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1. Introduction

A random fixed point theorem is a stochastic generalization of classical
fixed point theorems. Random fixed point theorems for random contraction
mappings on separable complete metric spaces were first proved by Špaček
[33] and Hanš [13, 12]. Subsequently, Bharucha-Reid [6] proved the stochas-
tic version of the well-known as Banachs and Schauders fixed point theorems
and hence random fixed point theory and applications have been developed
rapidly in recent years, see, e.g., Bharucha-Reid [5], Itoh [15], Choudhury [7],
Beg [3], Beg and Shahzad [4], Kumam [22, 17, 18, 23], Kuman and Plubtieng
[19, 21, 20], and Hussain et al. [14]. Ćirić and Lakshmikantham [8], Zhu
and Xiao [35], and Khan et al. [16] proved some coupled random fixed point
and coupled random coincidence point results in partially ordered complete
metric spaces.

In 1969, Fan [10] has established a classical best approximation theorem
and notion of a best proximity under the conditions that if A is a nonempty
compact convex subset of a Hausdorff locally convex topological vector space
B and T : A → B is a continuous mapping, then there exists an element
a ∈ A such that d(a, Ta) = d(Ta,A). Subsequently, many researchers have
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studied the existence and convergence of best proximity point results in
many ways [9, 26, 24, 25, 27, 29, 32, 31].

In 2011, Anh [2] introduced the concept of random best proximity point
of a random operator. In 2012, Sintunavarat and Kumam [30] introduced
the concept of a coupled best proximity point and proved the existence
and uniqueness of the coupled best proximity point in metric and uniformly
convex Banach spaces. In 2014, Gupta et al. [11] introduced a new class of
generalized cyclic contraction mappings. Recently, Akbar et al. [1] proved
some random coupled best proximity point theorems which extended the
results of Sintunavarat and Kumam [30].

In this work, we introduce the concepts of a random coupled best prox-
imity point. We also prove some new results about random best proximity
points in a Polish space which extend the previous work of Akbar et al. [1].

2. Preliminaries

Given A and B be nonempty subsets of a metric space (X, d), the follow-
ing notations are used subsequently. We let

d(A,B) = inf{d(x, y) : x ∈ A, y ∈ B},

stands for the distance between A and B.

Definition 1. A Banach space X is said to be :
(i) strictly convex if for all x, y ∈ X, ‖x‖ = ‖y‖ = 1 and x 6= y imply

that ‖x+y
2 ‖ < 1,

(ii) uniformly convex if for each ε with 0 < ε < 2, there exists a δ > 0
such that ‖x‖ ≤ 1, ‖y‖ ≤ 1 and ‖x− y‖ ≥ ε⇒ ‖x+y

2 ‖ < 1− δ for all
x, y ∈ X.

Definition 2 ([31]). Given A, B be nonempty subsets of a metric space
(X, d). The odered pair (A,B) is said to satisfy the property UC if the
following holds:

If {xn} and {zn} are sequences in A and {yn} is a sequence in B such
that d(xn, yn)→ d(A,B) and d(zn, yn)→ d(A,B), then d(xn, zn)→ 0.

Definition 3 ([30]). Given A, B be nonempty subsets of a metric space
(X, d). The ordered pair (A,B) has the property UC∗ if (A,B) has the
property UC and the following condition holds:

(i) d(zn, yn)→ d(A,B),
(ii) for every ε > 0 there exists an N ∈ N such that

d(xm, yn) ≤ d(A,B) + ε,

for all m > n ≥ N , then for every ε > 0 there exists an N1 ∈ N such
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that

d(xm, zn) ≤ d(A,B) + ε,

for all m > n ≥ N1.

Definition 4. Given A, B be nonempty subsets of a metric space (X, d).
Given mapping S : A → B. A point a ∈ A is said to be a best proximity
point of S if

d(a, Sa) = d(A,B).

Definition 5. Given A, B be nonempty subsets of a metric space (X, d).
Given mapping S : A × A → B. A point (a, a′) ∈ A × A is said to be a
coupled best proximity point of S if

d(a, S(a, a′)) = d(a′, S(a′, a)) = d(A,B).

Definition 6 ([30]). Given A, B be nonempty subsets of a metric space
(X, d) and let S : A×A→ B and T : B×B → A be two maps. The ordered
pair (S, T ) is said to be a cyclic contraction if there exists a nonnegative
number α < 1 such that

d(S(a, a′), T (b, b′)) ≤ α

2

[
d(a, b) + d(a′, b′)

]
+ (1− α)d(A,B),

for all (a, a′) ∈ A×A and (b, b′) ∈ B ×B.

Definition 7 ([11]). Given A, B be nonempty subsets of a metric space
(X, d) and let S : A×A→ B and T : B×B → A be two maps. The ordered
pair (S, T ) is said to be a generalized cyclic contraction if there exists a
nonnegative number l + c < 1 such that

d(S(a, a′), T (b, b′)) ≤
[
ld(a, b) + cd(a′, b′)

]
+ (1− (l + c))d(A,B),

for all (a, a′) ∈ A×A and (b, b′) ∈ B ×B.

Definition 8. Let (Ω,Σ) be a measurable space with Σ a sigma algebra
of subsets of Ω and let (X, d) be a metric space. A mapping T : Ω → X is
said to be a Σ-measurable if for any open subset U of X, one has T−1(U) =
{ω : T (ω) ∈ U} ∈ Σ.

Definition 9. A mapping T : Ω×X → X is said to be a random operator
if for any x ∈ X, T (·, x) is measurable.

Definition 10. A measurable mapping δ : Ω → X is a random fixed
point of a random mapping S : Ω × X → X if δ(ω) = S(ω, δ(ω)) for each
ω ∈ Ω.
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Definition 11 ([2]). Given A,B be two closed subsets of a complete
separable metric space X. Given S : Ω × A → B be a random operator. A
measurable mapping δ : Ω → A is said to be a random best proximity point
of S if

d
(
δ(ω), S(ω, δ(ω))

)
= d(A,B),

for each ω ∈ Ω.

Definition 12 ([1]). Given A, B be nonempty subsets of a separable
metric space (X, d) and S : Ω × (A × A) → B be a random operator. A
measurable mappings δ, η : Ω→ A are called a random coupled best proximity
point of S if

d(δ(ω), S(ω, (δ(ω), η(ω)))) = d(A,B),

d(η(ω), S(ω, (η(ω), δ(ω)))) = d(A,B),

for each ω ∈ Ω.

3. Main results

In this section after giving a generalization of Definition 7, now we extend
generalized cyclic contraction to random version and some new results are
obtained.

Definition 13. Let A, B be nonempty subsets of a separable metric
space (X, d) and (Ω,Σ) be a measurable space, S : Ω × (A × A) → B and
T : Ω × (B × B) → A be two random operators. The ordered pair (F,G)
is said to be a generalized ω-cyclic contraction if there exists a nonnegative
number l and c with l + c < 1 such that

d(S(ω, (a(ω), a′(ω))), T (ω, (b(ω), b′(ω))))

≤
[
ld(a(ω), b(ω)) + cd(a′(ω), b′(ω))

]
+ (1− (l + c))d(A,B),

for all (a, a′) ∈ A×A and (b, b′) ∈ B ×B.

Example 1. Let X = R with the usual metric d(x, y) = |x − y|. Let
Ω = [0, 1] and let σ be the sigma algebra of Lebesgues measurable subset of
[0, 1]. Let A =

[
6, 12] and B =

[
−12,−6

]
. It easy to see that d(A,B) = 12.

Define random operators S : Ω× (A×A)→ B and T : Ω× (B×B)→ A by

S(ω, (a(ω), a′(ω))) =
−3a(ω)− 2a′(ω)− 6

6
,

and

T (ω, (b(ω), b′(ω))) =
−3b(ω)− 2b′(ω) + 6

6
.



Some random coupled best proximity points . . . 95

For arbitrary (a(ω), a′(ω)) ∈ A×A and (b(ω), b′(ω)) ∈ B×B and fixed l = 1
2

and c = 1
3 , we get

d(S(ω, (a(ω), a′(ω))), T (ω, (b(ω), b′(ω))))

=

∣∣∣∣−3a(ω)− 2a′(ω)− 6

6
− −3b(ω)− 2b′(ω) + 6

6

∣∣∣∣
≤ 3|a(ω)− b(ω)|+ 2|a′(ω)− b′(ω)|

6
+ 2

=
[
ld(a(ω), b(ω)) + cd(a′(ω), b′(ω))

]
+ (1− (l + c)d(A,B).

This implies that (S, T ) is a generalized ω-cyclic contraction with l = 1
2 and

c = 1
3 .

Theorem 1. Given (X, d) be a Polish space. Let (Ω,Σ) be a measurable
space and A, B be nonempty closed subsets of X. Suppose that S : Ω× (A×
A)→ B and T : Ω× (B ×B)→ A be two random operators. Define

xn+1(ω) = S
(
ω, (xn(ω), yn(ω))

)
,(1)

yn+1(ω) = S
(
ω, (yn(ω), xn(ω))

)
and

xn+2(ω) = T
(
ω, (xn+1(ω), yn+1(ω))

)
,(2)

yn+2(ω) = T
(
ω, (yn+1(ω), xn+1(ω))

)
for all n ∈ N and ω ∈ Ω. Let S be continuous and suppose that

(i) S(·, v) and T (·, u) are measurable for all s ∈ A×A and t ∈ B ×B
respectively;

(ii) (A,B) and (B,A) have the property UC∗;
(iii) (S, T ) is a generalized ω-cyclic contraction.
Then S and T have a random coupled best proximity point.

Proof. Given Θ = {ζ : Ω → X} be a family of measurable mappings.
Define h = Ω×X → R+ by

h(ω, x) = d
(
x, S(ω, x)

)
.

Since x → S(ω, x) is a continuous for all ω ∈ Ω, it can be concluded that
h(ω, ·) is continuous function for all ω ∈ Ω. Also, since x → S(ω, x) is
measurable for all x ∈ X, it can be concluded that h(ω, ·) is measurable
for all ω ∈ Ω (see [34]). So h(ω, x) is the Caratheodory function. Thus,
if δ : Ω → X is a measurable mapping, then ω → h(ω, δ(ω)) is also
measurable(see[28]). Also, for each δ ∈ Θ, the function η : Ω → X defined
by η(ω) = S(ω, δ(ω)) is also measurable, that is, η ∈ Θ. Now, we shall
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construct two sequences {δn(ω)} and {ηn(ω)} of measurable mappings in Ω
and will prove the theorem in three steps:

Step I. For each n ∈ N ∪ {0} from (1) and (2), we have

d(δn(ω), δn+1(ω)) = d(S(ω, (δn(ω), ηn(ω))), T (ω, (δn−1(ω), ηn−1(ω))))

≤ [ld(δn(ω), δn−1(ω)) + cd(ηn(ω), ηn−1(ω))]

+ (1− (l + c))d(A,B).

Similarly, we have

d(ηn(ω), ηn+1(ω)) = d(S(ω, (ηn(ω), δn(ω))), T (ω, (ηn−1(ω), δn−1(ω))))

≤ [ld(ηn(ω), ηn−1(ω)) + cd(δn(ω), δn−1(ω))]

+ (1− (l + c))d(A,B).

Therefore, by letting

dn = d(δn(ω), δn+1(ω)) + d(ηn(ω), ηn+1(ω)),

by adding above inequality we have

dn ≤ (l + c)dn−1 + 2(1− (l + c))d(A,B).

Similarly we must show that

dn−1 ≤ (l + c)dn−2 + 2(1− (l + c))d(A,B).

Consequently we have

d1 ≤ (l + c)dn−2 + 2(1− (l + c))d(A,B).

If d0 = 0 then (δ0(ω), η0(ω)) is a random coupled best proximity point of S
and T .

Now let d0 > 0 for each n ≥ m, we have

d(δn(ω), δm(ω)) ≤ d(δn(ω), δn−1(ω)) + d(δn−1(ω), δn−2(ω)) + . . .

+ d(δm+1(ω), δm(ω))

d(ηn(ω), ηm(ω)) ≤ d(ηn(ω), ηn−1(ω)) + d(ηn−1(ω), ηn−2(ω)) + . . .

+ d(ηm+1(ω), ηm(ω))

which gives

d(δn(ω), δm(ω)) + d(ηn(ω), ηm(ω)) ≤ dn−1 + dn−2dn−3 + . . .+ dm

dn ≤ (l + c)nd0 + 2n(1− (l + c)n)d(A,B).
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Letting n→∞, we obtain

d(δn(ω), δm(ω)) + d(ηn(ω), ηm(ω))→ d(A,B)

implies that

(3) d((δn(ω), (δn+1(ω))→ d(A,B).

By similar arguments, we can prove that

d((δn+1(ω), (δn+2(ω))→ d(A,B).(4)

d((ηn(ω), (ηn+1(ω))→ d(A,B).(5)

d((ηn+1(ω), (ηn+2(ω))→ d(A,B).(6)

Now, we have to show that for every ε > 0, there exists a positive integer
N0 such that for all m > n > N0,

(7) ld(δm(ω), δn+1(ω)) + cd(ηm(ω), ηn+1(ω)) < d(A,B) + ε.

Since the pairs (A,B) has the property UC, we get

d(δn, δn+2)→ 0, as n→∞.

A similar argument shows that

d(ηn, ηn+2)→ 0, as n→∞.

As the pairs (B,A) has the property UC, we also have

d(δn+1, δn+3)→ 0,

d(η2n+1, η2n+3)→ 0.

Assume contrary that (7) does not hold. Then there would exists an ε′ such
that for all k ∈ N, there would be an mk > nk ≥ k satisfying

ld(δmk
(ω), δnk+1(ω)) + cd(ηmk

(ω), ηnk+1(ω)) ≥ d(A,B) + ε,

and

ld(δmk−2(ω), δnk+1(ω)) + cd(ηmk−2(ω), ηnk+1(ω)) < d(A,B) + ε.

That is, we would have

d(A,B) + ε′ = ld(δmk
(ω), δnk+1(ω)) + cd(ηmk

(ω), ηnk+1(ω))

≤ l[d(δmk
(ω), δmk−2(ω)) + d(δmk−2(ω), δnk+1(ω))]

+ c[d(ηmk
(ω), ηmk−2(ω)) + d(ηmk−2(ω), ηnk+1(ω))]

< ld(δmk
(ω), δmk−2(ω)) + cd(ηmk

(ω), ηmk−2(ω))

+ d(A,B) + ε′.
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Letting k →∞, we obtain to see that

(8) ld(δmk
(ω), δnk+1(ω)) + cd(ηmk

(ω), ηnk+1(ω))→ d(A,B) + ε′.

By using the triangle inequality, we get

ld(δmk
(ω), δnk+1(ω)) + cd(ηmk

(ω), ηnk+1(ω))

= l[d(δmk
(ω), δmk+2(ω)) + d(δmk+2(ω), δnk+3(ω))

+ d(δnk+3(ω), δnk+1(ω))] + c[d(ηmk
(ω), ηmk+2(ω))

+ d(ηmk+2(ω), ηnk+3(ω)) + d(ηnk+3(ω), ηnk+1(ω))]

= l[d(δmk
(ω), δmk+2(ω))

+ d(T (ω, (δmk+1(ω), ηmk+1(ω))), S(ω, (δnk+2(ω), ηnk+2(ω)))

+ d(δnk+3(ω), δnk+1(ω))] + c[d(ηmk
(ω), ηmk+2(ω))

+ d(T (ω, (ηmk+1(ω), δmk+1(ω))), S(ω, (ηnk+2(ω), δnk+2(ω)))

+ d(ηnk+3(ω), ηnk+1(ω))]

≤ l[d(δmk
(ω), δmk+2(ω)) + [ld(δnk+2(ω), δmk+1(ω))

+ cd(ηnk+2(ω), ηmk+1(ω)) + (1− (l + c))d(A,B)]

+ d(δnk+3(ω), δnk+1(ω)) + c[d(ηmk
(ω), ηmk+2(ω))

+ [ld(ηnk+2(ω), ηmk+1(ω)) + cd(δnk+2(ω), δmk+1(ω))

+ (1− (l + c)d(A,B)] + d(ηnk+3(ω), ηnk+1(ω))]

≤ (l + c)[d(δmk
(ω), δmk+2(ω)) + d(δnk+3(ω), δnk+1(ω))

+ d(ηmk
(ω), ηmk+2(ω)) + d(ηnk+3(ω), ηnk+1(ω))]

+ (l + c)2[d(δmk+1(ω), δnk+2(ω)) + d(ηmk+1(ω), ηnk+2(ω))]

+ (1− (l + c)2)d(A,B).

Letting k →∞, we get

d(A,B) + ε′ ≤ (l + c)2[d(A,B) + ε′] + (1− (l + c)2)d(A,B)

= d(A,B) + (l + c)2ε′,

which contradicts. Therefore, we can concluded that (7) holds.

Step II. Now, we will show that {δn(ω)}, {ηn(ω)}, {δn+1(ω)} and {ηn+1(ω)}
are Cauchy sequences. Since form (3) and (4) , we have d(δn(ω), δn+1(ω))→
d(A,B) and d(δn+1(ω), δn+2(ω))→ d(A,B). Since (A,B) satisfies property
UC∗, we get

d(δn(ω), δn+2(ω))→ 0.

Similarly, we also have d(δn+1(ω), δn+3(ω)) → 0 because (B,A) satisfies
property UC∗. Here, we show that for every ε > 0 there exists an N ∈ N
such that

(9) d(δm(ω), δn+1(ω)) ≤ d(A,B) + ε,
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for all m ≥ n ≥ N . Assume contrary, that there exists an ε > 0 such that
for all k ∈ N there exists an mk > nk ≥ k such that

d((δmk
(ω), (δnk+1(ω)) ≤ d(A,B) + ε.

Now, we have

d(A,B) + ε < d(δmk
(ω), δnk+1(ω))

≤ d(δmk
(ω), δnk−1(ω)) + d(δnk−1(ω), δnk+1(ω))

≤ d(A,B) + ε+ d(δnk−1(ω), δnk+1(ω)).

Letting k →∞, we have d(δmk
(ω), δ2nk+1(ω))→ d(A,B) + ε. By using the

triangle inequality and (7), we have

d(δmk
(ω), δnk+1(ω)

≤ d(δmk
(ω), δmk+2(ω) + d(δmk+2(ω), δnk+3(ω)

+ d(δnk+3(ω), δnk+1(ω)

= d(δmk
(ω), δmk+2(ω) + d(T (ω, (δmk+1(ω), ηmk+1(ω))),

S(ω, (δnk+2(ω), ηnk+2(ω)))) + d(δnk+3(ω), δnk+1(ω)

≤ d(δmk
(ω), δmk+2(ω) + [ld(δnk+2(ω), δmk+1(ω))

+ cd(ηnk+2(ω), ηmk+1(ω)) + (1− (l − c))d(A,B)]

+ d(δnk+3(ω), δnk+1(ω)

= l[d(T (ω, (δnk+1(ω), ηnk+1(ω))), S(ω, (δmk
(ω), ηmk

(ω))))]

+ c[d(T (ω, (ηnk+1(ω), δnk+1(ω))), S(ω, (ηmk
(ω), δmk

(ω))))]

+ (1− (l − c))d(A,B) + d(δmk
(ω), δmk+2(ω)

+ d(δnk+3(ω), δnk+1(ω)

≤ l[ld(δmk
(ω), δnk+1(ω)) + cd(ηmk

(ω), ηnk+1(ω))

+ (1− (l − c))d(A,B)] + [ld(ηmk
(ω), ηnk+1(ω))

+ cd(δmk
(ω), δnk+1(ω)) + (1− (l − c))d(A,B)]

+ (1− (l − c))d(A,B) + d(δmk
(ω), δmk+2(ω)

+ d(δnk+3(ω), δnk+1(ω)

≤ (l + c)2[d(δmk
(ω), δnk+1(ω)) + d(ηmk

(ω), ηnk+1(ω))]

+ (1− (l − c)2)d(A,B) + d(δmk
(ω), δmk+2(ω)

+ d(δnk+3(ω), δnk+1(ω)

< (l + c)2(d(A,B) + ε) + (1− (l − c)2)d(A,B)

+ d(δmk
(ω), δmk+2(ω) + d(δnk+3(ω), δnk+1(ω)

= (l + c)2ε+ d(A,B) + d(δmk
(ω), δmk+2(ω)

+ d(δnk+3(ω), δnk+1(ω).
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Letting k →∞, we get

d(A,B) + ε ≤ d(A,B) + (l + c)2ε,

a contradiction, because l + c < 1. Therefore, condition (9) holds. By (9)
and

d(δn(ω), δn+1(ω))→ d(A,B)

and using the property UC∗ of (A,B), we have that δn(ω) is a Cauchy
sequences. In a similar way, we can prove that {ηn(ω)}, {δn+1(ω)} and
{ηn+1(ω)} are Cauchy sequences.

Step III. Since A and B are subsets of a complete separable metric
space X. Therefore there exists δ(ω) and η(ω) such that δn(ω)→ δ(ω) and
ηn(ω)→ η(ω). we have

d(A,B) ≤ d(δ(ω), δn−1(ω))

≤ d(δ(ω), δn(ω)) + d(δn(ω), δn−1(ω)).

Letting n→∞, we get d(δ(ω), δn−1(ω))→ d(A,B). By a similar argument,
we can also get d(η(ω), ηn−1(ω))→ d(A,B). It follows that

d(δn(ω), S(ω, (δ(ω), η(ω))))

= d(T (ω, (δn−1(ω), ηn−1(ω))), S(ω, (δ(ω), η(ω))))

≤ [ld(δ(ω), δn−1(ω)) + cd(η(ω), ηn−1(ω))]

+ (1− (l + c))d(A,B).

Letting n→∞, we get

d(δ(ω), S(ω, (δ(ω), η(ω)))) = d(A,B).

Similarly, we can prove that

d(η(ω), S(ω, (η(ω), δ(ω)))) = d(A,B).

Therefore, we have (δ(ω), η(ω)) is a random coupled best proximity point
of S. By the same argument, we can prove that there exist δ′(ω), η′(ω) ∈ B
such that δn+1(ω)→ δ′(ω) and ηn+1(ω)→ η′(ω). Moreover, we also have

d(δ′(ω), T (ω, (δ′(ω), η′(ω)))) = d(A,B),

and
d(η′(ω), T (ω, (η′(ω), δ′(ω)))) = d(A,B).

and so (δ′(ω), η′(ω)) is a coupled random best proximity point of T . �

Here, we note that if (A,B) is a pair of nonempty closed subsets of a
uniformly convex Banach space X such that A is convex, then (A,B) has
the property UC∗. Then, we have the following corollary.
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Corollary 1. Given (X, d) be a Polish space and (Ω,Σ) be a measurable
space. Given A, B be nonempty closed subsets of a uniformly convex sep-
arable Banach space X. Suppose S : Ω × (A × A) → B is a operator and
T : Ω× (B ×B)→ A is a random operator. Define

xn+1(ω) = S
(
ω, xn(ω), yn(ω)

)
, yn+1(ω) = S

(
ω, yn(ω), xn(ω)

)
,

and

xn+2(ω) = T
(
ω, xn+1(ω), yn+1(ω)

)
, yn+2(ω) = T

(
ω, yn+1(ω), xn+1(ω)

)
,

for all n ∈ N and ω ∈ Ω. Given S is continuous and suppose that
(a) S(·, v) is measurable for all v ∈ A×A and T (·, u) is measurable

for all u ∈ B ×B.
(b) (S, T ) is a generalized ω-cyclic contraction.
Then S and T have a random coupled best proximity point.

Next, we give some illustrative example of Corollary 1.

Example 2. Cosider a uniformly convex separable Banach space X = R
with the usual norm. Let Ω = [0, 1] and let σ be the sigma algebra of
Lebesgues measurable subset of [0, 1]. Let A =

[
1, 2] and B =

[
− 2,−1

]
. It

easy to see that d(A,B) = 2. Define random operators S : Ω× (A×A)→ B
and T : Ω× (B ×B)→ A by

S(ω, (a(ω), a′(ω))) =
−2a(ω)− 3a′(ω)− 1

6
,

and

T (ω, (b(ω), b′(ω))) =
−2b(ω)− 3b′(ω) + 1

6
.

For arbitrary (a(ω), a′(ω)) ∈ A×A and (b(ω), b′(ω)) ∈ B×B and fixed l = 1
2

and c = 1
3 , we get

d(S(ω, (a(ω), a′(ω))), T (ω, (b(ω), b′(ω))))

=

∣∣∣∣−2a(ω)− 3a′(ω)− 1

6
− −2b(ω)− 3b′(ω) + 1

6

∣∣∣∣
≤ 2|a(ω)− b(ω)|+ 3|a′(ω)− b′(ω)|

6
+

1

3
=

[
ld(a(ω), b(ω)) + cd(a′(ω), b′(ω))

]
+ (1− (l + c)d(A,B).

This implies that (S, T ) is a generalized ω-cyclic contraction with l = 1
2

and c = 1
3 . Since A and B are convex, we have (A,B) and (B,A) satisfy

the property UC∗. Therefore, all hypothesis of Corollary 1 hold. So S
and T have a random coupled best proximity point. We note that a point
(1, 1) ∈ A × A is a unique random coupled best proximity point of S and
(−1,−1) ∈ B ×B is a unique random coupled best proximity point of T .
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Theorem 2. Given (X, d) be a Polish space and (Ω,Σ) be a measurable
space. Given A, B be nonempty compact subsets of X. Suppose S : Ω ×
(A× A)→ B is a random operator and T : Ω× (B × B)→ A is a random
operator. Define

xn+1(ω) = S
(
ω, (xn(ω), yn(ω))

)
, yn+1(ω) = S

(
ω, (yn(ω), xn(ω))

)
,

and

xn+2(ω) = T
(
ω, (xn+1(ω), yn+1(ω))

)
, yn+2(ω) = T

(
ω, (yn+1(ω), xn+1(ω))

)
,

for all n ∈ N and ω ∈ Ω. Given S is continuous and suppose that
(a) S(·, v) is measurable for all v ∈ A×A and T (·, u) is measurable

for all and u ∈ B ×B.
(b) (A,B) and (B,A) have the property UC∗.
(c) (S, T ) is a generalized ω-cyclic contraction.
Then S and T have a random coupled best proximity point.

Proof. By the same argument of the proof of Theorem 2, we have
δ : Ω → X is a measurable mapping and η : Ω → X is a measurable
mapping. We have

δn+1(ω) = S
(
ω, (δn(ω), ηn(ω))

)
, ηn+1(ω) = S

(
ω, (ηn(ω), δn(ω))

)
,

δn+2(ω) = T
(
ω, (δn+1(ω), ηn+1(ω))

)
, ηn+2(ω) = T

(
ω, (ηn+1(ω), δn+1(ω))

)
,

for all n ∈ N ∪ {0}. We have δn(ω), ηn(ω) ∈ A and δn+1(ω), ηn+1(ω) ∈ B
for all n ∈ N ∪ {0}. Since A is a compact. The sequences {δn(ω)} has
convergent subsequences {δnk

(ω)} and he sequences {ηn(ω)} has convergent
subsequences {ηnk

(ω)}. That is, δnk
(ω) → δ(ω) and ηnk

(ω) → η(ω). Now,
we have

d(A,B) ≤ d(δ(ω), δnk−1(ω))(10)

≤ d(δ(ω), δnk
(ω)) + d(δnk

(ω), δnk−1(ω)).

By (3), we have d(δnk
(ω), δnk−1(ω))→ d(A,B). Letting k →∞ in (10), we

get
d(δ(ω), δnk−1(ω))→ d(A,B).

Similar argument show that

d(η(ω), δnk−1(ω))→ d(A,B).

Note that

d(A,B) ≤ d(δnk
(ω), S(ω, (δ(ω), η(ω))))

= d(T (ω, (δnk−1(ω), ηnk−1(ω))), S(ω, (δ(ω), η(ω))))

≤ [ld(δ(ω), δnk−1(ω)) + cd(η(ω), ηnk−1(ω))

+ (1− (l + c))d(A,B)].
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Letting k → ∞, we get d(δ(ω), S(ω, (δ(ω), η(ω)))) = d(A,B). Similarly, it
can be proved that

d(η(ω), S(ω, (η(ω), δ(ω)))) = d(A,B).

Therefore S has a random coupled best proximity point (δ(ω), η(ω)). Simi-
lar, since B is compact, it can be proved that T has a random coupled best
proximity point. �
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