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Abstract. The purpose of this study is to introduce a Jungck-
Kirk-Noor type random iterative scheme and prove stability and
strong convergence of this to establish a general theorem to ap-
proximate the unique common random coincidence point for two
or more nonself random commuting mappings under general con-
tractive condition in various spaces. Also we give the stability
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paper improve the corresponding results announced recently.
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1. Introduction

Let (X, d) be a complete metric space, T : X → X be a self mapping of
X. Suppose that FT = {x ∈ X : T (x) = x} is the set of fixed points of T.
Also the set of all coincidence point of T, S : Y → X denoted by C(S, T )
such that C(S, T ) = {z ∈ Y : Sz = Tz = p} for an arbitrary set Y.

In 2009, Oltainwo [21] introduced the following iterative schemes:
(i) The sequence {xn} defined iteratively by

(1)


xn+1 = αn,0xn +

k∑
i=1

αn,iT
iyn,

k∑
i=0

αn,i = 1,

yn = αn,0xn +
s∑

j=1
βn,jT

jxn,
k∑

j=0
βn,j = 1, n = 0, 1, . . . .

where k and s are fixed integers with k ≥ s, αn,i ≥ 0, αn,0 6= 0, βn,j ≥ 0,
βn,0 6= 0 and αn,i, βn,j are sequences in [0, 1], is called as Kirk-Ishikawa
iterative scheme.
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(ii) The sequence {xn} defined iteratively by

(2) xn+1 = αn,0xn +
k∑

i=1

αn,iT
ixn,

k∑
i=0

αn,i = 1,

where k is a fixed integer with αn,i ≥ 0, αn,0 6= 0 and αn,i,∈ [0, 1], is called
as Kirk-Mann iterative scheme.

In 2012, Kumar and Chugh [17] studied the convergence of Kirk-Noor
iterative scheme with errors as follows: Let X be a Banach space, K be a
nonempty closed, convex subset of X and Ti : K → K, i = 1, 2, 3 are self
mappings of K. Then, the sequence {xn}∞n=0 iteratively by

(3)



xn+1 = αn,0xn +
k∑

i=1
αn,iT

i
1yn + anun,

k∑
i=0

αn,i + an = 1,

yn = βn,0xn +
s∑

j=1
βn,jT

j
2 zn + bnvn,

s∑
j=0

βn,j + bn = 1,

zn =
t∑

l=0

γn,lT
l
3xn + cnwn,

t∑
l=0

γn,l + cn = 1, n = 0, 1, 2, . . . ,

where k, t and s are fixed integers with k ≥ s ≥ t, αn,i ≥ 0, αn,0 6= 0,
βn,j ≥ 0, βn,0 6= 0, γn,l ≥ 0, γn,0 6= 0, αn,i, βn,j , γn,l, an, bn, cn ∈ [0, 1] and
un, vn, wn are bounded sequences in K.
Many iterative schemes can be obtained from (3) as:

(1) Putting k = s = t = 1 in (3) we obtain the iterative scheme with
errors used by Rashwan et al. [27].

(2) If t = 0 then Kirk-Noor iteration (3) reduces to Kirk-Ishikawa itera-
tion (2) and taking t = s = 0 in (3), we have Kirk-Mann iteration (1). For
more details see [17].

In 1976, Jungck [14] introduced the following iterative scheme: LetX be a
Banach space, Y an arbitrary set and S, T : Y → X such that T (Y ) ⊆ S(Y ),
for every x◦ ∈ Y , the sequence {Sxn}∞n=0 defined by

(4) Sxn+1 = Txn, n = 0, 1, . . . .

This scheme is called Jungck iterative scheme. A lot of authors generalized
this scheme to Jungck-Mann, Jungck-Ishikawa, Jungck-Noor and Jungck-SP,
these iterations used to approximate the common fixed point for mappings
under suitable contractive condition see [1, 4, 10, 11, 12, 15, 19, 20, 22, 24].

The first stability result on T -stable mappings was given by Ostrowaski
[26] where he proved the stability of the Picard iteration under Banach
contraction condition while Osilike et al. [25] improved this result on (S, T )-
stable as follows:
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Definition 1 ([25]). Let S, T : Y → X such that T (Y ) ⊆ S(Y ), and z a
coincidence point of S and T, for every x◦ ∈ Y , let the sequence {Sxn}∞n=0

generated by the iteration scheme

(5) Sxn+1 = f(T, xn), n ≥ 0,

converge to p. Suppose that {Syn}∞n=0 ⊂ X be an arbitrary sequence and put
εn = d(Syn, f(T, xn)), n = 0, 1, . . . . Then the iteration scheme (5) will be
called (S, T )−stable iff limn→∞ εn = 0 implies that limn→∞ Syn = p.

Random fixed point theorems are stochastic generalizations of classical
or deterministic fixed point theorems. The theory of random fixed point
theorems was initiated in 1950 by Prague school of probabilistic. After
the classical results of Bharucha-Reid [3] in 1976, where he gave sufficient
conditions for a stochastic analogue of Schouder’s fixed point theorem for
random operators, the theory of random fixed points received unprecedented
attention by several researchers and many interesting results have appeared
in the literature see [7, 16, 18, 28]. Špaček [29] and Hanš [8] established
stochastic analogue of the Banach fixed point theorem in a separable met-
ric space. Itoh [13] in 1979, generalized and extended Špaček and Hanš’s
theorem to a multivalued contraction random operators. The development
of random fixed point iterations was initiated by Choudhury [5, 6], where
random Ishikawa iteration scheme was defined and its strong convergence to
a random fixed point in Hilbert spaces was discussed.

2. Preliminaries

In this paper, we assume that (Ω,Σ) is measurable space consisting of a
set Ω and sigma algebra Σ of subset of Ω, X stands for a separable Banach
space or normed space, C is a nonempty closed convex subset of X.

A function T : Ω −→ C is said to be measurable if T−1(B ∩ C) ∈ Σ
for each Borel subset B of X. A function T : Ω × C −→ C is called a
random operator, if T (., x) : Ω −→ C is measurable for every x ∈ C. A
measurable function f : Ω −→ C is called a random fixed point for the
operator T : Ω × C −→ C if T (ω, f(ω)) = f(ω) and it’s called random
coincidence for two random mappings S, T : Ω × C −→ C if T (ω, f(ω)) =
S(ω, f(ω)) for all ω ∈ Ω. A random operator T : Ω × C −→ C is said
to be continuous for any given ω ∈ Ω, T (ω, .) : Ω −→ C is continuous.
The random operators T, S : Ω× C −→ C are called random commuting if
T (ω, S(ω, x)) = S(ω, T (ω, x)) for any given ω ∈ Ω and x ∈ C.

The main aim of this paper, is to introduce a new random version of
Jungck-Kirk-Noor iterative scheme (3) and study stability and convergence
of this to establish a strong convergence to a random coincidence fixed point
using general contractive condition for nonself random mappings.
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Now, we introduce random version of iteration schemes as follows:
Let S, T : Ω × Y → X be two random mappings defined on a nonempty
closed convex subset C of a separable Banach space X. Let x◦ : Ω → C be
an arbitrary measurable mapping for ω ∈ Ω, n = 0, 1, . . ., with T (ω, Y ) ⊆
S(ω, Y ), then

(i) the sequence {S(ω, xn(ω))}∞n=0 defined iteratively by:

(6)



S(ω, xn+1(ω)) = αn,0S(ω, xn(ω))

+
k∑

i=1
αn,iT

i(ω, yn(ω)),
k∑

i=0
αn,i = 1,

S(ω, yn(ω)) = βn,0S(ω, xn(ω))

+
s∑

j=1
βn,jT

j(ω, zn(ω)),
s∑

j=0
βn,j = 1,

S(ω, zn(ω)) =
t∑

l=0

γn,lT
l(ω, xn(ω)),

t∑
l=0

γn,l = 1, n = 0, 1, 2, . . . ,

where k, t and s are fixed integers with k ≥ s ≥ t, αn,i ≥ 0, αn,0 6= 0,
βn,j ≥ 0, βn,0 6= 0, γn,l ≥ 0, γn,0 6= 0 and αn,i, βn,j , γn,l are measurable
sequences in [0, 1], which is called as Jungck-Kirk-Noor iterative scheme.

(ii) the sequence {S(ω, xn(ω))}∞n=0 defined iteratively by:

(7)



S(ω, xn+1(ω)) = αn,0S(ω, xn(ω))

+
k∑

i=1
αn,iT

i(ω, yn(ω)),
k∑

i=0
αn,i = 1,

S(ω, yn(ω)) = βn,0S(ω, xn(ω))

+
s∑

j=1
βn,jT

j(ω, xn(ω)),
s∑

j=0
βn,j = 1,

where k and s are fixed integers with k ≥ s, αn,i ≥ 0, αn,0 6= 0, βn,j ≥ 0,
βn,0 6= 0 and αn,i, βn,j are measurable sequences in [0, 1], which is called as
Jungck-Kirk-Ishikawa iterative scheme.

(iii) the sequence {S(ω, xn(ω))}∞n=0 defined iteratively by:

(8) S(ω, xn+1(ω)) = αn,0S(ω, xn(ω))+

k∑
i=1

αn,iT
i(ω, xn(ω)),

k∑
i=0

αn,i = 1.

where k is fixed integers, αn,i ≥ 0, αn,0 6= 0 and αn,i is measurable sequences
in [0, 1], which is called as Jungck-Kirk-Mann iterative scheme.
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Remark 1. 1. Putting t = 0 in (6), we have (7) and taking t = s = 0 in
(6) we get (8).

2. If we take Ω is a singleton in (6), (7) and (8), we get the nonrandom
cases defined in (3), (1) and (2) respectively with an = bn = cn = 0 in (3).

The following contractive condition is a stochastic form of (Definition 1,
[19]).

Definition 2. For two random mappings S, T : Ω × Y → X with
T (ω, Y ) ⊆ S(ω, Y ) and C is a nonempty closed convex subset of a sepa-
rable Banach space X, there exists real numbers M ∈ [0, 1], a ∈ [0, 1) and
a monotone increasing function ϕ : R+ → R+ with ϕ(0) = 0 and for all
x, y ∈ C, we have

‖T (ω, x)− T (ω, y)‖(9)

≤ ϕ(‖S(ω, x)− T (ω, x)‖) + a ‖S(ω, x)− S(ω, y)‖
1 +M ‖S(ω, x)− T (ω, x)‖

.

The following lemmas are useful in the sequel.

Lemma 1 ([2]). If δ be a real number such that 0 ≤ δ < 1 and {εn}∞n=0

is a sequence of positive numbers such that limn→∞ εn = 0, then for any
sequence of positive numbers {ρn}∞n=0 satisfying

ρn+1 ≤ δρn + εn, n = 0, 1, 2, . . .

we have limn→∞ ρn = 0

Lemma 2. Let (X, ‖·‖) be a normed linear space and S, T be random
commuting operators on an arbitrary Y with values in X satisfying (9) such
that for all x, y ∈ Y , ω ∈ Ω

(10)


T (ω, Y ) ⊆ S(ω, Y ),
‖S(ω, S(ω, x))− T (ω, S(ω, x))‖ ≤ ‖S(ω, x)− T (ω, x)‖ ,
‖S(ω, S(ω, x))− S(ω, S(ω, y))‖ ≤ ‖S(ω, x)− S(ω, y)‖ .

Consider ϕ : R+ → R+ be a sublinear, monotone increasing function such
that ϕ(0) = 0 and ϕ(u) = (1− a)u for all a ∈ [0, 1), u ∈ R+. Then ∀k ∈ N
and x, y ∈ Y , we have

(11)
∥∥∥T k(ω, x)− T k(ω, y)

∥∥∥ ≤
k∑

j=1

(
k
j

)
ak−jϕj(‖S(ω, x)− T (ω, x)‖)

+ ak ‖S(ω, x)− S(ω, y)‖
1 +Mk ‖S(ω, x)− T (ω, x)‖

.
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Proof. In order to prove that ϕ is sublinear see Olatinwo [23, p.15]. The
second part of the proof is by mathematical induction (i.e., induction on k).
If k = 1, then (11) becomes

‖T (ω, x)− T (ω, y)‖ ≤

1∑
j=1

(
1
j

)
a1−jϕj(‖S(ω, x)− T (ω, x)‖)

+ a ‖S(ω, x)− S(ω, y)‖
1 +M ‖S(ω, x)− T (ω, x)‖

=
ϕ(‖S(ω, x)− T (ω, x)‖) + a ‖S(ω, x)− S(ω, y)‖

1 +M ‖S(ω, x)− T (ω, x)‖
,

i.e., (11) reduces to (9) when k = 1 and hence the result holds.
Assume as an inductive hypothesis that (11) holds for k = m, m ∈ N ,

i.e.,

‖Tm(ω, x)− Tm(ω, y)‖ ≤

m∑
j=1

(
m
j

)
am−jϕj(‖S(ω, x)− T (ω, x)‖)

+ am ‖S(ω, x)− S(ω, y)‖
1 +Mm ‖S(ω, x)− T (ω, x)‖

.

We then show that the statement is true for k = m+ 1,

∥∥Tm+1(ω, x)− Tm+1(ω, y)
∥∥ = ‖Tm(ω, T (ω, x))− Tm(ω, T (ω, y))‖

≤

m∑
j=1

(
m
j

)
am−jϕj(‖S(ω, T (ω, x))− T (ω, T (ω, x))‖)

+ am ‖S(ω, T (ω, x))− S(ω, T (ω, y))‖
1 +Mm ‖S(ω, T (ω, x))− T (ω, T (ω, x))‖

≤

m∑
j=1

(
m
j

)
am−jϕj(‖T (ω, S(ω, x))− T (ω, T (ω, x))‖)

+am ‖T (ω, S(ω, x))− T (ω, S(ω, y))‖
1 +Mm ‖T (ω, S(ω, x))− T (ω, T (ω, x))‖

≤

m∑
j=1

(
m
j

)
am−jϕj

{
ϕ(‖S(ω,S(ω,x))−T (ω,S(ω,x))‖)+a‖S(ω,S(ω,x))−S(ω,T (ω,x))‖

1+M‖S(ω,S(ω,x))−T (ω,S(ω,x))‖

}
1 +Mm

{
ϕ(‖S(ω,S(ω,x))−T (ω,S(ω,x))‖)+a‖S(ω,S(ω,x))−S(ω,T (ω,x))‖

1+M‖S(ω,S(ω,x))−T (ω,S(ω,x))‖

}
+

am
{

ϕ(‖S(ω,S(ω,x))−T (ω,S(ω,x))‖)+a‖S(ω,S(ω,x))−S(ω,S(ω,y))‖
1+M‖S(ω,S(ω,x))−T (ω,S(ω,x))‖

}
1 +Mm

{
ϕ(‖S(ω,S(ω,x))−T (ω,S(ω,x))‖)+a‖S(ω,S(ω,x))−S(ω,T (ω,x))‖

1+M‖S(ω,S(ω,x))−T (ω,S(ω,x))‖

}
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≤

m∑
j=1

(
m
j

)
am−jϕj+1 ‖S(ω, x)− T (ω, x)‖)

+
m∑
j=1

(
m
j

)
am−j+1ϕj ‖S(ω, x)− T (ω, x)‖

1 +M ‖S(ω, x)− T (ω, x)‖+Mm {ϕ(‖S(ω, x)− T (ω, x)‖)
+ a ‖S(ω, x)− T (ω, x)‖}

+
amϕ(‖S(ω, x)− T (ω, x)‖) + am+1 ‖S(ω, x)− S(ω, y)‖

1 +M ‖S(ω, x)− T (ω, x)‖+Mm {ϕ(‖S(ω, x)− T (ω, x)‖)
+ a ‖S(ω, x)− T (ω, x)‖}

=

m∑
j=1

(
m
j

)
am−jϕj+1 ‖S(ω, x)− T (ω, x)‖)

+
m∑
j=1

(
m
j

)
am−j+1ϕj ‖S(ω, x)− T (ω, x)‖

1 +M ‖S(ω, x)− T (ω, x)‖+Mm ‖S(ω, x)− T (ω, x)‖

+
amϕ(‖S(ω, x)− T (ω, x)‖) + am+1 ‖S(ω, x)− S(ω, y)‖
1 +M ‖S(ω, x)− T (ω, x)‖+Mm ‖S(ω, x)− T (ω, x)‖

≤

m∑
j=1

(
m
j

)
am−jϕj+1 ‖S(ω, x)− T (ω, x)‖)

+
m∑
j=1

(
m
j

)
am−j+1ϕj ‖S(ω, x)− T (ω, x)‖

1 +Mm+1 ‖S(ω, x)− T (ω, x)‖

+
amϕ(‖S(ω, x)− T (ω, x)‖) + am+1 ‖S(ω, x)− S(ω, y)‖

1 +Mm+1 ‖S(ω, x)− T (ω, x)‖

=

(
m
m

)
ϕm+1 ‖S(ω, x)− T (ω, x)‖) +

[(
m

m−1
)

+
(
m
m

)]
× aϕm ‖S(ω, x)− T (ω, x)‖

1 +Mm+1 ‖S(ω, x)− T (ω, x)‖

+

[(
m

m−2
)

+
(

m
m−1

)]
a2ϕm−1 ‖S(ω, x)− T (ω, x)‖+ . . .

1 +Mm+1 ‖S(ω, x)− T (ω, x)‖

+

[(
m
2

)
+
(
m
3

)]
am−2ϕ3 ‖S(ω, x)− T (ω, x)‖

+
[(

m
1

)
+
(
m
2

)]
am−1ϕ2 ‖S(ω, x)− T (ω, x)‖

1 +Mm+1 ‖S(ω, x)− T (ω, x)‖

+

[(
m
1

)
+
(
m
0

)]
amϕ ‖S(ω, x)− T (ω, x)‖+ am+1 ‖S(ω, x)− S(ω, y)‖

1 +Mm+1 ‖S(ω, x)− T (ω, x)‖

=

(
m+1
m+1

)
ϕm+1 ‖S(ω, x)− T (ω, x)‖+

(
m+1
m

)
aϕm ‖S(ω, x)− T (ω, x)‖

+
(
m+1
m−1

)
a2ϕm−1 ‖S(ω, x)− T (ω, x)‖+ . . .

1 +Mm+1 ‖S(ω, x)− T (ω, x)‖
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+

(
m+1
2

)
am−1ϕ2 ‖S(ω, x)− T (ω, x)‖+

(
m+1
1

)
amϕ ‖S(ω, x)− T (ω, x)‖

+ am+1 ‖S(ω, x)− S(ω, y)‖
1 +Mm+1 ‖S(ω, x)− T (ω, x)‖

=

m+1∑
j=1

(
m+1
j

)
am+1−jϕj(‖S(ω, x)− T (ω, x)‖) + am+1 ‖S(ω, x)− S(ω, y)‖

1 +Mm+1 ‖S(ω, x)− T (ω, x)‖
Hence, the proof of Lemma 2 is complete. �

3. Stability results

Theorem 1. Let (X, ‖·‖) be a normed space and T, S : Ω × Y → X be
random commuting operators defined on Y with T (ω, Y ) ⊆ S(ω, Y ), S(ω, Y )
is complete subspace of X satisfying (11) where ϕ : R+ → R+ be a sublinear
monotone increasing function with ϕ(0) = 0 and αn,i, βn,j, γn,l ∈ [0, 1],

i, j, l = 0, 1, 2, ... . Also
k∑

i=0
αn,i =

s∑
j=0

βn,j =
t∑

l=0

γn,l = 1. Assume that

random operators S, T , Si and T i have a random coincidence point say
x(ω). If the sequence {S(ω, xn(ω))}∞n=0 defined by (6) converges to p(ω),
then the random Jungck-Kirk-Noor iterative scheme is (S, T )-stable.

Proof. Let p(ω) : Ω → C be a measurable mapping and x(ω) : Ω → C
is random coincidence point for S, T , Si and T i i.e.,

(12) S(ω, x(ω)) = T (ω, x(ω)) = Si(ω, x(ω)) = T i(ω, x(ω)) = p(ω).

Let {S(ω, zn(ω))}∞n=0 ⊂ X and

εn =

∥∥∥∥∥S(ω, zn+1(ω))− αn,0S(ω, zn(ω))−
k∑

i=1

αn,iT
i(ω, bn(ω))

∥∥∥∥∥ ,
where S(ω, bn(ω)) = βn,0S(ω, zn(ω))+

s∑
j=1

βn,jT
j(ω,mn(ω)) and S(ω,mn(ω)) =

t∑
l=0

γn,lT
l(ω, zn(ω)) for every ω ∈ Ω.

Let limn→∞ εn = 0, then by Lemma 2 as well as the triangle inequality
and (12), we can write

‖S(ω, zn+1(ω))− p(ω)‖

≤

∥∥∥∥∥S(ω, zn+1(ω))− αn,0S(ω, zn(ω))−
k∑

i=1

αn,iT
i(ω, bn(ω))

∥∥∥∥∥
+

∥∥∥∥∥αn,0S(ω, zn(ω)) +

k∑
i=1

αn,iT
i(ω, bn(ω))− p(ω)

∥∥∥∥∥
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= εn +

∥∥∥∥∥αn,0S(ω, zn(ω)) +

k∑
i=1

αn,iT
i(ω, bn(ω))−

k∑
i=0

αn,ip(ω)

∥∥∥∥∥
≤ αn,0 ‖S(ω, zn(ω))− p(ω)‖+

k∑
i=1

αn,i

∥∥T i(ω, bn(ω))− p(ω)
∥∥+ εn

= αn,0 ‖S(ω, zn(ω))− p(ω)‖+
k∑

i=1

αn,i

∥∥T i(ω, x(ω))− T i(ω, bn(ω))
∥∥+ εn

≤ αn,0 ‖S(ω, zn(ω))− p(ω)‖

+

k∑
i=1

αn,i



i∑
j=1

(
i
j

)
ai−jϕj(‖S(ω, x)− T (ω, x)‖)

+ ai ‖S(ω, x)− S(ω, bn(ω))‖
1 +M i ‖S(ω, x)− T (ω, x)‖


+ εn

= αn,0 ‖S(ω, zn(ω))− p(ω)‖

+
k∑

i=1

αn,i


i∑

j=1

(
i
j

)
ai−jϕj(0) + ai ‖p(ω)− S(ω, bn(ω))‖

1 +M i ‖0‖

+ εn,

where ϕj(0) = 0 hence,

‖S(ω, zn+1(ω))− p(ω)‖ ≤ αn,0 ‖S(ω, zn(ω))− p(ω)‖(13)

+ (
k∑

i=1

αn,ia
i) ‖S(ω, bn(ω))− p(ω)‖+ εn.

Now, we have the following estimates:

‖S(ω, bn(ω))− p(ω)‖

=

∥∥∥∥∥∥βn,0S(ω, zn(ω)) +

s∑
j=1

βn,jT
j(ω,mn(ω))−

s∑
j=0

βn,jp(ω)

∥∥∥∥∥∥
≤

∥∥∥∥∥∥βn,0(S(ω, zn(ω))− p(ω)) +
s∑

j=1

βn,j(T
j(ω,mn(ω))− p(ω))

∥∥∥∥∥∥
= βn,0 ‖S(ω, zn(ω))− p(ω)‖+

s∑
j=1

βn,j
∥∥T j(ω, x(ω))− T j(ω,mn(ω))

∥∥ .
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Applying (11) in above inequality, we have

‖S(ω, bn(ω))− p(ω)‖
≤ βn,0 ‖S(ω, zn(ω))− p(ω)‖

+
s∑

j=1

βn,j



j∑
c=1

(
j
c

)
aj−cϕc(‖S(ω, x)− T (ω, x)‖)

+aj ‖S(ω, x)− S(ω,mn(ω))‖
1 +M j ‖S(ω, x)− T (ω, x)‖


= βn,0 ‖S(ω, zn(ω))− p(ω)‖

+

s∑
j=1

βn,j


j∑

c=1

(
j
c

)
aj−cϕc(0) + aj ‖S(ω, x)− S(ω,mn(ω))‖

1 +M j ‖(0)‖

 ,

since ϕc(0) = 0, we get

‖S(ω, bn(ω))− p(ω)‖(14)

≤ βn,0 ‖S(ω, zn(ω))− p(ω)‖+
s∑

j=1

βn,ja
j ‖p(ω)− S(ω,mn(ω))‖ .

Applying (14) in (13), we have

‖S(ω, zn+1(ω))− p(ω)‖(15)

≤


(αn,0 + βn,0

k∑
i=1

αn,ia
i) ‖S(ω, zn(ω))− p(ω)‖

+(
k∑

i=1
αn,ia

i)(
s∑

j=1
βn,ja

j)] ‖S(ω,mn(ω))− p(ω)‖+ εn

 .

For estimate ‖S(ω,mn(ω))− p(ω)‖, then from (6) and (11), we have

‖S(ω,mn(ω))− p(ω)‖ =

∥∥∥∥∥
t∑

l=0

γn,lT
l(ω, zn(ω))− p(ω)

∥∥∥∥∥(16)

=

∥∥∥∥∥
t∑

l=0

γn,lT
l(ω, zn(ω))−

t∑
l=0

γn,lp(ω)

∥∥∥∥∥
=

t∑
l=0

γn,l

∥∥∥T l(ω, zn(ω))− p(ω)
∥∥∥
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=
t∑

l=0

γn,l

∥∥∥T l(ω, x(ω)− T l(ω, zn(ω))
∥∥∥

≤
t∑

l=0

γn,la
l ‖S(ω, zn(ω))− p(ω)‖ ,

Using (16) in (15), we get

‖S(ω, zn+1(ω))− p(ω)‖(17)

≤


αn,0 + βn,0

k∑
i=1

αn,ia
i

+ (
k∑

i=1
αn,ia

i)(
s∑

j=1
βn,ja

j)(
t∑

l=0

γn,la
l)

 ‖S(ω, zn(ω))− p(ω)‖+ εn.

Since ai ∈ [0, 1), then

k∑
i=1

αn,ia
i ≤

k∑
i=1

αn,i < 1− αn,0,

s∑
j=1

βn,ja
j ≤

s∑
j=1

βn,j < 1− βn,0,(18)

t∑
l=0

γn,la
l ≤

t∑
l=0

γn,l = 1.

Hence, it follows that

αn,0 + βn,0(

k∑
i=1

αn,ia
i) + (

k∑
i=1

αn,ia
i)(

s∑
j=1

βn,ja
j)(

t∑
l=0

γn,la
l)(19)

< αn,0 + βn,0(1− αn,0) + (1− αn,0)(1− βn,0) = δ(say) < 1.

Applying (19) and Lemma 1 in (17), we obtain that limn→∞ ‖S(ω, zn(ω))− p(ω)‖ =
0, that is limn→∞ S(ω, zn(ω)) = p(ω).

Conversely. consider limn→∞ S(ω, zn(ω)) = p(ω), by using both Lemma 2,
the triangle inequality and (17), we have

εn ≤ ‖S(ω, zn+1(ω))− p(ω)‖+ αn,0 ‖S(ω, zn(ω))− p(ω)‖

+ (
k∑

i=1

αn,ia
i) ‖S(ω, bn(ω))− p(ω)‖

≤ ‖S(ω, zn+1(ω))− p(ω)‖+ [αn,0 + βn,0

k∑
i=1

αn,ia
i] ‖S(ω, zn(ω))− p(ω)‖

+ (
k∑

i=1

αn,ia
i)(

s∑
j=1

βn,ja
j) ‖S(ω,mn(ω))− p(ω)‖
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≤ ‖S(ω, zn+1(ω))− p(ω)‖

+


αn,0 + βn,0

k∑
i=1

αn,ia
i

+(
k∑

i=1
αn,ia

i)(
s∑

j=1
βn,ja

j)(
t∑

l=0

γn,la
l)

 ‖S(ω, zn(ω))− p(ω)‖ ,

the right hand side of the above inequality tends to 0 as n → ∞, so
limn→∞ εn = 0, the proof is complete. �

If we take t = 0 and s = t = 0, then from Theorem 1 we get the following
corollaries:

Corollary 1. Let (X, ‖·‖) be a normed space and T, S : Ω× Y → X be
random commuting operators defined on Y with T (ω, Y ) ⊆ S(ω, Y ), S(ω, Y )
is complete subspace of X satisfying (11) where ϕ : R+ → R+ be a sublinear
monotone increasing function with ϕ(0) = 0 and αn,i, βn,j ∈ [0, 1], i =

0, 1, 2, . . .. Also
k∑

i=0
αn,i =

s∑
j=0

βn,j = 1.

Assume that random operators S, T , Si and T i have a random coin-
cidence point say x(ω). If the sequence {S(ω, xn(ω))}∞n=0 defined by (7)
converges to p(ω), then the random Jungck-Kirk-Ishikawa iterative scheme
is (S, T )-stable.

Corollary 2. Let (X, ‖·‖) be a normed space and T, S : Ω× Y → X be
random commuting operators defined on Y with T (ω, Y ) ⊆ S(ω, Y ), S(ω, Y )
is complete subspace of X satisfying (11) where ϕ : R+ → R+ be a sublinear
monotone increasing function with ϕ(0) = 0 and αn,i ∈ [0, 1], i = 0, 1, 2, ....

Also
k∑

i=0
αn,i = 1.

Assume that random operators S, T, Si and T i have a random coin-
cidence point say x(ω). If the sequence {S(ω, xn(ω))}∞n=0 defined by (8)
converges to p(ω), then the random Jungck-Kirk-Mann iterative scheme is
(S, T )-stable.

4. Strong convergence results in separable Banach space

Theorem 2. Let X be a separable Banach space and T, S : Ω×Y → X be
random commuting operators defined on Y with T (ω, Y ) ⊆ S(ω, Y ), S(ω, Y )
is complete subspace of X and Si is injective satisfying (11) where ϕ : R+ →
R+ be a sublinear monotone increasing function with ϕ(0) = 0 and αn,i, βn,j ,

γn,l ∈ [0, 1], i, j, l = 0, 1, 2, . . .. Also
k∑

i=0
αn,i =

s∑
j=0

βn,j =
t∑

l=0

γn,l 1. Assume
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that random operators S, T , Si and T i have a unique random coincidence
point say x(ω). If the sequence {S(ω, xn(ω))}∞n=0 defined by (6) converges to
p(ω), then the random Jungck-Kirk-Noor iterative scheme converges strongly
to p(ω).

Proof. Suppose that the sequence {S(ω, xn(ω))}∞n=0 has a pointwise
limit, that is, limn→∞ S(ω, xn(ω)) = p(ω) for all ω ∈ Ω, since X be a sep-
arable Banach space, then the mappings p(ω) = S(ω, f(ω)) is measurable
mapping for any random operator S : Ω×C −→ C and any measurable map-
ping f : Ω −→ C [9]. Therefore the sequence {S(ω, xn(ω))}∞n=0 constructed
by the random Jungck-Ishikawa iteration (7) is a sequence of measurable
mappings. Since p(ω) is measurable and C is convex, then p : Ω→ C being
limit of measurable mapping sequence is also measurable.

To establish that Si, T i, S and T have a unique coincidence point x(ω),
let C(Si, T i, S, T ) be the set of all coincidence points of Si, T i, S and T,
suppose that there exists x1, x2 ∈ C(Si, T i, S, T ) such that Si(ω, x1) =
T i(ω, x1) = S(ω, x1) = T (ω, x1) = p1(ω) and Si(ω, x2) = T i(ω, x2) =
S(ω, x2) = T (ω, x2) = p2(ω).

If p1(ω) = p2(ω), therefore Si(ω, x1) = Si(ω, x2) and Si is injective, it
follows that x1 = x2.

If p1(ω) 6= p2(ω), then by using (11), we observe that for every ω ∈ Ω
and i = 1, 2, 3, . . .

‖p1(ω)− p2(ω)‖ =
∥∥T i(ω, x1)− T i(ω, x2)

∥∥

≤

i∑
j=1

(
i
j

)
ai−jϕj(‖S(ω, x1)− T (ω, x1)‖)

+ ai ‖S(ω, x1)− S(ω, x2)‖
1 +M i ‖S(ω, x1)− T (ω, x1)‖

= ai ‖S(ω, x1)− S(ω, x2)‖ = ai ‖p1(ω)− p2(ω)‖ ,

which leads to (1− ai) ‖p1(ω)− p2(ω)‖ ≤ 0, since a ∈ [0, 1), then ai ∈ [0, 1),
from which it follows that ‖p1(ω)− p2(ω)‖ ≤ 0 which is a contradiction
(the norm is nonnegative). So ‖p1(ω)− p2(ω)‖ = 0, implies that p1(ω) =
p2(ω) = p(ω), therefore

Si(ω, x1) = T i(ω, x1) = Si(ω, x2) = T i(ω, x2) = S(ω, x1)

= T (ω, x1) = S(ω, x2) = T (ω, x2) = p(ω),

it follows that, Si(ω, x1) = Si(ω, x2) and Si is injective leading to x1(ω) =
x2(ω) = x(ω), that is x(ω) is the unique coincidence point of Si ,T i, S and
T .

We now prove that {S(ω, xn(ω))}∞n=0 converges strongly to p(ω).
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It follow from (6), (7), (15) and (16) that for ω ∈ Ω,

‖S(ω, xn+1(ω))− p(ω)‖

≤ αn,0 ‖S(ω, xn(ω))− p(ω)‖+
k∑

i=1

αn,ia
i ‖S(ω, yn(ω))− p(ω)‖

≤ αn,0 ‖S(ω, xn(ω))− p(ω)‖

+ (
k∑

i=1

αn,ia
i)(

s∑
j=0

βn,ja
j) ‖p(ω)− S(ω, zn(ω))‖

≤


αn,0 + βn,0

k∑
i=1

αn,ia
i

+(
k∑

i=1
αn,ia

i)(
s∑

j=1
βn,ja

j)(
t∑

l=0

γn,la
l)

 ‖S(ω, xn(ω))− p(ω)‖

= δ ‖S(ω, xn(ω))− p(ω)‖
≤ δn ‖S(ω, x◦(ω))− p(ω)‖ → 0 as n→∞,

which mean that limn→∞ ‖S(ω, xn+1(ω))− p(ω)‖ = 0. Therefore random
Jungck-Kirk-Noor iteration {S(ω, xn(ω))}∞n=0 converges strongly to p(ω).
So, we obtain from above inequality ‖S(ω, xn+1(ω))− p(ω)‖ → 0 as n→∞,
i.e. {S(ω, xn(ω))}∞n=0 converges strongly to p(ω). �

Putting t = 0 and t = s = 0, then from Theorem 2, we have the following
corollaries:

Corollary 3. Let X be a separable Banach space and T, S : Ω × Y →
X be random commuting mappings defined on Y with T (ω, Y ) ⊆ S(ω, Y ),
S(ω, Y ) is complete subspace of X and Si is injective satisfying (11) where
ϕ : R+ → R+ be a sublinear monotone increasing function with ϕ(0) = 0

and αn,i, βn,j ∈ [0, 1], i = 0, 1, 2, . . .. Also
k∑

i=0
αn,i =

s∑
j=0

βn,j = 1. Suppose

that random operators S, T , Si and T i have a unique random coincidence
point say x(ω). If the sequence {S(ω, xn(ω))}∞n=0 defined by (7) converges to
p(ω), then the random Jungck-Kirk-Ishikawa iterative scheme convergence
strongly to p(ω).

Corollary 4. Let X be a separable Banach space and T, S : Ω × Y →
X be random commuting mappings defined on Y with T (ω, Y ) ⊆ S(ω, Y ),
S(ω, Y ) is complete subspace of X and Si is injective satisfying (11) where
ϕ : R+ → R+ be a sublinear monotone increasing function with ϕ(0) = 0

and αn,i ∈ [0, 1], i = 0, 1, 2, . . .. Also
k∑

i=0
αn,i = 1. Suppose that random

operators S, T , Si and T i have a unique random coincidence point say x(ω).
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If the sequence {S(ω, xn(ω))}∞n=0 defined by (8) converges to p(ω), then the
random Jungck-Kirk-Mann iterative scheme convergence strongly to p(ω).
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