Sscendd b S TCULT MATHEMAT 1CI

Nr 60 2018

DOI:10.1515/fascmath-2018-0001

GEORGE A. ANASTASSIOU

APPROXIMATION BY MAX-PRODUCT OPERATORS

ABSTRACT. Here we study the approximation of functions by
a great variety of Max-Product operators under differentiabil-
ity. These are positive sublinear operators. Our study is based
on our general results about positive sublinear operators. We
produce Jackson type inequalities under initial conditions. So
our approach is quantitative by producing inequalities with their
right hand sides involving the modulus of continuity of a high or-
der derivative of the function under approximation. We improve
known related results which do not use smoothness of functions..
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1. Introduction

The main motivation here comes from the monograph by B. Bede,
L. Coroianu and S. Gal [3], 2016.
We mention the interpolation Hermite-Fejer polynomials on Chebyshev

knots of the first kind (see [3], p. 4): Let f : [-1,1] — R and based on
the knots zn , = cos (%ﬂ') €(-1,1),ke{0,...N}, -1 <znpg <
N1 < ... < znN < 1, which are the roots of the first kind Chebyshev

polynomial T 41 () = cos ((IV + 1) arccos ), we define (see Fejér [4])

N
(1) Hongr (f) (2) =) hve (2) f (2n4),
k=0

Tni (2) ))2

(2) hN,k(z):(l_m'J:N’k)((N+1)(3:—:CNk

the fundamental interpolation polynomials.
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Denoting A1 (f) = [[Han+1 = fllo, Fejer [4] proved that lim Ay (f)
=0, for all f € C([-1,1)).

Popoviciu ([6]) also proved that Ayii(f) = O <w1 (f, ﬁ)), and
Moldovan ([5]) improved it to

AN+1(f)—O<w1 <f,ln(N+1)>>-

N+1
Here wy (f,6) = sup |f(x)— f(y)|, § > 0, is the first modulus of con-
zye[—1,1]:
|z—y|<é
tinuity.

The Max-product interpolation Hermite-Fejér operators on Chebyshev
knots of the first kind (see p. 12 of [3]) are defined by

_ Vo hve (2) f (2n )

3 HY) , VNN,
(3) any1 () (@) VI o (@)
where f:[—1,1] — Ry is continuous.
By [3], p. 286 we get that
(4) HNL () (@) = ] ()]

< 14w, (f’N:—l)’ V' N eN, any z € [-1,1].
Call
(5) By (2) == Hyy, (|- = a]) (@)

~ Vitohw (@) Jong — 2l

a \/évzo hNJc (x)
Then by [3], p. 287 we obtain that

27
N+1’

, e [-1,1].

(6) En (z) <

Vzel[-1,1], NeN,
For m € N, we get
_ Vicohwy (@) [zny — 2™
Viemo huv.i ()
_ Vicohw (@) [ony — 2l Jong — 2™
Vimo hvi (2)
gm—1 Vivzo hng (%) |zng —
V;cvzo hn i (2)
Vzel[-1,1, NeN.

(1) HNL (- —2™) (x)

2Mgr
<
- N+1
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Hence it holds

(M) m 2Mm
(8)  Honiq (|- — )(m)§N+1, Veel[-1,1], meN, YN eN

Clearly it holds

M m
(9) HNL (|- = ™) (2) > 0,
Vee|-1,1]:x#xni VN €N, any k€ {0,1,...,N}; any m € N.
Furthermore we have

M . . . .
and H; N J)rl maps continuous functions to continuous functions over [—1,1]

and for any x € R we have \/,]f\[:0 hn g (x) > 0.
We also have hy i (zn i) =1, and hny (zn;) = 0, if k # j, furthermore
it holds Hé?@rl (f)(xnj) = f(xzn ), for all j € {0,..., N}, see [3], p. 282.
In this work we will improve (4) by assuming differentiability of f. Sim-
ilar improvements, using the differentiability of f, will be presented for
Max-product Lagrange interpolation operators, Max-product truncated sam-

pling operators and Max-product Neural network operators.
2. Main results
Let I C R be a bounded or unbounded interval, n € N, and
(10) CBY (1) = {f T =Ry : f@ is continuous and bounded on I,
for bothi =0,n}.
We define for
(11) feCBy(I)={f:1— R4 : fis continuous and bounded on I},

the first modulus of continuity

(12) wi (f,6) = sup [f(z)—f(y)l,
xz,y€el:
|lz—y[|<o

where 0 < § < diameter (I).

Call C4 (I) ={f:1— Ry : f is continuous on I} .

Let Ly : Cy (I) = CB4 (I), n, N € N be a sequence of operators satis-
fying the following properties (see also [3], p. 17):
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(1) (positive homogeneous)
(13) Ly (af)=aLn(f), Va>0, feCy(I),
(73) (Monotonicity)

(14) if f,g € Cy (I) satisfy f < g, then Ly (f) < Ly (), ¥ N €N,

and
(741) (Subadditivity)
(15) Ly(f+9)<Ln(f)+Ln(g), V fgeCi(I).

We call Ly positive sublinear operators.

In particular we will study the restrictions LN‘CBZ;(I) OBy (I) —
CBy (I).

The operators Héjz\\ﬁl are positive sublinear operators. From [1] we will
be using the following result:

Theorem 1 ([1]). Let (Ln)ycy be a sequence of positive sublinear op-
erators from C4 (I) into CBy (1), and f € CBY (I), where n € N and
I C R a bounded or unbounded interval. Assume Ly (1) =1,V N € N, and
fO(x)=0,i=1,...,n, for a fitedx € I, and 6 > 0. Then

(16)  |Ln (f) (z) — f (=)
< w1 (f(n),5)

Ly (|- = «""") @
(n+1)6 ’

Ly (= ") () +

vV N € N.

We give

Theorem 2. Let f € C™ ([-1,1],R), with f@ (x)=0,i=1,..,n €N,
for some fized x € [-1,1], N € N. Then

(7) [HNL () (@) - £ (@)

1 T 2" 2" T "
< (TL) 2n+1 n+1 .
—n!w1<f ’ \/N+1)[N+1+(n—|—1)< N+1>]

When x = xn 1, the left hand side of (17) is zero.

Proof. Here we are using (8) and (16), namely we have

(M) m 2
(18)  Hyniq (|- — 2] )(x)§N+1, Veel[-1,1], meN, VN eN.
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and
(19) BN () @) = £ (@)
oW (f(”),é) 2" 1 ontlg
ST [N+1+(n+1)5<N+1)]’
0> 0.

Then choose

7T
— n+1
(20) 0=2" N

we get
21 n+1 — 2n+1 Q
(21) g N+1’
and
(22) ‘H(M) (f) (x) o f (1_)‘ < w1 <f(n)’ 2 n+\1/ NLH) 2™ n 1 5"
N+1 - n! N+1 (n+1)
1 T 2™ 1 s "
[ (n) 9 ntl 2n n+1
n!““(f ’ \/N+1>[N+1+(n+1) ( N+1>}’
proving the claim. [ |

It follows the n =1 case.
Corollary 1. Let f € C*([-1,1],R,), with f' (x) = 0, for some fived
€ [-1,1], N € N. Then

(23) HNL () (@) = £ (@)

, m 27 s
s (f’2\/N+1) [N+1+\/N+1]'

From (17) and/or (23), as N — oo, we get that Hé%fil (f) () = f(x).
Proof. By (17). [ |
We make

Remark 1. We compare (23) to (4). We prove that (23) gives a sharper
estimate and speed than (4). We observe that

N NG 14
2 W<N+1+W)SN+1
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=4

1 T—7
<

25 ,
(25) N+1 "~ 2nym

true for large enough NV € N.
We also make

Remark 2. Here we compare (17) to (4). We prove that (17) gives a
better estimate and speed than (4). We see that

(26) 2 Y/ [2% Lo < Ry )”}< 14
n"WN+1T|N+1 (n+1) \ "V/N+1 TN+
=
1 2" n!
2 < (7=
27 =< () m

true for large enough NV € N.

About notice that 7 — % > 0.

We continue with

Remark 3. Here we deal with Lagrange interpolation polynomials on
Chebyshev knots of second kind plus the endpoints +1 (see [3], p. 5). These
polynomials are linear operators attached to f : [-1,1] — R and to the

knots xy j = cos ((%—:'{) 7r) € [-1,1], k =1,..,N, N € N, which are the
roots of wy (x) = sin (N — 1) ¢sint, x = cost. Notice that xy; = —1 and

zy N = 1. Their formula is given by ([3], p. 377)

N
(28) Ly (f) (@) = Inw(2) f(en)
k=1

where

(=D wn (2)

(29) INg (x) = (14 0k1 4+ 0 n) (N —1) (2 —zng)

N >2 k=1,.,N, and wy (x) = Hgﬂ (x —xny) and 0;; denotes the
Kronecher’s symbol, that is §; ; = 1, if ¢« = j, and ;; = 0, if ¢ # j. Then
(see [3], p. 5)

(30) 1Ex () = Flloo o1y < e (f, }V) I N,



APPROXIMATION BY MAX-PRODUCT OPERATORS 11

The Max-product Lagrange interpolation operators on Chebyshev knots of
second kind, plus the endpoints +1, are defined by ([3], p. 12)

N
B) I () ) = Ve TN gy
Vie=1 Ink ()
where f:[—1,1] — Ry is continuous.

First we see that LS\J[VI) (f) (z) is well defined and continuous for any
x € [—1,1]. Following [3], p. 289, because Zgil INg(z) =1,V 2z €R, for
any z there exists k € {1,..., N} : Iy (x) > 0, hence \/r_, Inx (x) > 0. We
have that Ix; (zn ) =1, and Iy (xn,;) = 0, if k # j. Furthermore it holds
LY () (eny) = f (@nyg), all j € {1,.., N}, and L (1) = 1.

Call I (z) = {k € {1,.... N};lny (z) > 0}, then Iy () # 0.

So for f € CB; (|—1,1]) we get

Viert o Ivg (@) f (k)
(M) . kel (x) "V, )
(32) Ly~ (f)(z) = Vierom b @) >0

By [3], p- 295, we have:
Let f € C([-1,1],Ry), Ne N, N >3, N is odd, then

1
@ [l @ - @]t (1) veel.
Notice here that |y — 2| <2,V 2 € [-1,1].
By [3], p. 297, we get that

(34) L&) (I — z|) (z) = \/gﬂ INg (z) |zN g — ]

" vl]cvzl Ing (2)
 Vierf@ Ive (@) [on g — 7] .
Vier (@) vk (%) T6(N-1)

N >3, Vze(—1,1), N is odd.
We get that (m € N)

l (:L‘)|$Nk—l‘|m m—1,_2
(M) m \/kelﬁ(x) N,k ) 2 s
35 L - x) = < )

N >3o0dd,Vze(-1,1).

We present
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Theorem 3. Let f € C" ([-1,1],Ry), n e N, z € [-1,1], f¥ (z) = 0,
1=1,....m. Here N € N, N > 3 is odd. Then

36) |L8" (1) (@) - 1 (@)

1
n nor? nt1
w1 <f( ), (6(21\7_1)) ) on—1,2 1 < on -2 >nil
6( ) '

! 6N -1)  (n+1) \6(N_1

Proof. When = = =£1, the left hand side of (36) is zero, hence (36) is
trivially true. Let now = € (—1,1), by Theorem 1 and (16), (35), we obtain

67 (@ -f@)

wi (f,8) [ 20172 1 2nyr
[G(N— Dt 156N = 1)]

n!

1
. n 2 n+1l . n .2
(setting 0 := (%) ie. ot = 6(2N7i1))

1
n 2m 72 n+1
w1 (f( ), (m) ) gn—1,2 . 1 on 2 ey
n! 6(N—-1) (n+1)\6( ) ’

proving the claim. [ |

The case n = 1 follows:

Corollary 2. Let f € C'([-1,1],R), = € [-1,1], f'(z) = 0. Here
N eN, N >3 is odd. Then

63) |8 () @) - f @)

T m? il
§W1<fv\/m> [6(N—1)+2 3(N - )]

By (36) and/or (38), we get that Lgy) (f)(x) = f(x), as N = 0.
We make

Remark 4. Here we compare (38) to (33), and we prove that (38) gives
better estimates and speeds than (33). We observe that

T w2 T 4
(39) 3(N—1) [6(N1)+2 3(N—1)]§N1
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54

1 24 — 72
<
3(N—1) m

(40)

)

true for large enough N > 3 odd.

Remark 5. Here we compare (36) to (33), and we prove that (36) gives
better estimates and speeds that (33). We see that

W <6£V7T‘2”> [62<N1—7r21> " (ni ) (65;7?—21))&1]

4
< -
-~ N-1

=

1 3 24 1)1 — gnp2\ "
(42) < (“‘” ”) ,

N—17 2n-1g2 (n+1)2n—1x2
true for large enough N (odd) > 3.

We continue with

Remark 6. From [3], p. 297, we have: Let f € C ([-1,1],R;), N > 4,
N € N, N even. Then

3) 197 () @)~ f (@) < 280 (f, N1_1> L Vael-1,1].

From [3], p. 298, we get

7T2 271'2
@) 18" (-~ @) < g = 3pre Ve e (L.
Hence (m € N)
m+17.‘_2
(45) LY (|- = 2™ (z) < 32(N_1) Vae(-1,1).

We present

Theorem 4. Let f € C"([-1,1],R;), n € N, z € [-1,1], f@ (z) = 0,
i=1,...,n. Here N € N, N >4, N is even. Then

(46) | 8" (£) (@) = £ (@)

1
n n+2ﬂ_2 nt+1
w1 (f( ), (??(N—l)) > [ on+1,2 1 ( on+2,2 nil]
<
3 )> '

SV-10 mr D \B(N_1

n!
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Proof. When z = =+1, the left hand side of (46) is zero, thus (46) is
trivially true.
Let now x € (—1,1), by Theorem 1 and (16), (45), we obtain

@) (@ - @)
wy (f(n)’ 5) gn+1,.2 1 on+2..2
{3(1\7— RGO EI 1)]

n!

1
. n+2..2 n+1 . n+2, 2
(setting & := (g(N_”l)) ie. ot = g(N_”l))

! SN -1 (nr 1) \B(N_1

1
n n+2ﬂ_2 n+l
“ (f( & (?iN—D) > 2 tig? 1 22 \ wii
3 ) ’
proving the claim. [ ]
The case n = 1 follows:
Corollary 3. Let f € C'([-1,1],Ry), = € [-1,1], f'(x) = 0. Here
N eN, N >4, N is even. Then
(43 R (D@ -1 @)
2mV/2 472 2
<[22 w2 |
3(N—-1)) |3(N=1) 3(N—1)

By (46) and/or (48), we get that Lg\],w) (f)(x) = f(x), as N = 0.

We make

Remark 7. Here we compare (48) to (43). We prove that (48) gives
better estimates and speeds that (43). Indeed we have

212 A2 ™2 28
(49) ST [B(N_l)-i- T )]§N_1
=
1 3 /42 — 272\ 2
(50) N_1§87T2<27r2> |

true for large enough N > 4, even.

‘We make
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Remark 8. Here we compare (46) to (43). We prove that (46) gives
better estimates and speeds that (43). We observe that

1 (222 \ [ gntlg? 1 22\ wiT
(51) n!<3(N—1)> [3(N—1)+(n+1)<3(]\7—1)> ]

28
< -
= N-1
<~
(52) 1 _(_3 42 (n + 1)1 — gntlg2) "t
N —1— \ 2272 (n+1)2n72 ’

true for large enough N > 4. N even.
We continue with

Remark 9. The sampling truncated linear operators (see [3], p. 7) are
defined by

N
(53) :ZSIH sz__kfﬂ)f (%) Vaelon],
=0
and
N . o
o) = sin® (Nw — km) . (km
54) (0 = T ()

Vxe0,7]; feC([0,7],R) and they are used as approximators.
Here we deal with the Max-product truncated sampling operators (see
[3], p- 13) defined by

(Ne—km) ¢ (k
\/k Osm]\fa:zlmr7r f(Wﬂ-)

M
(55) Wi (f) (@) = e e e [0,
vk 0 Nx km
f:[0,7] = Ry, continuous, and
\/k Osm (Nz— k‘ﬂ')f(ki)
M (No—kr N
(56) T () (2) = g e € 0.7
\/k 0 (Ng—km)?
f:[0,7] — Ry, continuous.
Following [3], p. 343, and making the convention Smo(o) = 1 and denoting
sng(x) = %, we get that sy (W) =1, and sy (%) = 0, if

k # j, furthermore W](VM) (f) (%) =f (%), for all j € {0,...,N}.
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Clearly W](VM) (f) is a well-defined function for all € [0, 7], and it is

continuous on [0, 7], also W](\,M) (1) =1.
By [3], p. 344, W](VM) are positive sublinear operators.

Call I} (v) = {k € {0,1,.... N};sny (¥) > 0}, and set any, := 22, k €

{0,1,..,N}.
We see that
Viert o SNk (@) f (k)
(57) W () () = =S
kelf(x) Nk
We call

_ Vitosna (@) lzne —af
Vico s ()

_ Vierg@ sk (@) [eag — 2l

(58)  Fy(2) = WQ" (| —a) (x)

Vke[j;(x) SNk (2)

By Theorem 8.2.8 ([3], p. 345) we get: Let f € C([0,7],R;). Then

1
59 [ (@ - f@| <t (fy) L YNeN e,
[0,7]
We have that ([3], p. 346)
T
Notice also |zn, — x| <7, V 2 € [0,7].
Therefore (m € N) it holds
m—1 m
(M) (1, _ < T_ T
(61) WD (|~ ey @) < T = T

We present

Theorem 5. Let f € C™([0,7],Ry), z € [0,7] fized, f& (z) = 0,
t=1,....,n. Then

o (10 (5) ) T ()™

n! 2N n+1

(62) Wi () (@) - f ()] <

1 T " 1 T "
——— ny " V|2
(63) n!wl <f ) n+1/72N> [QN + n+1 < n+1/72N> :| :
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Proof. Using Theorem 1, (16) and (61), we get

(61) |[W" () (@) - 1 (@)] < m({:)é) B; + (n+11) 5 <7r2n;1)]

1

. L ﬂ-"l+1 T-Q—I . 'I’L+1 _ Tl'n+1
(choosing ¢ := ( SN ) e M = o)

1 o N AN P 1 LN i
= |/ ’(2N> 2N+(n+1)(2N> ’

proving the claim. |

The case n =1 follows:
Corollary 4. Let f € C* ([0,7],Ry), = € [0, 7] fized, f' () =0. Then

(M)

I T L e P

By (62)-(63) and/or (65), we get that W](VM) (f) (z) = f(z), as N — +oo.
We make

Remark 10. Here we compare (65) to (59) and we prove that (65) gives
better estimates and speeds that (59). Indeed we have

(66) T (W N W) o4
V2N \2N 22N/ — N
=
1 16 — 72
(67) <

V2N — 27?2

true for large enough N € N.
We also make

Remark 11. Here we compare (62)-(63) to (59), and we prove that
(62)-(63) gives better estimates and speeds that (59). We observe that

1 7'("+1 WLH
68 1 [qantI\ et | g7 (2N) 4
_ 4N 7| <
(68) n!<2N> SN T mrl) | °N
=
1 8 1) — gt
(69) m+1)!—m7

AN S (i a
true for large enough NV € N.
Notice here that 8 (n 4+ 1)! — 7"t > 0,V n € N.
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We continue with

Remark 12. Here we study Tn (f) (z), see (54).
By Theorem 8.2.13, [3], p. 352, we get: Let f € C ([0, 7],R;), then

(70) T](\[M)(f)(g;)—f(x)‘gélwl (f,if){o - VNEN, ze[0,n].

By [3], p- 352, we get

(71) T3 (|- = al) (0) < 5.
hence (m € N) we find
(72 T (- — 2™ () < T

Here again zy j = %’T, ke{0,1,...,N}.
)

The operators T' J(VM are positive sublinear operators, mapping C ([0, 7] ,R)
into itself, and T ](\,M) (1) = 1. So we can apply again Theorem 1. We obtain

the same results as before with W](VM), we state them:

Theorem 6. Let f € C1([0,7],Ry), x € [0,7] fized, f' (x) =0. Then

7T T

7o) | * 2aw

Theorem 7. Let f € C™([0,7],Ry), x € [0,7] fized, f&) (z) = 0,
t=1,....,n. Then

@) 10 () @) - @] < (1, | vnen

() | () @)~ f @)

o (10, Fs2) [ ()
< — = VN eN.
- n! 2N+ n+1 ’ <

Clearly (73), (74) can perform better than (70), the same study as for WJ(VM).

Furthermore we derive T](VM) (f)(z) = f(x), as N — +o0.

‘We continue with

Remark 13. Let b: R — R be a centered (it takes a global maximum
at 0) bell-shaped function, with compact support [—7,7T], T' > 0 (that is
b(x) >0 for all z € (~T,T)) and I = [7 b (x)dx > 0.
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The Cardaliaguet-Euvrard neural network operators are defined by (see

[2])

@ enw= 3 LE, (3= (o= %))

k=—N?2

0<a<l1l, NeNand f:R — R is continuous and bounded or uniformly
continuous on R.
CB (R) denotes the continuous and bounded function on R, and

OB, (R)={f:R—[0,00); feCB(R)}.

The corresponding max-product Cardaliaguet-Euvrard neural network op-
erators will be given by

Vb (V) £ ()

7 c(M) x -
7 w0 = v - )

Y

feR, feCBy(R), see also [2].
Next we follow [2].
For any = € R, denoting

k
Jry (z) = {k €Z; —N?<k<N? N'—@ (w — N> € (—T,T)},

we can write
_ Viesrn@ 0 (N7 (@ = %)) f (%)
Viesry@ b (N7 (= %))

z € R, N > max {T—i— |ac],T_é}, where Jr n (z) # 0. Indeed, we have

Viesrn@b (N7 (@~ £)) >0,V 2 € R and N > max{T+ | ,T—é}.
We have that C](V]\Q (1)(x) =1,V 2z €Rand N > max {T+ |z| ,T‘é}.

(77) vl (f) (@)

See in [2] there: Lemma 2.1, Corollary 2.2 and Remarks.
We need

Theorem 8 ([2]). Let b(x) be a centered bell-shaped function, continuous
and with compact support [T, T|, T >0, 0 < a < 1 and C](VAQ be defined
as in (76).

(2) If |f (x)] < ¢ for all z € R then ‘CJ(V]\?) () (@) < ¢, forallx € R

o

(07

r € R, for allN>max{T+\:n|,T_é};

and N > max {T + |z ,T‘é} and C](VM) (f) (x) is continuous at any point
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(1) If f,g € CB+ (R) satisfy f (z) < g (x) for allx € R, then C](VAQ (f) (z) <
C](VAQ (9) (x) for all z € R and N > max {T—i— || ,T‘é} ;

(iti) Cve) (f +9) (@) < O () (@) 4O (9) (@) for all f.g € OBy (R),
z€R and N > max{T+ |z ,T‘i};

(iv) For all f,g € CB4 (R), x € R and N > max {T+ || ,T—i}; we
have

) () (@) = {8 () )] < 2 (1 = 9D) (@)
(v) C](VA/Q is positive homogeneous, that is C](VAQ (Af) (z) = )\C](V]ti) (f) (z)

forallA\>0, 2z € R, N>max{T+|x],T_é} and f € CB4 (R).

We make
Remark 14. We have
M
(78) Ena(z) = O\ (- —2)) (@)

_ V}CEJTN(a?)b(Nl Oé(x_i ‘l‘— ‘
\/keJT,N(x) b(N'= (2~ g))

VzeR,and N > maX{T—I— |z| ,T_é}.
By (77), C](VAQ satisfies
Cive (FV 9) (@) = CRg () (@) V O (9) (@),

v f,g€CB; (R), 2 €R, N > max {T+a], 777 |.
Notice that

V) V()

kEJTJ\](x) k=—N?2

By [2], Lemma 3.1 there, we have: Let b(x) be a centered bell-shaped func-
tion, continuous and with compact support [-7,7], T > 0 and 0 < a < 1.

Then for any j € Z with —N? < j < N2 all z € [%,%} and N >
max{T%—]w\,T_é}, we have

sV (v (e 5)

k=—N?2

oo ) (-5 o



APPROXIMATION BY MAX-PRODUCT OPERATORS 21

Lemma 3.1 ([2]), is valid only for all x € [-N, N].
We mention from [2] the following:

Theorem 9 ([2]). Let b(z) be a centered bell-shaped function, continuous
and with compact support [=T,T], T > 0 and 0 < a < 1. In addition,
suppose that the following requirements are fulfilled:

(i) There exist 0 < my; < My < oo such that mi (T —z) < b(z) <
M (T —2),¥V2zel0,T];

(73) There exist 0 < mg < My < oo such that ma (x+T) < b(z) <
My(x+T),Y ze[-T,0].

Then for all f € CBy (R), z € R and for all N € N satisying N >

1
max {T + 2|, (3)" }, we have the estimate

(1) CRL () @) = f @)] < wr (£,N°7Y)g,

TMy TM;
c:=2| max{ ——, +1],
2m2 2m1

where

and
wi (f,0)g == sup |f(z)—f ()l
z,yEeR:
lz—y|<8
We make

Remark 15. In [2], was proved that

TMy TM;Y . 4
2 EN.a < ; N,
(82) Na () < max{ Sy’ 2 }
9\ 2
VN > maX{T+|J:],<> }
T
That is
(M) TMy TM; a1
(53) O (1~ 21) (0) < max {2 T v,

1
2\ @
VN >max{T—|—]m\,(T> }

From (78) we have that |z — %‘ < %
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Q=

Hence (m € N) (Vz € Rand N > maX{T+ 2], (%)

b

\/keJTN(:r)b(Nl a(x_ﬁ))}x %‘
\/kEJTN(x)b(Nl a(x_ﬁ )

_ T \™! TMy TM,
_— ma.
— \ Nl-«a 2ma  2my

L
VN > maX{T—f—M a}

(84) CYD (|- —2™) () =

Then (m € N) it holds

TMy TM 1
) O (- el @) < T max {2, S

2mo ’ 2my Nm(l-a)’
9 1
N T — :
VN > max{ + |z|, <T> }
Call
TMy TM;
A= — .
(86) max{ ST v } >0

Consequently (m € N) we derive

1
(M) (. _ m AT 2\«
87) LD (-~ 2™) (@) < oy vzv>max{T+\m|,(T .

We need

Theorem 10. Let b(x) be a centered bell-shaped function, continuous
and with compact support [T, T], T > 0,0 < a < 1 and C](VAQ be defined
as in (76). ’

Let f€e OB} (R),neN. Letx € R : f@ (x)=0,i=1,....,n, and 6 > 0.
Then

08 () @) - £ (@)

(™) 5 v (I = ™) (@)
A0 | G0 (o) () + <<n+1>5> |

<
n!

VNGN:N>maX{T—|—|1:],T_$}.
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Proof. By [1], we get that
n+1

wi ()5 T —
8 1fw-r< 2 [lx -+

Vy€eR,d>0. Using Theorem 8 and C](VA/Q (1) =1, we get
f(@)]) ()

(90) |CWR (N (@)~ f (@) <R 10 -
cQr (|- =) @)}

w1 (f(n)75)]R (M) n
< . —
- n! Ona (I =2l (@) + (n+1)0
1
VNeN:N>max{T+\m\,T—a}. n
We give
Theorem 11. Same assumptions as in Theorem 9. Let f € CB? (R)
neN,zeR: f0 (x)=0,i=1,...,n. Then
1
n AT™ n+1
) (10, (i) ™)
() |CRE (D@~ f @) < — s
AT 1 AT\
Nn(l—a) + (n + 1) N(n+1)(1—a) ’

VN>max{T+]:1:\,(%)é}.

Proof. We use (88) and we choose

5 AT? O\ i
T (N(nJrl)(la)) ’

(92)
ie. 6"t = % Hence
1
((87), (88)) 1 AT PES]
(M) _ il (m) (2=
(93) CN,a (f) (I’) f (.’IJ)’ < n!wl (f ) <N(n+1)(1—a)) )R
PV Lot VAL
Nn(l=a) = (p+1)§ N(rt+D)(1-a)
1
1 VAL n+l
- (n)
Tt (f ’ <N(n+1)(1—a)) )
R
AT L1 AT™ =
Nn(l-a) (TL + 1) N (n+1)(1-a) ’
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1
V' N > max {T + |x|, (%) a }, proving the claim. [
It follows the case n = 1.

Corollary 5. Same assumptions as in Theorem 9. Let f € CBY (R),
zeR: f'(x)=0. Then

00 |ONE (@)~ f (@)
oy ST [ A 1 [T
=1 TV N2(1-a) e Nl-«a 2V N2(1-a)
vV N > maX{T—i— |z, (%)i}
By (91) and/or (94) we get that C'](VAQ (f) (z) = f(z), as N = +o0.

We make

Remark 16. We prove that (94) performs better than (81).
Indeed we have that

)

AT A 1/ AT 2(A+1)
(95) N2(1—a) Nl—a+§ N2(1-a) < Nl-a
~
1 2(A+1
(96) < 2041

N S (VT 1)

1
true V N > max {T + |z|, (%)E}, large enough.
We also make

Remark 17. We prove that (91) performs better than (81). We observe

that
1 VAN IV 1 AP\
O S| o — -
n! \ N(n+1)(1-a) Nn(1-a) (TL—|-1) N (+1)(1—a)
200+ 1)
— Nl—a
=
1 2(A+1
(98) n(lfa) S ng+n—|——1 ) ’
N A"RAT RF + AT”:|
l CES))

Q"—‘ | —

true V N > max {T + |x|, (%) }, large enough.
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Here using Theorem 1 we extend the domain of the application results of
[1].

Remark 18. We start with the Max-product Bernstein operators ([3],

p. 10)

N k.
(99) B](VM) (f) (%): \/k:O]{:N,k (x)f(N)’ V N €N,

vk:()pN,k ()
Py (z) = JZ ):Uk (1-— :n)N_l, x € [0,1], \/ stands for maximum, and
fecy(0,1) ={f:[0,1] — R4 is continuous}.
From [1] we get

(100) B (| — 2™ (2) < ———, Va2 e[0,1], m N eN.

VN +1’

Denote by
C% ([0,1]) = {f : [0,1] — R, n-times continuously differentiable}, n € N.

We give

Theorem 12. Let f € C? ([0,1]), a fized x € [0,1] such that f) (z) =0,
i=1,....,n. Then

M)

(101 |BEY () @)~ f ()] <

We get B](VM) (f) (@) = f(x), as N — oo.
1
Proof. Use of (16) for § = ( ]§+1> " n

We continue with

Remark 19. Here we focus on the truncated Favard-Szasz-Mirakjan
operators

_ \/fcvzo snk (z) f (%

Vilo sn (z)

NeN, feCy([0,1]), sy (z) = D20 see [3], p. 11.

(102) EQV(f) (2) ) zefo,
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From [1] we get

(103) KM (| = 2™ (z) z€[0,1], NeN, meN.

3
<=V
VN
We give

Theorem 13. Let f € C7 ([0,1]), z fived in [0,1] such that & (z) =0,
i1=1,...,n. Then

) &G () @)~ f (@) < ~
3 1 3\ w
X[\/ﬁ+(n+1)<\/ﬁ ],VNEN.
Proof. Use of (16) for § = (3]\[)"‘1#1 [

We make

Remark 20. Next we study the truncated Max-product Baskakov op-
erators (see [3], p. 11)

_ Vs b (@) f (%)
Vilo bk ()

€ [0,1], f € C+([0,1]), N € N, where

(105) Uy’ (f) (x)

I

N+k—-1 xk
( N+k*

bN,k: (:U) = ( k 1—|—$)

We give

Theorem 14. Let f € C7 ([0,1]), z € [0,1] fized, such that @ (z) =0,
1=1,...,n,n €N. Then

M)

(106) [UF" (1) (@) — f @) <

V N eN-{1}.
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2v3(v2+2)

1
n+l
e ) , we use that (see [1])

Proof. Use of (16) for § = (

_2V3(v2+2)

(107) (U}VM>(|.—xyM)) (1) < = N22 NeN.

We make

Remark 21. Here we study Max-product Meyer-Koning and Zeller op-
erators (see [3], p. 11) defined by

Fad x ko
(108) 2" (f) @):V‘“:OV;_”;Z]V)Z(SVM), VN EN, fec;(01),

s g (@) = < N;’“ )xk,xe[o,l].

From [1] we get

(109)  Zy" (- —2™) (2) < — p(),

Vael0,1], N>4,VmeN.
We finish with

Theorem 15. Let f € C7([0,1]), n € N, z € [0,1], f¥ () = 0,
i=1,....,n. Then

wi (f0, (p ()0
o) |28 () @) - s )] < - ( . )
X [p(x)—i— (’znﬂ)z;l  VYN>4 NeN
Proof. Use of (16) with § = (p (1:))ﬁ [ |
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