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ABSTRACT. In this paper, we derive general integral identity by es-
tablishing new Hermite-Hadamard type inequalities for functions
whose absolute values of derivatives are convex and concave. Cor-
responding error estimates for midpoint formula are also included.
Moreover, some applications to special means of real numbers are
also provided.
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1. Introduction

Let f: 1 =[a,b] C R — R be a convex function defined on the interval I
of real numbers and a,b € I with a < b, then

(5 < 5 [ o 20

The above inequality is known as Hermite-Hadamard’s inequality. Many
inequalities have been established for convex functions out of which above
inequality is most popular due to its rich geometrical significance and ap-
plications. Both inequalities hold in the reversed direction for the function
f to be concave.

Recently, Kirmaci [5] obtained the following Hermite-Hadamard’s type
integral inequality.
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Theorem 1. Let f: I C R — R be a differentiable function on I°(the
interior of I) such that a,b € I° with a < b. If |f’| is convex on [a,b], then
the following inequality holds:

W |t [ r@a-r (450)| <550 4@l + o).

In [3] S. Hussain et. al proved a variant of Hermite-Hadamard inequality
as:

Theorem 2. Let f : I C R — R be a differentiable function on I°.
Assume that ¢ > 1 such that |f'|? is concave function on I. Suppose that
a,b € I° with a < b and f' € L[a,b], then the following inequality holds:

) ‘b_lafabf<u>du—f<“;b)‘

<[] () ) (52

In [9] C.E.M. Pearce and J.E. Pecaric proved the following result:

Theorem 3. Let f : I C R — R be a differentiable function on I°.
Assume that ¢ > 1 such that |f'|? is concave function on I. Suppose that
a,b € I° with a < b and f' € Lla,b], then the following inequality holds:

a+b

3) b_la/abf(u)du—f<a;b)‘§b;a ! >1.

For recent results, generalizations and numerous applications concern-
ing Hermite-Hadamard’s inequality see ([1], [2], [3], [4], [7], [8]) and the
references given therein. In [5], authors provided the right estimations of
Hermite-Hadamard inequality for convex functions. In this paper, the left
estimations of the Hermite-Hadamard inequality with applications will be
investigated.

F(

2. Results and discussions

In order to proceed towards our main results, we prove the following
lemma:

Lemma 1. Let f : I C R — R be a differentiable function on I° (the
interior of I) such that a,b € I° with a < b and f’ € L[a,b], then for each
x € [a,b], we have:
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b
b—la/ fuw)ydu—f(a+b—2x)
(z -

CL2 1
_ (b_a>) /0(1—t)f’(tb+(1—t)(a+b—x))dt
2
+((bb_a)) /0 (t=1)f (ta+ (1 1) (a+b—2))dt.

Proof. Integrating by parts, we can state

I = (é__i); /01(1—t)f’(tb+(1—t) (a+b—z))dt
- _”Z:Zf(a—i—b—x)—i—bia/:rbxf(u)du,
and
I = ((bb__fl); /Ol(t— D) (ta+ (1 — 1) (a+b—))dt
:—Z:Zf(ﬁb—ﬁ”Hbia/:%_xf(“)d“'

Using the fact; if a <z < bthena <a+b—x <b, we have

1
b—a

b
/ fwdu—fa+b+z)=1 +I.

We obtain the desired result. |
Now we prove the following result by using above Lemma 1.

Theorem 4. Let f : I C R — R be differentiable function on I°. Assume

that p € R, p > 1 such that ‘f”p% s convex function on I. Suppose that
a,b € I° with a < b and f' € L[a,b], then we have:

(4) ‘bia/abf(u)du—f(a—i—b—x)

) O

Q|-
Q=

o O +2]f (a+b—2)[]

(b—x)*
b—a

Qe

£ @] +2[f (a+b—2)|"] ],

for each x € [a,b] and q = ;5.
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Proof. Using Lemma 1, convexity of |f’|? and the Holder’s inequality,
we get

b
7 [ fwdi-farb-o)

z—a)? [
= ((b_a)) /O (L—t)f'(tb+ (1 —t) (a+b—x))dt
((bb__g;)) /0 Q=t)f(ta+ (1 —1t)(a+b—2z))dt,

< (Z)__Z); (/01(1 - t)pdt>1/p (/01 If/(tb+(1—1t)(a+b— :c))rldt)é

N ((bb‘_f”a); (/01(1 - t)pdt)l/p (/01 ' (ta+ (1 — 1) (a+b—2))* dt)é .

Since |f’ |P%1 is convex, then Hermite-Hadamards inequality follows that
"B +2|f (a+b—a)f

2 )
[f'(@)" +2|f'(a+b—ax)

5 .

/1}f’(tb+(1_t)(a+b—m))ythg
0

/1 |f'(ta+ (1 —1t)(a+b—=))|"dt <
0

Hence

b
o [ T@du fatb-a)

< (pil) (;) [“;_‘22 1O + 217 (a+b— )]
(

b_x)z l q ! q
+ﬁ[|f (@) +2|f"(a+b—x)|"]

The proof is completed. |

Q=

Corollary 1. In Theorem 4, put x = %rb, we get

bf@[f(u)duf(a;b)
<boe (pil) (;) >< [(If’(a)lq+

v (1ror

<t (pil) (;) (15 + 1 0.

N
()

Q
1
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Theorem 5. Let f : I C R — R be a differentiable function on I°.

Assume that |f'|7 is convex function on I, for some ¢ > 1. Suppose that
a,b € I° with a < b and f' € L[a,b], then for each x € |a,b], we have

b
(5) bia/fﬂwdu—fm+b—@

Q=

¢ x—a)?
<1 @ x [(b_a> [1F®) + 2| (a+b—)|7]
L -2

b— [/ (@)|" +2 ‘f’(a—l—b—x)‘q]q} _

Proof. The Lemma 1 and well known power mean inequality follows
that

b
7 [ fwd- fasb-o)

z—a)? (1
§(<b_a)) /0(1*t)|f/(tb+(1—t)(a+bfx))|dt
+((bb__a;)) /0 (1—t)|f'(ta+ (1 —1t)(a+b—2))dt,

= (Evb__z))? (/01(1 —t)dt)(%l(/olu —t)|f'(th+ (1 —t) (a+b—$))|th);

O () q‘?l(/ola ~ 01+ (-0 o+ b— )t

|f/]? is convex function implies that

Q=

/01(1—t)}f’(tb+(1—t) (a+b—z))|"dt

g/ A=t [t|F O +Q=t)|f (a+b—=)|"] at
0

O+ 2]f (@t b—a)|f
i |

Similarly,

/1(1—t) |f(ta+(1—1t)(a+b—x))|"dt
0
< (a)|q+2J;/(a+b—$)q

If we combine above inequalities, we get the required result. The proof
is completed. |
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Corollary 2. Take x = GTH’ in the above Theorem 5, we get

[ (45)
sb;“(é)‘l’[(|f'<a>|‘w2

< (3 8) (b= o) (7' (@] + 17 ®)).

a+b

) ,,a+0b
2

F(22)

f(

) +(iror+2

q);]

Theorem 6. Let f be defined as in Lemma 1 such that |f'] is a convex
function on I. Then we have the following inequality:

b
(6) ’bla/ fwdu—f(a+b—x)
(z— ) [If' )] +21f'(a+b— )
= -0 [ 6 ]
(b— )2 [|f(a) +2|f'(a+b— )|
T [ 6 }

for each z € |a,b].

Proof. Using Lemma 1, the convexity of |f/| with properties of modulus,
we have

b
ﬁ/ fu)du— f(a+b—x)

—a 2 1
< ((l;)—a)) /0 (L= 6)f/(tb+ (1= 1) (a+b—a))dt
+ ((bb_% / (t=1)f (ta+ (1= 1) (a+b—w))d.

Since | f’] is convex, then we obtain

b
7 [ fwdi-fasb-)

(z —a)?

<

2 [0 r o)+ a- 01— o a
(b*ﬂf)2 1 - ” ) » B
G [ vir@i+ =017 @+ o= ol
_(@—a) [|f’(b)|—|—2|f’(a+b—x)|} N (b— )2 {|f’(a)|+2|f’(a+b—x)|
(b—a) 6 (b—a) 6 :

Which completes the proof. |
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Corollary 3. In Theorem 6, put © = %2 we get

2
(5] o).

b a —a
el A ;”)|sb24 (1r@i+4

Remark 1. Using the convexity of |f’| in Corollary 3, we get the in-
equality (1).

Theorem 7. Let f : I C R — R be a differentiable function on I°.
Assume that ¢ > 1 such that |f'|? is concave function on I. Suppose that
a,b € I° with a < b and f' € L[a,b], then we have:

b
(7) ‘bia/ f(u)du— f(a+b—zx)
<[L2h] " [t b e

2q—1 b—a ’

for each x € [a,b] and p = qiil.

Proof. Using Lemma 1 and the Holder’s integral inequality, we get

b
7 [ fwd- farb-o)

z—a)? [!
S((b_a)) /0(1*t)|f/(tb+(1—t)(a+b79:))|dt
+((bb__a;)) /0 (1—=t)|f'(ta+ (1 —1t)(a+b—x))|dt,

< (fb_‘;); </01(1 t)qqldt)qzlgol I (tb+ (1 — 1) (a+bx))th>é

+ <(bb__“2; (/01(1 —t)qqldt> ;11(/01 (b + (1 — 1) (a+b—x))|th); .

Since | f’|? is concave on [a, b], then Jensen’s integral follows that

/01|f’(tb—|—(1—t)(a+b—x))|th

:/1t0|f’(ta+(1—t)(a+b—x))|th
0

S(/Oltodt) f/<f110dt/01(tb+(1t)(a+bx))dt>
0
B f,<a—|—22b—x>

q




162 SHAHID QAISAR AND SABIR HUSSAIN

,(2a+b—2x
()

Similarly

/1\f’(ta+(1—t)(a+b—x))\th§ '
0

From the above inequalities, we get

b
ia/ fwdu—f(a+b—2)

< [4t] [ e el )
T 2¢—-1 b—a :

The proof is completed. n

Remark 2. Take x = “TH’ in Theorem 7, we get the inequality (2).

Theorem 8. Let f : I C R — R be differentiable function on I°. Assume

that ¢ > 1 with q = L such that |f'|? is concave function on I. Suppose

that a,b € I° with a < b and f' € L[a,b], then for each x € [a,b] we have

/f Ydu— f(a+b—x)

<[$_a) <2a+36—2x>‘+(b_x)2

2 b—a 3 b—a

()

Proof. Using the concavity of |f/|? and the power-mean inequality, we
obtain

‘f’(tb—l—(l—t)(a%—b—x))‘qZt‘f'(b)‘q—l—(l—t)]f’(a+b—:v)‘q.
Thus
F(ta+ (1=t (a+b—2)|" > t|f @7+ (1=t |f (@+b—)|".
As | f'|7 is concave, Jensen’s integral inequality follows that
1 b
m/ fwdu—f(a+b—x)
—a)?

a)/o (L= t)|f/(tb+ (1 — 1) (a+b— )| dt

2
(<b ))/0<1—t)|f(ta+(1—t)(a+b—w))ldt

+
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< ((xb__?; (/Ol(l—t)dt) (fo b+ 1 -1) (a+b—x)dt>‘

fo (1-t)d
(b—x)? o fo ta+ (1—t)(a+b—az)dt
PO (a5 ( )
B 1 [(m_a)Q ‘f/<2a+33b—2z

Jy@ —tydt
_ + (b _ .%‘)2 |f/(3a+22b—2m)|
2 b—a

The proof is completed. |

CLTH’ in Theorem 8, we get

P [rmass (550|552 [ (5] | (5]

Remark 3. Using the convexity of |f’| in Corollary 4, we get inequal-
ity (3).

Corollary 4. Take x =

3. The midpoint formula

Let d be such that a = z¢g < 21 < z3 < ... < x, = b is the division of
the interval [a, b] and consider the quadrature formula

(9) /f T(f.d)+ E(f,d),

where
n—1
Ti+ T4
= Zf <12l+1> (Tig1 — @)
i=0

is the midpoint version and E (f,d) denotes the error term. Here we derive
some error estimates for midpoint formula.

Proposition 1. Let f : I C R — R be differentiable function on I°.

Assume that p € R, p > 1 such that \f’lppj s convex function on I. Suppose
that a,b € I° with a < b and f' € Lla,b], then for every division d of [a,b],
we have

E(f,d) < (pil)

n—1

(3) Tl el + )

3=
Q=
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Proof. Using Corollary 1 on the subinterval [z;,z;+1] (i = 0,1,2,3,
.,n — 1) of the division, we have

1 it Ti + Ti1
- de — £ 22ttt
[ e f< . )

< bt (L (3)' Qrteal o)

2 p+1

Summing over ¢ from 0 to n — 1 and taking into account that |f’ |P%1 is
convex function, we obtain, by triangle inequality, that

B (2572
e S

(pil)()Z Ptz () 4 1 )

T(f,d)

=0

iMLg

IN

The proof of the following proposition is similar to that of Proposition 1
and using Remark 3.

Proposition 2. Let f : 1 C R — R be differentiable function on I°.
Assume that ¢ > 1 with ¢ = -5, such that |f'|? is concave function on I.
Suppose that a,b € I° with a < b and ' € Lla,b], then by (9), for every
division d of |[a,b], we have:

—x; +1 2 T+ Tit1
< 7 7 7
E%f >

f( )| -

4. Applications to some special means

Consider the following special means. The arithmetic mean

(10) A(a,b):a;b, a,bcR.
The harmonic mean

2ab
(11) H(a,b) = — a,be R\{0}.

a+b’
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The logarithmic mean

(12 ted={ 5% i a7y avso
The generalized logarithmic mean
a 1 if a=0b,
(1) Ln(a,b) = [?RL)‘(J)} if a#b, neZ\{-1,0}, a,b>0.

Some new inequalities are derived for the above means by using the results
of Section 2.

Proposition 3. Let a,b € R,a < b,0 ¢ [a,b]. Then for ¢ > 1

I (a,) — G(a,b)| < (b—a)< ! >’1’ <1>;A(a,b).

p+1 2
Proof. This follows by Corollary 1, taking f(x) = e*. |

Proposition 4. Let a,b € R, a < b, 0 ¢ [a,b]. Then forq>1

1 1
A(a,b) 1 \» [(1\e 4
< b— — - | H b)|.
Tap| =00 () () e
Proof. This follows by Corollary 1, taking f(x) = —Inz. |

Proposition 5. Let a,b € R, a < b, 0 ¢ [a,b]. Then forq>1
34
’L_l (aab) - A_l(a> b)l < (b - CL) <4> H_l (|a’2 ’ |b|2> .

Proof. This follows by Corollary 2, taking f(x) = % [ |

Proposition 6. Let a,b € R, a <b, 0 ¢ [a,b]. Then for g >1

1

3179

L3 (a,b) = A™(a,b)] < Inf (b= @) “——A (jal" ", ") .

Proof. This follows by Corollary 2, taking f(x) = e*. |

Conclusion. We derived general integral identity by establishing new
Hermite-Hadamard type inequalities for functions whose absolute values
of derivatives are convex and concave. Corresponding error estimates for
midpoint formula are also included. Moreover, some applications to special
means of real numbers are also provided. These results give better estimates
as presented earlier in the literature.
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