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1. Introduction

In this paper by meromorphic functions we will always mean meromor-
phic function in the complex plane.

Let f and g be two non-constant meromorphic functions and let a be a
finite complex number. We say that f and g share a CM, provided that
f —a and g — a have the same zeros with the same multiplicities. Similarly,
we say that f and ¢ share a IM, provided that f — a and g — a have the
same zeros ignoring multiplicities. In addition we say that f and g share oo
CM, if % and é share 0 CM, and we say that f and g share co IM, if % and
% share 0 IM.

We adopt the standard notations of value distribution theory (see [8]).
We denote by T'(r) the maximum of T'(r, f) and T'(r,g). The notation S(r)
denotes any quantity satisfying S(r) = o(T'(r)) as r — oo, outside of a
possible exceptional set of finite linear measure.

Throughout this paper, we need the following definition.

N(r,a; f)

O(a; f) =1 _TIHEOSUP Wa

where a is a value in the extended complex plane.
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In 1959, Hayman [7] proved the following result.

Theorem A. Let f be a transcendental entire function, and let n(> 1)
be an integer. Then f"f' =1 has infinitely many zeros.

In 2002, Fang and Fang [6] proved the following result.

Theorem B. Let f and g be two non-constant entire functions, and let
n(> 8) be an integer. If f"(f—1)f" and g"(g—1)g" share 1 CM, then f = g.

In the same year Fang [5] investigated the value sharing of more general
non-linear differential polynomial than that was considered in Theorem B
and obtained the following result.

Theorem C. Let f and g be two non-constant entire functions, and let n,
k be two positive integers with n > 2k +8. If [f*(f — 1)]®) and [¢g"(g —1)]*
share 1 CM then f =g.

In 2004, Lin and Yi [14] considered the case of meromorphic function in
Theorem B and obtained the following.

Theorem D. Let f and g be two non-constant meromorphic functions
with ©(o0, f) > T%Ll, and let n(> 12) be an integer. If f"(f — 1)f" and
9" (g — 1)g' share 1 CM, then f = g.

Natural inquisition would be to investigate the situation for meromorphic
function in Theorem C. In this direction in 2008, Zhang [20] proved the

following result.

Theorem E. Suppose that f is a transcendental meromorphic function
with finite number of poles, g is a transcendental entire function, and let n, k
be two positive integers with n > 2k + 6. If [f*(f — 1)]®) and [g"(g — 1)]*)
share 1 CM, then f = g.

To proceed further we require the following definition known as weighted
sharing of values introduced by I. Lahiri [9] which measure how close a
shared value is to being shared CM or to being shared IM.

Definition 1. Let k be a non negative integer or infinity. For a €
CU{oo} we denote by Ex(a; f) the set of all a-points of f where an a-point
of multiplicity m is counted m times if m < k and k + 1 times if m > k. If
Ex(a; f) = Ex(a;g), we say that f, g share the value a with weight k.

The definition implies that if f, g share a value a with weight k, then zg
is an a-point of f with multiplicity m(< k) if and only if it is an a-point of g
with multiplicity m(< k) and zy is an a-point of f with multiplicity m(> k)
if and only if it is an a-point of g with multiplicity n(> k), where m is not
necessarily equal to n.

We write f, g share (a,k) to mean that f, g share the value a with
weight k. Clearly if f, g share (a,k) then f, g share (a,p) for any integer
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p, 0 < p< k. Also we note that f, g share a value a IM or CM if and only
if f, g share (a,0) or (a,c0) respectively.

In 2009, using the notion of weighted sharing of values, Xu, Yi and Cao
[15] proved the following result.

Theorem F. Let f and g be two non-constant meromorphic functions,
and n(> 1), k(> 1) and (> 0) be three integers such that ©(oco, f) +
O(c0,g) > 2. Suppose [f"(f — D]® and [g"(g — 1)]®) share (1,1). If
[>2andn >5k+11 orifl =1 andn>7k‘+§, then f =g.

Recently, Li [13] proved the following result which rectify and at the same
time improve Theorem F.

Theorem G. Let f and g be two non-constant meromorphic functions,
and n(> 1), k(> 1) and (> 0) be three integers such that ©(oco, f) +
O(c0,g) > 4. Suppose [f*(f — 1)]®) and [¢"(g — 1)]® share (1,1). If
Il >2andn > 3k+11 or ifl =1 and n > bk + 14, then f = g or
(= D] Wg"(g - ]®) = 1.

In this direction recently Abhijith Banerjee [1] proved the following re-
sults first one of which improves Theorem G.

4
n
n

Theorem H. Let f and g be two transcendental meromorphic function
and n(> 1), k(> 1), I(> 0) be three integers such that ©(co, f)+ (o0, g) >
4. Suppose for two nonzero constants a and b, [f"(af + b)]*) and [g"(ag +
b)]*) share (1,1). If1 > 2 and n > 3k +9 or ifl = 1 and n > 4k + 10, or if
1 =0 andn > 9k +18, then f = g or [f"(af +b)]®)[g"(ag+b)]*) = 1. The
possibility [f™(af + b)]®[g"(ag + b)]*) = 1 does not occur for k = 1.

Theorem 1. Let f and g be two transcendental entire functions, and let
n(>1),k(>1),1(> 0) be three integers. Suppose for two nonzero constants a
and b, [f*(af +b)]®) and [g"(ag+b)]*) share (1,1). If1 > 2 and n > 2k +6
orifl=1andn > %k—i—7, orif l=0 and n > 5k + 12, then f = g.

In 2015, Abhijith Banerjee and Pulak Sahoo [3] obtained the following
result.

Theorem J. Let f and g be two non-entire transcendental meromorphic
functions and let n(> 1), k(> 1), [(> 0) be three integers such that O (oo, f)+
O(00,9) > %. Suppose for two nonzero constants a and b, [f™(af+0b)]*) —P
and [g"(ag + b)]*®) — P share (0,1) where P(# 0) is a polynomial. If | > 2
andn >3k+9 orifl=1andn > 4k + 10 or if I = 0 and n > 9k + 18,
then f =g.

Theorem K. Let f and g be two transcendental entire functions, and let
n(>1), k(> 1), (> 0) be three integers. Suppose for two nonzero constants
a and b, [f™(af +b)]*®) — P and [g"(ag +b)]*) — P share (0,1) where P(# 0)
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is a polynomial. If 1 > 2 andn > 2k+6 orifl =1 andn2%+7 or if
l =0 and n > 5k + 12, then f = g.

The following questions are inevitable.

Quation 1. What can be said if the sharing value zero is replaced by a
small function a in the above Theorems J and K?

Quation 2. Are the Theorems J and K also true for non-constant entire
and meromorphic functions?

In this paper, taking the possible answer of the above questions into
background we obtain the following results.

Theorem 1. Let f and g be two non-constant meromorphic functions,
let P(w) = amw™ + apm_1w™ ' + ... + aqw + ag, for a positive integer
m or P(w) = ¢y where ap(# 0),a1...am—1,am(# 0), co(# 0) are complex
constants. Also we suppose that [f"P(f)]*) and [¢"P(g)]*® share (a,l),
and n(> 1), k(> 1), I(> 0) are positive integers. Now
(I) when P(w) = amw™ + apm_1w™ ! 4+ ... 4+ ajw + ag, and one of the
following conditions holds:

(a) 1>2andn >3k+m+38,
() 1=1 andn > 4k + 3258,
(¢) 1=0andn > 9k+ 4m + 14,
then one of the following three cases holds:

(I1) f(z) = tg(2) for a constant t such that t = 1, where dy = ged(n +
m,n—+m—1i,..,n),am—; # 0 for some i =0,1,2,...,m,

(12) f and g satisfy the algebraic equation R(f, ) = 0 where R(wl, we) =
wi(amwi® + am_1w’1”_1 + ...+ agwr + ag) — wh(amwy 4 ap_1wy’ R S
ajwy + ag), except for P(w ) = ajw + az and O(o0; f) + O(c0; g) > %,

(I3) [f*P()P[g"P(9)]®) = a?, except for k =1,

(II) when P(w) = co, and one of the following conditions holds:

(a) 1>2andn >3k+8,

(b) 1=1andn>4k+9,

(¢) 1=0andn >9k+ 14,
then one of the following two cases holds:

(II1) f =tg for some constant t such that t" =

(112) Z[f P [g"*) = 2. In particular when n > 2k and a(z) = dy =
constant, we get f(z) = c1e%*, g(z) = cae™°*, where c1, co and ¢ are con-
stants satisfying (—1)¥c3(c1ca)"(ne)?* = d3.

Theorem 2. Let f and g be two non-constant entire functions, let
P(w) = amw™ + am_1w™ 1 + ... + aqw + ag, for a positive integer m or
P(w) = ¢o where ap(# 0),a...am—1,am(# 0), co(# 0) are complex con-
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stants. Also we suppose that [f"P(f)]*®) and [¢"P(g)]*) share (a,l), and
n(>1), k(> 1), {(> 0) are positive integers. Now
(I) when P(w) = amw™ + am_1w™ ' 4+ ... + ajw + ag, and one of the
following conditions holds:
(@) 1>2andn>2k+m+5,
(b) 1=1andn> 3% +2m+5,
(¢) 1=0andn > 5k+4m+8,
then the conclusion of Theorem 1 holds:
(II) when P(w) = ¢y, and one of the following conditions holds:
(a) 1>2andn>2k+5,
(b) 1=1andn> 3% +5,
(a) 1=0 andn > 5k+8,
then the conclusion of Theorem 1 holds.

Theorem 3. Let f and g be two non-constant meromorphic functions
and a(z)(# 0,00) be a small function of f and g, let P(w) = anw™ +
A1 W™ 4+ 4 arw + ag, for a positive integer m or P(w) = ¢o where
ao(# 0),ai...am—1,am(# 0), co(# 0) are complex constants. Also we suppose
that f"P(f)f" and g"P(g)g" share (a,l), and n(> 1), k(> 1), I(> 0) are
positive integers and one of the following conditions holds:

(@) 1>2andn >m+ 10,
() 1=1andn> 3" +12,
(¢) 1=0andn >4m+ 22,
then one of the following two cases holds:
(I) f(2) =tg(2) for a constant t such that t% = 1, where d3 = ged(n +m +
I,...o,n+m+1—d,....n+1), ap—; #0 for somei=0,1,2,...,m,
(II) f and g satisfy the algebraic equation R(f,g) = 0, where R(wi,wy) =

-1 m m—1
n+1 a’mwin a’mflwin ao o+l AamWy Am—1Wy ao
1 (n+m+1+ n+m +"'+n+1) Wy (n+m+1+ n+m +"'+n+1)’

Theorem 4. Let f and g be two non-constant entire functions and
a(z)(# 0,00) be a small function of f and g, let P(w) = apmw™+am_1w™ 1+
.taiw+ag, for a positive integer m or P(w) = ¢y where ag(# 0),a1...am—1,
am(#£ 0), co(# 0) are complex constants. Also we suppose that f"P(f)f" and
g"P(9)g" share (a,l), and n(> 1), k(> 1), I(> 0) are positive integers and
one of the following conditions holds:

(a) 1>2andn>m+4,
(b) 1=1andn > 3" +6,
(¢) 1=0andn>4m+ 11,
then the conclusion of Theorem 3 holds.
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2. Lemmas

In this section we present some lemmas which will be needed in the sequel.
Let F' and G be two non-constant meromorphic functions defined in C. We
shall denote by H the following function:

F// 2F/ G// 2GI
H= <F’F—1> (G’G—l)'
Lemma 1 ([16]). Let f be a transcendental meromorphic function, and
let P,(f) be a differential polynomial in f of the form

Po(f) = anf™(2) + an_1f" 1 2) + ... 4+ a1 f(2) + ag,
where a,(# 0),an—1...a1,a9 are complex numbers. Then
T(r, Po(f)) = nT(r, f) + O(1).

Lemma 2 ([21]). Let f be a non-constant meromorphic function, and
p, k be positive integers. Then

(1) Np(r, 03 f @) < T, f ) = T(r, £) + N (r,05.f) + S(r, ),

(2) Ny(r,0; f*)) < EN(r,00; f) + Npys(r,0; f) + S(r, f).

Lemma 3 ([9]). Let F' and G be two non-constant meromorphic functions
sharing (1,2). Then one of the following cases holds:
(Z) T(T) < NQ(T7 0; F) + NZ(T’ 0; G) + N2(T7 005 F) + NQ(rv 005 G) + S(T)a
(i) F=G ,
(191) FG = 1. where T(r) denotes the maximum of T'(r, F) and T'(r,G)
and S(r) = o{T(r)} asr — oo, possibly outside a set of finite linear measure.

Lemma 4 ([2]). Let F and G be two non-constant meromorphic functions
sharing (1,1) and H # 0. Then

T(T,F) < NQ(T7O; F) +N2(T707G) +N2(T700;F) +N2(T700;G)
1— 1—
+§N(T,O;F)+§N(T,OO;F)+S(T,F)+S(T,G).

Lemma 5 ([2]). Let F and G be two non-constant meromorphic functions
sharing (1,0) and H # 0. Then

T(Ta F) < N2(73 07 F) +N2(T7 Oa G) +N2(T7003F) +N2(T700;G>
+ 2N(r,0; F) + N(r,0;G) + 2N (r, 00; F)
+ N(r,00;G) + S(r, F) + S(r,G).
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Lemma 6 ([4]). Let f, g be two non-constant meromorphic functions, let
n, k be two positive integers such that n > 2k. Suppose [f"]*) and [g"]*)
share dy CM. If [f]®)[g"]|*) = d3, then f = c1e%, g = cae™%, where c1, co
and c are constants such that (—1)¥(c1c2)™(ne)? = d3.

Lemma 7 ([18]). If H =0, then F', G share 1CM. If further F, G share
oo IM then F,G share oo CM.

Lemma 8. Let f and g be two non-constant meromorphic(entire) func-
tions. Let P(w) be defined as in Theorem 1 and k, m, n > 3k+m(> 2k+m)
be three positive integers. If [f*P(f)]*) = [¢"P(g)|®), then frP(f) =
9" P(9)-

Proof. By the assumption [f"P(f)]*) = [¢"P(g)]*.

When k > 2, integrating we get

PV = [¢"P(g)] %Y + .

If possible we suppose Cr_1 # 0.

Now in the view of the Lemma 2 for p = 1 and using the second funda-
mental theorem we get

(n+m)T(r, f) < T(r,[f"P())*) = N(r,
+Ni(r, 0; f*P(f)) + S(r, f

< N(ro: [f"P(H* )+ N

+ N(r,Cr—y; [f"P(f)]*~

= N(r,0;[f"P(N))*Y)

+ Ni(r,0; f*P(f)) + S(r, f)

N(r,00;.f) + N (1,05 [g"P(g)] ") + kN (r, 05 f)

+ N(r,0; P(f)) + S(r, f)

(k+m+DT(r, f) + (k—1)N(r,o0; g)

+ Ni(r,0;9" P(g)) + S(r, f)

(k+m+1)T (T:f)+( 1)N(r, 00;9)

+ kEN(r,0;9) + N(r,0; P(g)) + S(r, f)

(k+m+1)T(r, )+(2k+m—1)T( 9)

+ S(r, f) + 5(r, 9)

Bk+2m)T(r)+ S

0; [/ P(f)]*Y)
)
(
V)

| A

IN

IN

IA

IN

().

Similarly we get

(n+m)T(r,g) < (3k+2m)T(r)+ S(r).
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Where T'(r) = max{T'(r, f),T(r,g)} and S(r) = max{S(r, ), S(r,g)}. Com-
bining these we get
(n—m —3k)T(r) < S(r).

Which is a contradiction since n > 3k + m.
Therefore Cy,_; = 0 and so [f"P(f)]*D = [¢"P(g9)]*~Y, Repeating
k — 1 times, we obtain

f"P(f) =g"P(g) + co-

If k£ = 1, clearly integrating one we obtain the above. If possible suppose
Co 7& 0.

Now using the second fundamental theorem we get

(n+m)T(r, f) < N(r,0; f"P(f)) + N(r,00; f"P(f))
+ N(r,co; f"P(f)) + S(r, f)

< N(r,0; f) + mT(r, f) + N(r,00; f)
+ N(r,0;9"P(g)) + S(r, f)
(m+2)T(r, f) + N(r,0;g9) + mT(r,g)
+ S(r, f)+ S(r,g)
(m+2)T(r, f)+ (m+1D)T(r,g)+ S(r, f)+ S(r,g)
(2m + 3)T(r) + S(r).

IN

INIA

similarly we get
(n+m)T(r,g) < (2m+3)T(r)+ S(r)
combining these we get
(n—m—3)T(r) < S(r).
which is a contradiction, since n > m + 3. Therefore ¢y = 1 and so
f"P(f) = g"P(g)-

This completes the lemma. |

Lemma 9. Let f, g be two nonconstant meromorphic (entire functions)

and F = %, G = %, n(> 1), k(> 1), m(> 0) are positive
integers such that n > 3k +m+ 3(> 2k +m+ 2) and P(w) be defined as in
Theorem 1. If H =0 then

(I) when P(w) = apnw™ + am_1w™ ' + ... +ayjw + ag, one of the following
three cases holds:
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(I1) f = tg for a constant t such that t% = 1, where dy = ged(n +
Mmy...,n+m—1i,...,n), am—i # 0 for somei=1,2,...,m,

(12) f and g satisfy the algebraic equation R(f,g) =0, where R(w1,wy) =
W (A W+ Gy W 4 ag) — W (AW + a1 w4 4 ag), except
for P(w) = ajw + ay and ©(cc; f) + O(c0; g) > 4

(13) [f"P(FIW[g"P(g)] ™) = @,
(II) when P(w) = cg,, one of the following two case holds:

(I11) f =tg for some constant t such that t" =

(I12) A[f"®g } = a®. In particular, when n > 2k and a(z) = dy
we get f(z) = c1e®® and g(z) = coe™ %, where ¢1, c2 and ¢ are constants
satisfying (—1)*c2(cic2)™(ne)?k = d3.

Proof. Since H = 0, by Lemma 7, we get F' and G share 1 CM. On
integration we get,
1 bG+a-0

(3) F-1~ G-1 "

where a, b are constants and a # 0. We now consider the following cases.
Case 1. Let b # 0 and a # b. If b = —1, then from (3) we have

—a

F=—-—.
G—-—a-—1

Therefore
N(r,a+1;G) = N(r,00; F) = N(r, o00; f).

So in view of Lemma 2 and the second fundamental theorem we get

(n+m)T(r,9) < T(r,G)+ Niy1(r,0;9"P(g)) — N(r,0;G)

N(r,00;G) + N(r,0;G) + N(r,a + 1; G)

+ N1 (r,0;9"P(g)) — N(r,0; G) + S(r, g)

N(r,00;9) + Nit1(r, 09" P(g)) + N(r, 003 f) + S(r, 9)
N(r,00; f) + N(r, 005 )

+ Ni+1(r,05.9") + Nita(r, 0; P(g)) + S(r, 9)

N(r,00; f) + N(r,00;9) + (k +1)N(r,0; g)
+T(r,P(g)) + S(r,9)

<T@ f)+(k+m+2)T(r,g)+S(r, f)+S(r,g)

IN A

IN A

| /\

without loss of generality, we suppose that there exists a set I with infinite
measure such that T'(r, f) < T(r, g) for r € I.
So for r € I we have

(n — k- 3)T(Tag) < S(Tv g)
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which is a contradiction since n > k -+ 3.
If b # —1, from (3) we obtain that

—a

1
F—-(1+ 5) = m
So,
N(r, (b ; a);G) = N(r,00; F) = N(r,00; f).
Using Lemma 2 and the same argument as used in the case when b = —1

we can get a contradiction.
Case 2. Let b # 0 and a = b. If b = —1, then from (3) we have
FG =1,
i.e.,
[P P]g"P(g))*) = a*(2),
where [f"P(f)]*) and [¢"P(g)]*) share a(z) CM.
Note that if P(w) = ¢y then we have
GLMP[gM® = a(2).
In particular when n > 2k and a(z) = d2 then we get by Lemma 6 that
f(2) = c1e®® and g(z) = coe™ %, where c1, co and ¢ are constants satisfying
(=1)*c2(c1c0)™(ne)® = d3.
If b = —1, from (3) we have
1 bG
F~ (1+bG-1
Therefore,

N(r, :G) = N(r,0; F).

b

1+0b

So in view of Lemma 2 and the second fundamental theorem we get
(n+m)T(r,g) < T(r,G)+ Ngya(r,0;9"P(g)) — N(r,0;G) + S(r, g)

< N(r,o0;G)+ N(r,0;G) + N(r, %_H); G)
+ Ni41(r, 059" P(9)) — N(r,0;G) + S(r, g)
N(r,00;g) + (k +1)N(r,0;9) + T(r, P(g))

+ N(r,0; F) + S(r, g)

N(r,00; ) + (k +1)N(r,0;9) + T(r, P(g))

+ (k+1)N(r,0; f) +T(r, P(f)) + EN(r, o0; f)
+ S(r, f)+ S(r,9)

(k+m+2)T(r,g)+ 2k+m+ 1)T(r, f)

+ S(r, f)+ S(r,g).

IN

IN

IN
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So for » € I we have
(n—3k—3—m)T(r,g) < S(r,g).

Which is a contradiction, since n > 3k +m + 3.
Case 3. Let b = 0. From (3) we obtain

-1

(4) poGta-1
a

If @ # 1 then from (4) we obtain

N(r,1—a;G) = N(r,0; F).
We can similarly deduce a contradiction as in case 2. Therefore ¢ = 1 and
from (4) we obtain

F=aG,
ie.,
[P = [g"Pg)] V.
Note that n > 3k +m + 3 > 3k +m.
So by Lemma 8, we have

() f"P(f) = g"P(g).
Let h = 5. If h is a constant, putting f = gh in (5) we get

Amg™ T (R = 1) F a1 g™ T (AT 1) 4 4 agg™ (A — 1) = 0,

which implies A% = 1, where d; = ged(n + m,...,n +m —i,...,n + 1,n),
am—i # 0 for some 7 = 0,1,...,m. Thus f = tg for a constant ¢ such that
t4 = 1. where dy = ged(n+m,....,n+m —i,...,n+1,n), am_; # 0 for some
1=0,1,...,m.

If h is not a constant, then from (5) we can say that f and g satisfy the
algebraic equation R(f,g) = 0, where

R(w1, w2) = W (amwt+am 1w .. 4a0) —wh (amwh4-am 1wh ... +ag).

In particular when P(w) = ayw-+as and ©(co, f)+0(c0, g) > 2 then f = g.
Note that when P(w) = ¢y then we must have f = tg for some constant ¢
such that ¢" = 1. [ ]

Lemma 10. Let f and g be two non constant meromorphic functions and
a(z)(# 0,00) be a small function of f and g. Let n and m be two positive
integers such that n > 4Tm — (m —1), t denotes the number of distinct roots
of the equation P(w) = 0, where P(w) is defined as in Theorem 3. Then

f"P(f)f'g"P(g)g # a*.
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Proof. First suppose that
(6) frP(N)I'd"Pl9)g = a*(2).

Let dy be the distinct zeros of P(w) = 0 and multiplicity P;, where i =
1,2,...,t,1 <t <m and Zlepi =m
Now by the second fundamental theorem for f and g we get respectively

(7) tT(r, f) < N(r,0; f) + N(r,00; f)

+ zt;N(T:di;f) — No(r,0; f') + S(r, f)
and -
(8) tT(r,9) < N(r,0;9) + N(r,00;9)

t
+ 3 N(r,di;g) — No(r,0;¢') + S(r, ),

where Ng(r, 0; f') denotes the reduced counting function of those zeros of f’
which are not the zeros of f and f —d;, i = 1,2,...,t and No(r,0;¢’) can
be similarly defined.

Let zg be a zero of f with multiplicity p but a(zg) # 0,00. Clearly 2
must be a pole of g with multiplicity g. Then from (6) we get np+p—1=
nqg +mq+ ¢+ 1. This gives

9) mq+2=(n+1)(p—aq).

From (9) we get p—¢g > 1 and so ¢ > ”W_l Now np+p—1=ng+mqg+qg+1

gives p > M'Tm_l Thus we have

_ m m
10 Nrof )i <———N"r0f) < ———T .
(10) W00 € — N 05 f) £ — T, f)

Let z1(a(z1) # 0,00) be a zero of f — d; with multiplicity ¢;, i = 1,2, ...t.
Obviously z; must be a pole of g with multiplicity (> 1). Then from (6)
we get pigi+q —1=(n+m+1)r+1<n+m+2. This gives ¢; > %
fori=1,2,...,t and so we get

~ pi+1 pi+1
N(r,di; f) < ———=N(r,di; f) < ———=T(r, f).
(ridis f) < - g N dis f) < 2 == T )
Clearly
d m—+t
(11) ZW (rodis f) < ————=T(r, f).
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Similarly we have

12 N ; T
(12) (r0;9) < - —T(r.9)
and

t

_ m—+t
1 N(r,di;9) < ———=T'(r, 9).
(13) Zl (rydizg) < = T(r,g)

Also it is clear that

10) V(e f) < Nir0ig) + - Nrdiso)

+ No(r,0;¢") + S(r, f) + S(r, 9)
(n—}—?:l—l nf;;j_:;)T(Tag)-l‘No(T,O;g/)
+ S(r, f) + S(r, 9)

then by (7), (10), (11) and (14) we get

IA
+

1) 1) < (s L T )+ ()
+No(r,0;9") = No(r,0; f') + S(r, f) + S(r, ).

Similarly we have
m m 4+t

<

(16) iT(r.g) < <n—|—m—1 n—+m+3
+ No(r,0: f) = No(r, 0;9') + S(r, f) + S(r, 9).

Then from (15) and (16) we get

{T(r,f)+T(r,9)}

m m—+t
<
t{T(r,f)—i—T(r,g)} — 2<n+m—1+n+m+3

+ S(r, f)+ S(r,9)

) (T(r. ) + Tr,g)}

2m 2(m +1t)
n+m—-—1 n+m+3

) (T, )+ T(r. )} < S(r. f) + S(r,g).

(t_ 2m _2(m+t)>

n+m—-1 n+m+3
(n+m—1)>2%t+2(n+m—1)(t —2m) — 8m
(n+m—1)(n+m+ 3) )
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We note that when n+m —1 > 22 ie., when n > 2 — (m — 1), then
clearly ¢ — — fg’fﬁl — jf}nﬁ; > 0 and so (17) leads to a contradiction. This
completes the proof. |

Lemma 11. Let f, g be two nonconstant meromorphic functions,let
F=1 P(Sf)f G = #, where P(w) is defined as in Theorem 3, a =

a(z)(# 0,00) is a small function with respect to f and g, and n is a positive
integer such that n >m+5. If H = 0 then one of the following three cases
holds:
(1) f"P(f)f'g" Plg)g' = a2(),
(II) f(z) = tg(z) for a constant t such that t% = 1, where d3 = ged(n +
m+1,.,n+m+1—i ...n+1),a,_; #0 for somei=1,2,...m
(II1I) f and g satisfy the algebraic equation R(f,g) =0, where R(wy,ws)

n+l; amw® | am_1wi Lag_ ntl; amwld' | am_1wy _ag_
wy (n+m+1 + n+m +..t n+1 ) Wy (n+m+1 + n+m +o.t n+1 )

Proof. Clearly

1 m 1
g U e S )
a
and n+1 am—1 m—1 ag /
G _ [ {n+m+lg + n+mg +ot n+1 ]
a b
where a
w™ m—1 wm 1 ao
Pi(w) = {n—l—m—i-l +n—i—m Tt +n+1}

proceeding in the same way as the proof of Lemma 9, taking £k = 1 and
considering n + 1 instead of n we get either

f"P(f) 9" P(9)g = a*(2)

or
f"P(f)f =9"P(9)d

Let h = 5. If h is a constant, by putting f = gh in the above equation we
get

amgm(h"'H”Jrl —1)+ am,lgm_l(h”*'m —1)+..
+ a1g(h"*t? — 1) + ag(h"™ — 1) = 0,

which implies that A% = 1, where d3 = ged(n +m +1,...,n +m + 1 —
iy...,n+1), am—; # 0 for some i € {0,1,...,m}. Thus f = tg for a constant
t such that t% = 1, where d3 = ged(n +m +1,..n+m+1—i,...,n+ 1),
am—i # 0 for some i € {0,1,...,m}.
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If h is not constant then f and g satisfy the algebraic equation R(f,g) = 0,

—1 m
n+1, amwi® Q1w ag n+1l, amw}
where R(wl’ w2) =W (n+m+1 + n+m t..F n+1> ) (n+m+1 +

to Tt n+1) u

m—1
Am—1Wy

n+m

3. Proof of the theorems

Proof of Theorem 1. Let F(z) and G(z) be given as in Lemma 9. It
follows that F' and G share (1,1) except for the zeros and poles of P(z). So
from (1) we obtain

(18)  Na(r,0;F) < No(r,0; [f”P(f)] "))+ S(r, f)

T(r, [f"P()]®) = (n+m)T(r, f)
+ Nig2(r, 0; f*P(f)) + S(r, f)

T(r,F) — (n+m)T(r, f) + Ngs2(r, 0; f*P(f))
+ Oflogr} + S(r, f).

<
<

IN

Again by (2) we have
(19)  No(r,0;G) < kN(r,00; f) + Nigy2(r, 059" P(g)) + S(r, g).
From (18) we get

(20)  (n+m)T(r,f) < T(r,F)+ Npya(r,0; f*P(f)) — Na(r,0; F)
+ O{logr} + S(r, f).

Case 1. Let H # 0.

Subcase 1. Let | > 2. Let (i) of Lemma 3 holds. Then using (19) we
obtain from (20),
(21) (n+m)T(r,f) < Na(r,0;G) + Na(r,00; F') + Na(r,00; G)
+ Ni12(r, 0; 6" P(f)) + O{logr}
+ S(r, f)+ S(r,9)
Ni12(r, 05 f* P(f)) + Ni12(r,0; 6" P(g))
+2N(r,00; f) + (k + 2)N(r,00;g) + Oflogr}
+ S(r, f)+ S(r,g)
(k+m+2){T(r, f)+T(r,9)} + 2N (r, c0; f)
+ (k+2)N(r,00; g) + O{logr}
+ S(r, f)+ S(r,9)
[(k+m +4) —20(co; f) + €|T(r, f)
+ [(2k+m+4) — (k4 2)O(c0, g) + €|]T(r, g)
+ S(r, f)+ S(r,9)

IN

IN

IN
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< [(Bk+m+8) —20(o0, f) — 20(o0, g)
— kmin{O(oo, f), O(c0, g)} + 2¢|T(r) + S(r).

In a similar way we can obtain

(22) (n+m)T(r,9) < [(Bk+m+8) —20(c0, f) —20(0, g)
— kmin{©(c0, f),0(c0, g)} + 2€]T(r) + S(r).

From (21) and (22) we obtain

[n— 3k —m — 8+ 20(oc0, f) + 20(c0, g)
+ kmin{©(o0, )O(c0, g)} — 2¢]T(r) < S(r)

contradicting with the fact that n > 3k +m + 8.

Subcase 2. Let | = 1, using Lemma 4 and (19) we obtain from (20),
(23) (n+m)T(r,f) < Na(r,0;G) + No(r,o0; F') + Na(r,00; G)
+ %N(r, 0; F) + %N(r, oo; F)
+ Nis2(r, 05 fP(f)) + Oflog r}
+ S(r, f)+ S(r, g)
Nit2(r, 05 f"P(f)) + Ni2(r, 0; 9" P(g))

N (1,0 7)) + 22N 001 )

+ (k4 2)N(r,00;g) + Oflogr}
+ S(r, f)+ S(r,9)

(k+m+2){T(r,f)+T(r,g)}

k +1 k+5—
+ m T(va)—i_%N(T?OOaf)

+ (k4 2)N(r,00;g) + Oflogr}
+ S(r, f)+ S(r,9)
[(2k+3m+10 k

5~ (5 + 300, )

- %@(007 £ +€T(r )+ [(2k +m +4)

IN

IN

IN

~ (& +298(00,9) ~ (00, /) +dT(r,9)
+ O{logr} + S(r, f)+ S(r,9)

k4 T (B0 (e, )
+ O(00,9)) + 2€¢/T(r) + S(r).

IN
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Similarly

om + 18 kE+5
- () @0, )

+ (00, 9)) + 2€]T(r) + S(r).

(24) (n+m)T(r,g) < [4k+

Combining (23) and (24) we obtain

TS # (©(c0, f) + O(00, g)) + 2] T'(r) < S(r),

contradiction. Since n > 4k + 3m27+18.

Subcase 3. Let | = 0, using Lemma 5 and (19) we obtain from (20),

(25) (n+m)T'(r, f) < Na(r,0;G) + Na(r,00; F') + Na(r, 00; G)

+ 2N (r,0; F) + N(r,0; G) + Niy2(r,0; f"P(f))
+ 2N (r,00; F) + N(r, 00; G)

+ O{logr} + S(r, f) + S(r, 9)

Ni2(r, 0; f*P(f)) + Ni42(r, 05 9" P(g))

+ 2Npy2(r, 0; [ P(f)) + Ni41(r, 09" P(g))

+ (2k +4)N(r,00; f) + (2k + 3)N(r, 00; g)

+ O{log r} + S(r, f) + S(r,9)

[(5k 4+ 3m + 8) — (2k + 4)O(o0; f) — €]T(r, f)
+ [(4k + 2m + 6) — (2k + 3)O(o0; 9) — €/T(r, g9)
+ O{log r} + S(r, f) + S(r,9)

+ [(9k + 5m + 14) — (2k + 3)[O(o0; f)

+ 0(00,9)] — min{O(s0, [)O(o059)}

+ 2€]T(r) + S(r).

IN

IA

Similarly

(26) (n+m)T(r,9) < [(9k + 5m + 14) — (2k + 3)[O(o0; f) + O(00, g)]
—min{6(cc, £)6(0c;9)} + 2€JT(r) + S(r).

From (25) and (26) we get

[n— 9k — 4m — 14] + (2k + 3)(O(o0, f) + O(0; 9))
+ min{©(o0; f)O(00; 9)} — 2¢]T'(r) < S(r),

contradicts with the facts that n > 9%k + 4m + 14.
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Case 3. Let H = 0. Then the Theorem follows from Lemma 9. |
Proof of Theorem 2. Noting that N(r,00; f) =0, N(r,00;g) = 0 and

proceeding in the like manner as the proof of Theorem 1 we obtain the result
of the Theorem 2. [ |

Proof of Theorem 3. Let F = % and G = % Then F, G

share (1,1), except the zeros and poles of a(z). Clearly

F = [fnJrl{n—i-m—i—l {:zﬁ'rri fm ! +...+ n+1 ]
a
and " s .
n m—1 m—
G _ [ {n+m+1g + n+mg +ot n+1 ]
a bl
where a a
w™ m—1  m—1 0
Piw) = {n+m+1 Jrn—l—mw +m+n+1}'

Case 1. Let H # 0. Now following the same procedure as adopted in
the proof of Case 1 of Theorem 1 we can easily deduce a contradiction.

Case 2. Let H = 0. Since n > k1 and n > m + 5 the theorem follows
from Lemma 10 and 11. |

Proof of Theorem 4. Noting that N(r,00; f) =0, N(r,00;g) = 0 and
proceeding in the like manner as the proof of Theorem 3 we obtain the result
of the Theorem 4. [ ]
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