

Let h = f
g . If h is a constant, putting f = gh in (5) we get

amg
n+m(hn+m − 1) + am−1g

n+m−1(hn+m−1 − 1) + ...+ a0g
n(hn − 1) = 0,

which implies hd1 = 1, where d1 = gcd(n + m, ..., n + m − i, ..., n + 1, n),
am−i 6= 0 for some i = 0, 1, ...,m. Thus f = tg for a constant t such that
td1 = 1. where d1 = gcd(n+m, ..., n+m− i, ..., n+ 1, n), am−i 6= 0 for some
i = 0, 1, . . . ,m.

If h is not a constant, then from (5) we can say that f and g satisfy the
algebraic equation R(f, g) = 0, where

R(w1, w2) = wn
1 (amw

n
1+am−1w

m−1
1 +...+a0)−wn

2 (amw
n
2+am−1w

m−1
2 +...+a0).

In particular when P (w) = a1w+a2 and Θ(∞, f)+Θ(∞, g) > 4
n then f ≡ g.

Note that when P (w) ≡ c0 then we must have f ≡ tg for some constant t
such that tn = 1. �

Lemma 10. Let f and g be two non constant meromorphic functions and
a(z)(6= 0,∞) be a small function of f and g. Let n and m be two positive
integers such that n > 4m

t − (m− 1), t denotes the number of distinct roots
of the equation P (w) ≡ 0, where P (w) is defined as in Theorem 3. Then

fnP (f)f ′gnP (g)g′ 6≡ a2.
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Proof. First suppose that

(6) fnP (f)f ′gnP (g)g′ ≡ a2(z).

Let d1 be the distinct zeros of P (w) = 0 and multiplicity Pi, where i =
1, 2, ..., t, 1 ≤ t ≤ m and

∑t
i=1 pi = m.

Now by the second fundamental theorem for f and g we get respectively

tT (r, f) ≤ N(r, 0; f) +N(r,∞; f)(7)

+

t∑
i=1

N(r, di; f)−N0(r, 0; f ′) + S(r, f)

and

tT (r, g) ≤ N(r, 0; g) +N(r,∞; g)(8)

+

t∑
i=1

N(r, di; g)−N0(r, 0; g′) + S(r, g),

where N0(r, 0; f ′) denotes the reduced counting function of those zeros of f ′

which are not the zeros of f and f − di, i = 1, 2, . . . , t and N0(r, 0; g′) can
be similarly defined.

Let z0 be a zero of f with multiplicity p but a(z0) 6= 0,∞. Clearly z0
must be a pole of g with multiplicity q. Then from (6) we get np+ p− 1 =
nq +mq + q + 1. This gives

(9) mq + 2 = (n+ 1)(p− q).

From (9) we get p−q ≥ 1 and so q ≥ n−1
m . Now np+p−1 = nq+mq+q+1

gives p ≥ n+m−1
m . Thus we have

(10) N(r, 0; f) ≤ m

n+m− 1
N(r, 0; f) ≤ m

n+m− 1
T (r, f).

Let z1(a(z1) 6= 0,∞) be a zero of f − di with multiplicity qi, i = 1, 2, ...t.
Obviously z1 must be a pole of g with multiplicity r(≥ 1). Then from (6)
we get piqi + qi − 1 = (n+m+ 1)r+ 1 ≤ n+m+ 2. This gives qi ≥ n+m+2

pi+1
for i = 1, 2, . . . , t and so we get

N(r, di; f) ≤ pi + 1

n+m+ 3
N(r, di; f) ≤ pi + 1

n+m+ 3
T (r, f).

Clearly

(11)

d∑
i=1

N(r, di; f) ≤ m+ t

n+m+ 3
T (r, f).
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Similarly we have

(12) N(r, 0; g) ≤ m

n+m− 1
T (r, g)

and

(13)

t∑
i=1

N(r, di; g) ≤ m+ t

n+m+ 3
T (r, g).

Also it is clear that

N(r,∞; f) ≤ N(r, 0; g) +
t∑

i=1

N(r, di; g)(14)

+ N0(r, 0; g′) + S(r, f) + S(r, g)

≤
(

m

n+m− 1
+

m+ t

n+m+ 3

)
T (r, g) +N0(r, 0; g′)

+ S(r, f) + S(r, g)

then by (7), (10), (11) and (14) we get

tT (r, f) ≤
(

m

n+m− 1
+

m+ t

n+m+ 3

)
{T (r, f) + T (r, g)}(15)

+N0(r, 0; g′)−N0(r, 0; f ′) + S(r, f) + S(r, g).

Similarly we have

tT (r, g) ≤
(

m

n+m− 1
+

m+ t

n+m+ 3

)
{T (r, f) + T (r, g)}(16)

+ N0(r, 0; f ′)−N0(r, 0; g′) + S(r, f) + S(r, g).

Then from (15) and (16) we get

t{T (r, f) + T (r, g)} ≤ 2

(
m

n+m− 1
+

m+ t

n+m+ 3

)
{T (r, f) + T (r, g)}

+ S(r, f) + S(r, g)

i.e.,

(17)

(
t− 2m

n+m− 1
− 2(m+ t)

n+m+ 3

)
{T (r, f) +T (r, g)} ≤ S(r, f) +S(r, g).

Since (
t− 2m

n+m− 1
− 2(m+ t)

n+m+ 3

)
=

(n+m− 1)2t+ 2(n+m− 1)(t− 2m)− 8m

(n+m− 1)(n+m+ 3)
.
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We note that when n + m − 1 > 4m
t i.e., when n > 4m

t − (m − 1), then

clearly t − 2m
n+m−1 −

2(m+t)
n+m+3 > 0 and so (17) leads to a contradiction. This

completes the proof. �

Lemma 11. Let f , g be two nonconstant meromorphic functions,let

F = fnP (f)f ′

a , G = gnP (f)g′

a , where P (w) is defined as in Theorem 3, a =
a(z)(6≡ 0,∞) is a small function with respect to f and g, and n is a positive
integer such that n > m+ 5. If H ≡ 0 then one of the following three cases
holds:

(I) fnP (f)f ′gnP (g)g′ ≡ a2(z),
(II) f(z) ≡ tg(z) for a constant t such that td3 = 1, where d3 = gcd(n+

m+ 1, ..., n+m+ 1− i, ..., n+ 1), am−i 6= 0 for some i = 1, 2, ...,m,
(III) f and g satisfy the algebraic equation R(f, g) ≡ 0, where R(w1, w2) =

wn+1
1 (

amwm
1

n+m+1 +
am−1w

m−1
1

n+m + ...+ a0
n+1)−wn+1

2 (
amwm

2
n+m+1 +

am−1w
m−1
2

n+m + ...+ a0
n+1).

Proof. Clearly

F =
[fn+1{ am

n+m+1f
m + am−1

n+m f
m−1 + ...+ a0

n+1}]
′

a

and

G =
[gn+1{ am

n+m+1g
m + am−1

n+m g
m−1 + ...+ a0

n+1}]
′

a
,

where
P1(w) = { am

n+m+ 1
wm +

am−1
n+m

wm−1 + ...+
a0

n+ 1
}

proceeding in the same way as the proof of Lemma 9, taking k = 1 and
considering n+ 1 instead of n we get either

fnP (f)f ′gnP (g)g′ ≡ a2(z)

or
fnP (f)f ′ ≡ gnP (g)g′.

Let h = f
g . If h is a constant, by putting f = gh in the above equation we

get

amg
m(hn+m+1 − 1) + am−1g

m−1(hn+m − 1) + ...

+ a1g(hn+2 − 1) + a0(h
n+1 − 1) ≡ 0,

which implies that hd3 = 1, where d3 = gcd(n + m + 1, . . . , n + m + 1 −
i, . . . , n+ 1), am−i 6= 0 for some i ∈ {0, 1, ...,m}. Thus f ≡ tg for a constant
t such that td3 = 1, where d3 = gcd(n+m+ 1, ..., n+m+ 1− i, ..., n+ 1),
am−i 6= 0 for some i ∈ {0, 1, ...,m}.
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If h is not constant then f and g satisfy the algebraic equationR(f, g) ≡ 0,

where R(w1, w2) = wn+1
1 (

amwm
1

n+m+1 +
am−1w

m−1
1

n+m + . . .+ a0
n+1)−wn+1

2 (
amwm

2
n+m+1 +

am−1w
m−1
2

n+m + ...+ a0
n+1). �

3. Proof of the theorems

Proof of Theorem 1. Let F (z) and G(z) be given as in Lemma 9. It
follows that F and G share (1, l) except for the zeros and poles of P (z). So
from (1) we obtain

N2(r, 0;F ) ≤ N2(r, 0; [fnP (f)](k)) + S(r, f)(18)

≤ T (r, [fnP (f)](k))− (n+m)T (r, f)

+ Nk+2(r, 0; fnP (f)) + S(r, f)

≤ T (r, F )− (n+m)T (r, f) +Nk+2(r, 0; fnP (f))

+ O{log r}+ S(r, f).

Again by (2) we have

(19) N2(r, 0;G) ≤ kN(r,∞; f) +Nk+2(r, 0; gnP (g)) + S(r, g).

From (18) we get

(n+m)T (r, f) ≤ T (r, F ) +Nk+2(r, 0; fnP (f))−N2(r, 0;F )(20)

+ O{log r}+ S(r, f).

Case 1. Let H 6≡ 0.

Subcase 1. Let l ≥ 2. Let (i) of Lemma 3 holds. Then using (19) we
obtain from (20),

(n+m)T (r, f) ≤ N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G)(21)

+ Nk+2(r, 0; gnP (f)) +O{log r}
+ S(r, f) + S(r, g)

≤ Nk+2(r, 0; fnP (f)) +Nk+2(r, 0; gnP (g))

+2N(r,∞; f) + (k + 2)N(r,∞; g) +O{log r}
+ S(r, f) + S(r, g)

≤ (k +m+ 2){T (r, f) + T (r, g)}+ 2N(r,∞; f)

+ (k + 2)N(r,∞; g) +O{log r}
+ S(r, f) + S(r, g)

≤ [(k +m+ 4)− 2Θ(∞; f) + ε]T (r, f)

+ [(2k +m+ 4)− (k + 2)Θ(∞, g) + ε]T (r, g)

+ S(r, f) + S(r, g)
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≤ [(3k +m+ 8)− 2Θ(∞, f)− 2Θ(∞, g)

− kmin{Θ(∞, f),Θ(∞, g)}+ 2ε]T (r) + S(r).

In a similar way we can obtain

(n+m)T (r, g) ≤ [(3k +m+ 8)− 2Θ(∞, f)− 2Θ(∞, g)(22)

− kmin{Θ(∞, f),Θ(∞, g)}+ 2ε]T (r) + S(r).

From (21) and (22) we obtain

[n− 3k −m− 8 + 2Θ(∞, f) + 2Θ(∞, g)

+ kmin{Θ(∞, f)Θ(∞, g)} − 2ε]T (r) ≤ S(r)

contradicting with the fact that n ≥ 3k +m+ 8.

Subcase 2. Let l = 1, using Lemma 4 and (19) we obtain from (20),

(n+m)T (r, f) ≤ N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G)(23)

+
1

2
N(r, 0;F ) +

1

2
N(r,∞;F )

+ Nk+2(r, 0; fnP (f)) +O{log r}
+ S(r, f) + S(r, g)

≤ Nk+2(r, 0; fnP (f)) +Nk+2(r, 0; gnP (g))

+
1

2
Nk+1(r, 0; fnP (f)) +

k + 5

2
N(r,∞; f)

+ (k + 2)N(r,∞; g) +O{log r}
+ S(r, f) + S(r, g)

≤ (k +m+ 2){T (r, f) + T (r, g)}

+
k +m+ 1

2
T (r, f) +

k + 5

2
N(r,∞; f)

+ (k + 2)N(r,∞; g) +O{log r}
+ S(r, f) + S(r, g)

≤ [(2k +
3m+ 10

2
)− (

k

2
+ 3)Θ(∞, f)

− 1

2
Θ(∞, f) + ε]T (r, f) + [(2k +m+ 4)

− (
k

2
+ 2gΘ(∞, g)− k

2
Θ(∞, f) + ε]T (r, g)

+ O{log r}+ S(r, f) + S(r, g)

≤ [4k +
5m+ 18

2
− (

k + 5

2
) (Θ(∞, f)

+ Θ(∞, g)) + 2ε]T (r) + S(r).
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Similarly

(n+m)T (r, g) ≤ [4k +
5m+ 18

2
− (

k + 5

2
) (Θ(∞, f)(24)

+ Θ(∞, g)) + 2ε]T (r) + S(r).

Combining (23) and (24) we obtain

[n− 4k − 5m+ 18

2
+m+

k + 5

2
(Θ(∞, f) + Θ(∞, g)) + 2ε]T (r) ≤ S(r),

contradiction. Since n ≥ 4k + 3m+18
2 .

Subcase 3. Let l = 0, using Lemma 5 and (19) we obtain from (20),

(n+m)T (r, f) ≤ N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G)(25)

+ 2N(r, 0;F ) +N(r, 0;G) +Nk+2(r, 0; fnP (f))

+ 2N(r,∞;F ) +N(r,∞;G)

+ O{log r}+ S(r, f) + S(r, g)

≤ Nk+2(r, 0; fnP (f)) +Nk+2(r, 0; gnP (g))

+ 2Nk+2(r, 0; fnP (f)) +Nk+1(r, 0; gnP (g))

+ (2k + 4)N(r,∞; f) + (2k + 3)N(r,∞; g)

+ O{log r}+ S(r, f) + S(r, g)

≤ [(5k + 3m+ 8)− (2k + 4)Θ(∞; f)− ε]T (r, f)

+ [(4k + 2m+ 6)− (2k + 3)Θ(∞; g)− ε]T (r, g)

+ O{log r}+ S(r, f) + S(r, g)

+ [(9k + 5m+ 14)− (2k + 3)[Θ(∞; f)

+ Θ(∞, g)]− min{Θ(∞, f)Θ(∞; g)}
+ 2ε]T (r) + S(r).

Similarly

(n+m)T (r, g) ≤ [(9k + 5m+ 14)− (2k + 3)[Θ(∞; f) + Θ(∞, g)](26)

−min{Θ(∞, f)Θ(∞; g)}+ 2ε]T (r) + S(r).

From (25) and (26) we get

[n− 9k − 4m− 14] + (2k + 3)(Θ(∞, f) + Θ(∞; g))

+ min{Θ(∞; f)Θ(∞; g)} − 2ε]T (r) ≤ S(r),

contradicts with the facts that n ≥ 9k + 4m+ 14.
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Case 3. Let H ≡ 0. Then the Theorem follows from Lemma 9. �

Proof of Theorem 2. Noting that N(r,∞; f) = 0, N(r,∞; g) = 0 and
proceeding in the like manner as the proof of Theorem 1 we obtain the result
of the Theorem 2. �

Proof of Theorem 3. Let F = fnP (f)f ′

a(z) and G = gnP (g)g′

a(z) . Then F , G

share (1, l), except the zeros and poles of a(z). Clearly

F =
[fn+1{ am

n+m+1f
m + am−1

n+m f
m−1 + ...+ a0

n+1}]
′

a

and

G =
[gn+1{ am

n+m+1g
m + am−1

n+m g
m−1 + ...+ a0

n+1}]
′

a
,

where

P1(w) = { am
n+m+ 1

wm +
am−1
n+m

wm−1 + ...+
a0

n+ 1
}.

Case 1. Let H 6≡ 0. Now following the same procedure as adopted in
the proof of Case 1 of Theorem 1 we can easily deduce a contradiction.

Case 2. Let H ≡ 0. Since n > k1 and n > m + 5 the theorem follows
from Lemma 10 and 11. �

Proof of Theorem 4. Noting that N(r,∞; f) = 0, N(r,∞; g) = 0 and
proceeding in the like manner as the proof of Theorem 3 we obtain the result
of the Theorem 4. �
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