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The search for compounds exhibiting desired physical and chemical properties is an essential, yet complex 
problem in the chemical, petrochemical, and pharmaceutical industries. During the formulation of this 
optimization-based design problem two tasks must be taken into consideration: the automated generation of 
feasible molecular structures and the estimation of macroscopic properties based on the resultant structures. 
For this structural characteristic-based property prediction task numerous methods are available. However, the 
inverse problem, the design of a chemical compound exhibiting a set of desired properties from a given set of 
fragments is not so well studied. Since in general design problems molecular structures exhibiting several and 
sometimes conflicting properties should be optimized, we proposed a methodology based on the modification of 
the multi-objective Non-dominated Sorting Genetic Algorithm-II (NSGA-II). The originally huge chemical search 
space is conveniently described by the Joback estimation method. The efficiency of the algorithm was enhanced 
by soft and hard structural constraints, which expedite the search for feasible molecules. These constraints are 
related to the number of available groups (fragments), the octet rule and the validity of the branches in the 
molecule. These constraints are also used to introduce a special genetic operator that improves the individuals 
of the populations to ensure the estimation of the properties is based on only reliable structures. The 
applicability of the proposed method is tested on several benchmark problems. 

Keywords: computer-aided molecular design, multi-objective optimization, evolutionary algorithm, 
the Joback method, soft constraints 

1. Introduction 

The search for compounds exhibiting the desired 
physical and chemical properties is of significant 
industrial importance in the search for different 
chemicals and materials such as polymers [1, 2], blends 
[3], coatings, solvents, inert agents, heat transfer media 
[4], and drugs [5]. In the well-known technologies of 
the chemical, petrochemical, and pharmaceutical 
industries, the used medium for the given tasks has been 
developed via practical experience. For the 
improvement of these technologies or the design of a 
new process, every hypothetical molecule must be 
synthesized and tested to check the fulfillment of the 
design properties. This ‘trial and error’-type method for 
the search of the appropriate agent with the defined 
properties is slow, inefficient and expensive, thus 
infeasible in the modern chemical industry and research. 
However, the problem is complex; the algorithmization 
can be carried out extensively with the use of property 
estimation methods and molecular structural feasibility 
operators. Algorithmic problems can be efficiently 
solved with the tools of process engineering. Over 
recent decades, the search for new compounds has 
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resulted in a new area of process engineering, namely 
computer-aided molecular design (CAMD) [6]. The 
original task of the design of molecules is formulated as 
follows: given a set of desired properties, design a 
product that satisfies these needs. With the use of 
CAMD tools, the algorithmic approach to the same 
problem determines the search place: given a set of 
available structural groups for the satisfaction of desired 
properties, formulate a product from these sub-units that 
satisfies the targets. During the decomposition of a 
CAMD-based problem, two separate tasks can be 
derived. As can be seen in Fig.1, it can be divided into a 
forward problem, the prediction of a given property, 
based on the structural characteristics of a molecule; and 
a ‘reverse’ problem, the identification of a molecular 
structure for the satisfaction of target properties. 

 
Figure 1. Molecular design is a ‘reverse’ property 
estimation task. 
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The forward problem, the estimation of 
properties, can be carried out by different methods; for 
example, polymers [1], solvents [7], surfactant 
solutions [8], refrigerants [9] and ionic liquids [10]. 
The limitations of any computer-aided molecular 
design techniques are closely related to the limitations 
of the property model being used [11]. The prediction 
of properties can be carried out with numerous types 
of methods, including group contribution methods 
(GC), quantitative structure-activity/property 
relationship methods (QSAR and QSPR), molecular 
modeling, empirical modeling and correlations, black 
box models like neural networks (NN) and the 
combination of these tools [12]. A novel method for 
property estimation is the COSMO-RS theory 
published by Klamt et al. that combines quantum 
chemistry and thermodynamics [13]. 

The ‘reverse’ problem, the design of candidate 
molecules with a given set of properties from a set of 
molecular sub-units is hardly diversified; the existing 
techniques were developed for specific molecules and 
applications. The known methods can be divided into 
two major groups [14]. 

The huge chemical search space is further 
complicated by the often competing target properties 
of the design process. A genetic algorithm is a 
promising method for the generation of new 
candidate molecules. Multi-objective optimization 
algorithms generate a set of optimal solutions. The 
Pareto fronts of these solutions simultaneously 
consider several design aspects. Since when solving 
the problem multiple target properties must be taken 
into consideration at the same time; the problem has 
been implemented in a well-established genetic 
algorithm-based multi-objective optimization 
environment, the Non-dominated Sorting Genetic 
Algorithm-II (NSGA-II). The search space is 
conveniently described by the occurrence of each 
fragment from a given set of available types of 
groups, and the “distance” of the properties from the 
target values is estimated by the Joback method. The 
feasibility of the molecule is tested by feasibility 
constraints for branching and the octet rule. These 
constraints are also used to introduce a special 
genetic operator that improves the individuals of the 
populations to ensure the estimation of the properties 
is based on only reliable structures. Thus as the 
result, an evolutionary approach for solving 
molecular design problems with descriptors of 
varying dimensionality has been developed, that 
moves effectively towards the Pareto optimal front. 

In the present work the definition of the design 
problem is followed by a theoretical overview of the 
used property estimation method and of the nature of 
genetic algorithms paying special attention to NSGA-
II. After the description of the different algorithms, 
proposed for the solution of the design task, the 
efficiencies of these approaches are examined 
through several benchmark problems, and the results 
are discussed extensively to determine improvements 
in the applicability of these algorithms. 

2. Methodology 

2.1. Problem Formulation 

In the first class, numerous candidate molecules are 
created randomly from a given set of groups. The 
number of candidate molecules that can be generated by 
selecting N groups from a set of K groups, allowing 
repetition and ignoring the order of selection can be 
determined by Eq.(1). 

 𝐶! 𝐾,𝑁 =  !!!!! !
!!(!!!)

 (1) 

The total number of candidate molecules that can 
be selected from a set of K groups is the sum of the 
results of Eq.(1) from N1 until Nmax as is given by Eq.(2) 
(N1 is practically equal to at least 2, as no molecules 
consist of only one fragment). The sum of candidates is 
equal to 

 𝐶! 𝐾,𝑁!!"#
!! =  !!!!! !

!!(!!!)
!!"#
!!  (2) 

According to Eq.(2) the total number of candidate 
molecules can undergo a combinatorial explosion as can 
be seen in Fig.2. 

In the second class for the solution of the ‘reverse’ 
problem, this increased number of candidates must be 
eliminated by some objective function that expresses the 
‘distance’ from the target. An example of this approach 
can be a tree structure to mimic the chain of a molecule 
and reach feasible structures as was carried out in Refs. [12] 
and [14]. 

As in the literature, the proposed methods for the 
design of molecules are highly diversified. Lin et al. 
studied the design of metal catalysts [15], numerous 
articles can be found for the design of drugs [5, 16-18], 
Perdomo et al. designed and improved biodiesel fuel 
blends [3] and Kasat et al. summarized the applications 
of genetic algorithms in polymer science including 
polymer design [2]. 

To solve the design problem, several 
computational strategies have been used. Genetic 
algorithms (GA) are used in several publications [15, 
19, 20], a combination of neural networks and genetic 
algorithms is used in [21] and linear programming is 
used in [12, 14]. 

 
Figure 2. The combinatorics of group selection. 
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2.2. Theoretical Methodologies 

The definition of a chemical product design problem is 
based on the description of design constraints. A set of 
properties is specified as constraints with specified 
values with lower and/or upper boundaries. These 
properties are the explicit property constraints as their 
values can be determined directly by the application of 
some model calculation or experimentally. In the case 
of CAMD problems, explicit constraints are evaluated 
through property estimation methods, these can be, for 
example, critical properties, solubility indexes, normal 
boiling points, etc. However, property estimation 
methods have been significantly improved, there are 
products, for example, food, fragrances, health and 
safety products, and aesthetics that cannot be calculated 
with the use of these models, as these properties are 
based on subjective opinions or existing knowledge. In 
the case of these implicit property constraints (e.g. taste, 
aroma, color and health effects of products) the use of 
databases or the opinion of the designer can be 
implemented during the evaluation stage. During the 
basic CAMD process explicit constraints are taken into 
consideration, these relate mainly to physical properties, 
and implicit considerations are taken into account 
during the selection of available molecule fragments or 
compounds (e.g. no aromatic compounds are taken into 
consideration, or no halogens or cyanides are available) 
[6]. 

To understand the formulation of the solution to 
this explicit property constraint-based problem, the 
following information must be taken into consideration 
as the input information of the molecule design task 
(according to [12, 14]): 
1. Set G of Nmax groups of which the designed 

molecule can be composed 
2. The boundaries for the specified properties to be 

satisfied: 𝑃!"
! ’s for the lower boundaries and 𝑃!"

! ’s 
for the upper boundaries, where 𝑗 = 1, 2,… ,𝑚, the 
specified properties 

3. The lower ( 𝑙!!! ) and upper limits ( 𝑙!"! ), for the 
number of appearances of group i in the designed 
molecule (𝑖 = 1, 2,… , 𝑛) 

4. The property k can be estimated via a property 
estimation method as function 𝑓! (𝑓 = 1, 2,… ,𝑚), 
in the case of group contribution methods 𝑓! can be 
written as 𝑓!(𝑥!, 𝑥!,… , 𝑥!) (where 𝑥!, 𝑥!,… , 𝑥! are 
the numbers of group types #1, #2, …, #n 
respectively). 
The problem using the expressions above can be 

formulated as follows: i groups can be chosen from a 
given set of molecular subunits (G) considering the 
limits of 𝑙!!!  and 𝑙!"! , to find all the possible molecular 
structures, while the property constraints given in Eq.(3) 
are satisfied (where 𝑗 = 1, 2,… ,𝑚). 

 𝑃!"
! ≤ 𝑓 ! 𝑥!, 𝑥!,… , 𝑥!  ≤  𝑃!"

!  (3) 

During the solution of the above-defined CAMD 
task, the generation and test method can seem to be 

inefficient as an enormous number of candidate 
molecules are created which finally turn out to be 
infeasible molecular structures. 

As is familiar among financial and industrial 
problems, some properties need to be minimized and 
others maximized between the constraint values, while 
others need to be close to a specified value. This results 
in a multiple-objective optimization task with 
concurring targets. Our purpose is not to find a single 
solution, but a set of candidate molecules from the 
Pareto front. Pareto optimal solutions are those for 
which improvement in terms of one objective can only 
take place with the worsening of at least one other 
objective function. Pareto-ranking is the process of 
determining the rank of each solution through 
identifying the number of other solutions that dominate 
it (the number of solutions that are better than it in terms 
of every objective) [22]. A Pareto front can be seen in 
Fig.3. 

In the present work feasibility constraints are 
implemented in the algorithm to filterout the resultant 
molecular structures in terms of feasibility. As in this 
approach the candidates are still filtered out after the 
property evaluation, the efficiency of the search can still 
seem to be inefficient. As the solution to this 
contradiction, a special genetic operator has been 
introduced that improves the individuals of the 
populations to ensure the estimation of the properties is 
based on only reliable structures, and the property 
evaluation is carried out on solely feasible molecules. 

2.3. Property Estimation 

As the new molecules created in the ‘reverse’ problem 
are evaluated via property estimation methods to verify 
the satisfaction of properties, the success of CAMD 
tasks depends on, to a large extent, the reliability of the 
estimation method being used. From the point of view 
of precision, the highly improved, detailed models seem 
to be tempting in terms of the application. However, the 
computational complexity of these models is increased 

 
Figure 3. A Pareto front (The label of each solution 
refers to the number of other solutions that dominate 
them, non-dominating solutions are labeled with zero) 
[22]. 



  DÖRGŐ AND ABONYI 

Hungarian Journal of Industry and Chemistry 

42 

as well. In terms of precision and complexity, group 
contribution methods are promising solutions, as the 
equation for estimation assumes a linear additivity 
dependence as presented in Eq.(4), where 𝜃!

!  is the 
group contribution value of group i for property j, 𝜃!

!  is 
the offset value of property j and 𝑃!"#

!  is the estimated 
property value. 

 𝑃!"#
! (𝑥) = 𝜃!

! + 𝑥!𝜃!
! + 𝑥!𝜃!

! +  …+ 𝑥!𝜃!
!  (4) 

The Joback method, also known as the 
Joback/Reid method, is proposed to estimate eleven 
important physical properties of pure materials. During 
the determination of group contribution values, a 
common set of structural groups was employed in the 
regression process. To obtain the minimum values, the 
minimization of the sum of the absolute errors found 
from the estimated and the experimental values was 
carried out. As not the square values, but the absolute 
values were minimized, the method provides an 
improved estimation for the majority of the cases, but 
estimates slightly higher error values for outliers [23]. 
The systematic deviations of the Joback method in the 
case of normal boiling points can be seen in Fig.4, 
where experimental data is taken from the Dortmund 
Data Bank. 

The Joback method uses Eqs.(5-15) to predict the 
specific properties as follows: 
Normal Boiling Point: 

 𝑇! 𝐾 = 198 +  𝑇!,!𝑥! (5) 

Melting Point: 

 𝑇! 𝐾 = 122.5 +  𝑇!,!𝑥! (6) 

Critical Temperature: 

 𝑇! 𝐾 = 𝑇!
!

!.!"#!!.!"# !!,!!!! !!,!!!
!  (7) 

Critical Pressure (NA is the number of atoms in the 
molecular structure): 

 𝑃! bar = 0.113 + 0.0032 ∙  𝑁! − 𝑃!,!𝑥!
!!

 (8) 

Critical Volume: 

 𝑉! cm!/mol = 17.5 +  𝑉!,!x! (9) 

Heat of Formation (ideal gas, 298 K): 

 𝐻! kJ/mol = 68.29 +  𝐻!!𝑥! (10) 

Gibbs Free Energy of Formation (ideal gas, 298 K): 

 𝐺! kJ/mol = 53.88 +  𝐺!!𝑥! (11) 

Heat Capacity (ideal gas, parameters are valid from 273 
K to approximately 1000 K): 

 𝐶!
!

!"#$
= 𝑎!x! − 37.93 + 𝑏!𝑥! + 0.210 ∙ 𝑇 + 

  + 𝑐!𝑥! − 3.91 ∙ 10!! ∙ 𝑇! +  
 + 𝑑!𝑥! + 2.06 ∙ 10!! ∙ 𝑇! (12) 

Heat of vaporization at normal boiling point: 

 ∆𝐻!"# kJ/mol = 15.30 +  𝐻!"#,!𝑥! (13) 

Heat of Fusion: 

 ∆𝐻!"# kJ/mol = −0.88 +  𝐻!"#,!𝑥! (14) 

Liquid Dynamic Viscosity (MW is the molecular weight, 
the parameters are valid from the melting point up to 0.7 
of the critical temperature): 

 𝜂! Pa ∙ s = 𝑀! ∙ exp 𝜂!,!𝑥! − 597.82 /𝑇 +
                                +  𝜂!,!𝑥! − 11.202  (15) 

2.4. A Promising Approach for the Solution of 
the Design Task: Genetic Algorithms 

Genetic Algorithms (GAs) are stochastic optimization 
methods that imitate natural selection. GAs provide not 
a single optimal solution to a problem, but several near-
optimal solutions, which is the main advantage of 
evolutionary algorithms in the field of CAMD, because 
near-optimal solutions can be further processed later by 
the designer and the most promising ones can be 
selected for synthesis. 

During the operation of a GA, a population of 
candidate solutions competes for survival, based on 
their resemblance to the target values. This resemblance 
is described by a normalized distance value between 0 
and 1 and called the fitness. Candidate molecules are 
usually described by strings, and the components of 
these strings represent the ‘genes’ of the individual. The 
evaluation of the population is carried out therefore by 

 
Figure 4. Deviations between predicted boiling points 
and experimental data [24]. 

Normal Boiling Point Estimations by the Joback Method (Aliphatic Hydrocarbons) 
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the calculation of fitness and the surviving members 
have the chance to reproduce and propagate their genes, 
thus forming the next generation. This propagation is 
dependent on the genetic operators applied by the 
specific algorithm being used, the most common are 
crossover and mutation. The creation of next 
generations is continued until convergence is obtained 
(no considerable improvement is observed), or the 
maximum number of generations set by the user is 
reached [21]. 

2.4.1. The Non-dominated Sorting Genetic 
Algorithm-II (NSGA-II) 

For the description of the NSGA-II algorithm, three 
innovations of the algorithm must be described first: the 
fast non-dominated sorting procedure, a fast crowded 
distance estimation method, and the crowded 
comparison operator [25, 26]. 

The fast non-dominated sorting approach of the 
NSGA-II is based on the calculation of three entities: 
the domination count, the number of solution, which 
dominates the given solution, and the set of solutions 
that the given solution dominates. In the first non-
dominated front the domination count of all solutions is 
zero. After the determination of the first non-dominated 
front, each of the solutions dominated by its members is 
visited and his or her domination count is reduced by 
one. If the domination count of a solution becomes 0, 
then it becomes a member of the second non-dominated 
front. This algorithm is repeated until all fronts are 
determined. 

Along with convergence to the Pareto optimal set 
of solutions, the maintenance of a healthy spread of 
solutions is required to avoid the problem of getting 
stuck in the area of a local Pareto optimum. To prevent 
this issue, the parameter of crowding distance is 
introduced. During the calculation of this parameter, the 
average distance between two points on either side of a 
particular solution along each objective is calculated. 
The overall crowding distance value is the sum of the 
individual crowding distance values along each 
objective. With the use of this parameter, the “density” 
of solutions in the search place can be calculated. A 
solution with a higher crowding distance value is less 

crowded by other solutions, in other words, the outlier 
solutions can be identified. Thus, the parameter is 
applicable for the maintenance of diversity. The 
crowding distance computation for two objectives is 
illustrated in Fig.5. 

The goal of the genetic algorithm, to obtain a 
uniformly spread Pareto-optimal front, is reached with 
the help of the crowded-comparison operator. The 
operator guides the selection between two possible 
solutions as follows: 
1. If the non-domination ranks of two solutions differ, 

the solution which dominates the other is preferred, 
in other words, whose domination index is less. 

2. If the non-domination ranks of two solutions are 
equal (the two solutions are from the same front), 
then the solution of the less crowded region is 
preferred. 
The main loop of the NSGA-II can be explained 

by understanding the operators described above. The 
randomly created initial parent population (with N 
members) is sorted based on the non-domination rank. 
The crossover Eqs.(16-17) and mutation Eqs.(18-19) 
operators are applied to create the next generation (with 
N members) [27]. The algorithm applies to the 
intermediate crossover, which creates two children from 
two parents: parent1 and parent2 (child and parent are 
vectors, 𝑥 , containing the results of the specific 
problems), 

𝑐ℎ𝑖𝑙𝑑1 = 𝑝𝑎𝑟𝑒𝑛𝑡1 + 𝑟𝑎𝑛𝑑 ∙ 𝑟𝑎𝑡𝑖𝑜 ∙ (𝑝𝑎𝑟𝑒𝑛𝑡2 −
                  −𝑝𝑎𝑟𝑒𝑛𝑡1)  (16) 

𝑐ℎ𝑖𝑙𝑑2 = 𝑝𝑎𝑟𝑒𝑛𝑡2 − 𝑟𝑎𝑛𝑑 ∙ 𝑟𝑎𝑡𝑖𝑜 ∙ (𝑝𝑎𝑟𝑒𝑛𝑡2 −
                −𝑝𝑎𝑟𝑒𝑛𝑡1)  (17) 

where ratio is a scalar between 0 and 1, and rand stands 
for a random number, 

The applied Gaussian mutation adds a normally 
distributed random number to each variable, 

 𝑐ℎ𝑖𝑙𝑑 = 𝑝𝑎𝑟𝑒𝑛𝑡 + 𝑆 ∙ 𝑟𝑎𝑛𝑑 ∙ (𝑢𝑏 − 𝑙𝑏) (18) 

 𝑆 = 𝑠𝑐𝑎𝑙𝑒 ∙ 1 − 𝑠ℎ𝑟𝑖𝑛𝑘 ∙ !"##$%&
!"#$%&

 (19) 

where scale is a scalar, that determines the standard 
deviation of the random number generated and shrink is 
a scalar between 0 and 1. As the optimization 
progresses, this shrink parameter decreases the mutation 
range. currGen and maxGen are the numbers of the 
current and maximal generations, respectively. 

Since elitism is introduced, the creation of the first 
population differs from the creation of a subsequent 
one. The algorithm is described for the tth generation. 

A combined population (Rt) (with 2N members) is 
created by the summation of the parent population (Pt) 
and the population obtained by the use of crossover and 
mutation operators (Qt). The population Rt is sorted 
according to non-domination and as all previous and 
current population members are included, elitism is 
ensured. Now solutions belonging to the first non-

 
Figure 5. The crowding distance of the ith solution is 
the average side length of the cuboid (the front is 
marked with solid circles) [25]. 
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dominated front (F1) are chosen for the next generation 
(Pt+1) (if the size of F1 is smaller than N). This selection 
for the next generation is continued until the number of 
members from F1 to Fi is larger than N. In these cases Fi 
is sorted based on the crowded-comparison operator and 
the best solutions are chosen to fill the empty slots of 
the new population. The NSGA-II procedure is 
illustrated in Fig.6. 

2.5. Description of the Proposed Algorithm  

The developed algorithm therefore needs to solve 
effectively the CAMD tasks based on the needs of the 
industrial and research work. By taking into 
consideration these needs, the optimal properties of the 
desired molecules can be defined, and this chemical 
information is essential for the defining of input 
parameters for the genetic algorithm. This schematic 
algorithm of the design process can be seen in Fig.7. 

The standard genetic algorithm was modified 
according to the task of the design of molecules. The 
chemical information is converted into input 
parameters. Thus, the type, minimum and a maximum 
number of available groups, the property and structural 
targets (e.g. acyclic, monocyclic, bicyclic structures), 
and the property and feasibility constraints (octet rule 
and a rule for branching) are defined. The algorithm of 
NSGA-II can be seen in Fig.8. 

The efficiency of five different types of algorithm 
was tested in the present work. All the algorithms were 
implemented in MATLAB. 

2.5.1. The ‘base case’ Algorithm 1 

Only the type, the minimum and a maximum number of 
available groups, the target properties and the property 
constraints are defined. No structural targets or 
feasibility evaluations are implemented. 

2.5.2. The ‘octet rule’ Algorithm 2 

Besides the objectives and constraints of Algorithm 1, 
the octet rule is defined as target parameter. The octet 
rule is described in Eq.(20), 

 2 − 𝑣! 𝑥! = 2𝑚!  (20) 

where xi, vi are the number and valency, respectively, of 
groups of type i and m = 1, 0 or -1 for acyclic, 
monocyclic and bicyclic groups, respectively [28]. The 
valency parameter in this context means the number of 
available bonds on a group (thus the valency of double 
bonds counts as a single valency in this context). 

2.5.3. The ‘octet rule as a soft constraint’ Algorithm 3 

Besides the structure of Algorithm 2, the algorithm 
contains the octet rule (Eq.(20)) as a soft constraint to 
aspire the program to reach a feasible structure 
according to the octet rule. The soft constraint was 
defined as a curve similar to a reverse Gaussian 
distribution according to Eq.(21), where 𝑅𝑒𝑠.𝑂𝑐𝑡. is the 
result of the octet rule reordered to give 0 when the 
constraint is satisfied. 

 
Figure 7. The algorithm of the design process. 

 
Figure 6. Graphical illustration of the NSGA-II 
procedure [25]. 

 
Figure 8. The algorithm of the genetic algorithm (the 
steps in dashed box are only implemented in 
Algorithm 5).  
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 𝑓 𝑅𝑒𝑠.𝑂𝑐𝑡. = 𝑤 ∙ (1 − 𝑒!
(!"#.!"#.)!

!!! ) (21) 

As can be seen in Fig.9, the curve of this function 
has a descending value near the 𝑅𝑒𝑠.𝑂𝑐𝑡. = 0 value, and 
is equal to 0 at exactly x = 0. The parameter w shows 
the ‘weight’, the constant value far from 𝑅𝑒𝑠.𝑂𝑐𝑡. = 0, 
and σ stands for the ‘width’ (thus the ‘sharpness’) of the 
function. A sharp function type (w = 1, σ = 0.1) was 
chosen as structural feasibility is not satisfied with mild 
ones. 

2.5.4. The ‘octet and branching rule’ Algorithm 4 

Only the octet rule cannot describe the structural 
feasibility. Two adjacent groups cannot be linked by 
more than one bond. The valency parameter in this 
context still means the number of available bonds on a 
group, as defined in the description of Algorithm 2. 
Given xj groups of type j with valency vj, a total of 
𝑥! 𝑣! − 2 + 2 attachments are available for bonding [28]. 

 𝑥!!!! ≥ 𝑥! 𝑣! − 2 + 2 (22) 

 𝑥!! ≥ 𝑥! 𝑣! − 1 + 2 (23) 

2.5.5. The ‘healing function’ Algorithm 5 

The genetic algorithm is further improved with the 
introduction of a novel genetic operator called the 
healing function. The function is implemented in the 
algorithm at two points, after the initialization of the 
first population and after the selection, mutation and 
crossover steps are conducted in each generation. This 
function serves the population entities to be feasible 
with the help of the branching rule described in Eq.(23). 
If the equation is not fulfilled then the difference from 
the optimal value shows the bonds needed in the 
molecule to reach the feasible structure. Using this 
value, the algorithm chooses as many available groups 
with one bond as needed for feasibility and completes 
the molecule with these groups. During the definition of 
the input parameters the number of available groups 
with one bond in the molecule is increased to ensure the 
availability of these groups. The number of branches 
and the groups with 3 or more bonds, must be 
significantly less than the ones with one bond available, 

e.g. 4 and 20 respectively, thus the termination of every 
chain in the molecule is ensured. 

2.6. The Evaluation of the Results 

As the purpose of the current work is the development 
of an effective algorithm for the design of molecules 
obtaining target properties, the comparison of the results 
is an essential task to check the improvement. This 
efficiency inspection is carried out over two steps. 

First a visual evaluation was carried out as the 
MATLAB implementation of the NSGA-II algorithm 
plots every generation as the script runs. The plot 
window of NSGA-II can be seen in Fig.10. Then the 
number of solutions is counted and, as the feasible 
structure is not ensured in every algorithm, the feasible 
ones based on the octet and branching rules are counted 
as well. The last generation in which the population of 
the Pareto front was changed was also determined. 

3. Results and Discussion 

The effect of the various user determined input 
parameters was examined and presented in several 
benchmark problems for the identification of different 
chemicals having the desired physical and chemical 
properties, as estimated by the multi-dimensional 
property model. The genetic algorithm worked with 250 
generations containing 100 population members each. 
The effectivity of the different algorithms is compared 
through these design tasks. 

3.1. Checking the Effectivity through the 
Search for Predefined Molecules 

First the effectivity and applicability of the different 
algorithms were tested in terms of the search for 
different, predefined molecules. The properties of 
simple molecules were calculated via the Joback 
method and these values were set as targets to avoid the 
inaccuracy of the estimation method. The property 
constraints were set around these target values as given 

 
Figure 9. The curve of the used soft constraint. 

 
Figure 10. The plot window of NSGA-II. 
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below. The search for two simple molecules, acetone, as 
its structure is quite simple, and n-octane were carried 
out to validate the algorithms. 

3.1.1. Acetone 

The structure of acetone can be represented by two 
methyl (blue circles) and one ketone (red circle) groups 
using the groups of the Joback method as can be seen in 
Fig. 11. The experimental and estimated boiling and 
melting points are presented in Table 1.  

The input parameters for the design task were as 
follows: 

Available groups: 
 -CH3, -CH2-, >CH-, >C<, -F and >C=O 
 
Number of available groups:  
 0–4 for all the available groups  
(in the case of Algorithm 5, the -CH3, and -F numbers 
were set to 20 to allow healing) 
 
Target properties:  
 Tm = 173.50 K, Tb = 321.91 K (estimated values) 
 
Property constraints:  
 150 K < Tm < 200 K, 300 K < Tb < 350 K 
 
Target molecule structure:  
 acyclic. 

The results of different algorithms are presented in 
Table 2. Next to the number of solutions, the number of 
feasible solutions is presented in brackets and the value 
Ngen,change stands for the last generation that changed the 
population of the Pareto front. The last row of the table 
shows if acetone is among the resultant structures. 

Algorithm 5 seemed to be less effective in the light 
of the unsuccessful search for the structure of acetone, 

but if we consider that this algorithm could use up to 20 
pieces of -CH3 and -F groups, we can understand that 
the search place is significantly bigger than in the case 
of Algorithms 1-4. 

3.1.2. n-Octane 

The structure of n-octane can be represented by 2 
methyl (blue circles) and 6 methylene (green circles) 
groups using the groups of the Joback method as can be 
seen in Fig.12. The experimental and estimated boiling 
and melting points are presented in Table 3.  

The input parameters for the design task were as 
follows: 
Available groups: 
 -CH3, -CH2-, >CH-, >C<, -F and >C=O 
 
Number of available groups:  
 0–6 for all the available groups  
(in the case of Algorithm 5, the -CH3, and -F numbers 
were set to 20 to allow healing) 
 
Target properties:  
 Tm = 179.92 K, Tb = 382.44 K (estimated values) 
 
Property constraints:  
 150 K < Tm < 250 K, 350 K < Tb < 450 K 
 
Target molecule structure:  
 acyclic. 

The results of different algorithms are presented in 
Table 4, where the last row shows if n-octane is among 
the resultant structures. As in the case of the search for 
acetone, Algorithm 5 had a significantly bigger search 
place than Algorithms 1-4; thus, it could not find the 
structure of n-octane. 

Table 1. The boiling and melting points of acetone. 

 
Experimental 

values 
Estimated 

values 
Tm [K] 178.25 173.50 
Tb [K] 329.45 321.91 

 
Table 2. The results of the search for acetone. 

Algorithm 1 2 3 4 5 
Solutions 
(feasible) 

2 
(1) 

2 
(1) 

1 
(0) 

1 
(1) 

2 
(2) 

Ngen,change 95 10 8 9 127 
acetone yes yes - yes - 
 

 
Figure 12. The structure of n-octane fragmented 
according to the groups of the Joback method. 

Table 3. The boiling and melting points of octane. 

 
Experimental 

values 
Estimated 

values 
Tm [K] 216 179.92 
Tb [K] 398 382.44 

 
Table 4. The results of the search for n-octane. 

Algorithm 1 2  3 4 5 
Solutions 
(feasible) 

10 
(2) 

5 
(1) 

1 
(0) 

1 
(1) 

5 
(5) 

Ngen,change  191 58 17 207 47 
n-octane - yes - yes - 
 

 
Figure 11. The structure of acetone fragmented 
according to the groups of the Joback method. 
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3.2. Examples for Testing the Algorithms 

In the following examples the effectivity of the 
proposed algorithms is tested via two benchmark 
problems. As concurring minimum and maximum 
search objectives are set as target variables, a Pareto 
front can be obtained, which represents the applicability 
of the genetic algorithms to solve CAMD tasks. 

3.2.1. Case Study 1. 

The input parameters for the design task were as 
follows: 

Available groups:  
 -CH3, -CH2-, >CH-, >C<, -F and >C=O 
 
Number of available groups:  
 0–4 for all the available groups  
(in the case of Algorithm 5, the -CH3 and -F numbers 
were set to 20 to allow healing) 
 
Target properties:  
 max(Tc), min(Tb, Tm) 
 
Property constraints:  
 500 K < Tc < 600 K 
 350 K < Tb < 450 K 
 100 K < Tm < 200 K 
 
Target molecule structure:  
 acyclic.  

The results of Case Study 1 can be seen in Table 5. 
As the number of the last generation which changed the 

composition of the population is relatively high (250 is 
the maximum number of generations), the algorithms 
seem to evolve effectively towards the Pareto front. In 
the case of Algorithms 1 and 2, many of the found 
solutions proved to be infeasible, as expected since no 
feasibility constraints were involved in Algorithm 1 and 
no constraint for branching was available in Algorithm 
2. The soft constraint of Algorithm 3 seemed to be 
ineffective. Algorithm 4 found only 2 feasible solutions, 
but these solutions were all feasible ones and they were 
close to the target properties. Algorithm 5 was very 
effective, although the search place was significantly 
bigger than in the case of Algorithms 1-4. The Pareto 
front of Algorithm 1 can be seen in Figure 13. 

3.2.2. Case Study 2. 

The input parameters for the design task were as 
follows: 

Available groups: 
 -CH3, -CH2-, >CH-, >C<, -F, -Cl, -Br, -I, -OH, >C=O 
Number of available groups:  
 0–6 for all the available groups  
(in the case of Algorithm 5, the -CH3, -F, -Cl, -Br, -I, 
and -OH numbers were set to 20 to allow healing) 
Target properties:  
 max(Tc), min(Tb, Tm, Pc) 
Property constraints:  
 500 K < Tc < 600 K 
 350 K < Tb < 450 K 
 100 K < Tm < 200 K 
 10 bar < Pc < 30 bar 
Target molecule structure:  
 acyclic. 

Table 5. The results of Case Study 1. 

Algorithm 1 2 3 4 5 
Solutions 
(feasible) 

89 
(14) 

88 
(14) 

1 
(0) 

2 
(2) 

42 
(42) 

Ngen,change  250 250 219 186 250 
 

 
Figure 13. The Pareto Front of Algorithm 1 in Case 
Study 1. 

Table 6. The results of Case Study 2. 

Algorithm 1 2 3 4 5 
Solutions 
(feasible) 

75 
(0) 

95 
(5) 

2 
(0) 

2 
(2) 

74 
(74) 

Ngen,change  250 250 223 197 250 
 

 
Figure 14. The results of Algorithm 5 in Case Study 2. 
Candidate molecules are represented by blue lines. 
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In the case of Case Study 2 (Table 6), a wider 
searching range was available for the design task: 10 
types of available groups with a maximum of six pieces 
of each (except for Algorithm 5, see the targets and 
constraints) and another target property was set, the 
minimization of critical pressure between the property 
constraints. The results were similar to Case Study 1, 
Algorithms 1 and 2 fundnd several infeasible results 
with the appropriate properties; Algorithm 3 seemed to 
be ineffective, Algorithms 4 and 5 provided reliable 
results, although Algorithm 5 still found more results 
according to the more pieces of available chain-
terminating groups (groups with 1 valency). As can be 
seen from the results the improvement of the algorithms 
increases the number of feasible solutions significantly. 
The results of Algorithm 5 in Case Study 2 can be seen 
in Figure 14. 

4. Conclusion 

The design of molecules with specified properties has 
an increasing importance in the modern chemical 
industry. We proposed a multi-objective evolutionary 
optimization-based approach to take into account 
several objectives and constraints (e.g. financial aspects, 
toxicity). The algorithms generate a set of molecules 
arranged in a Pareto front related to the conflicting 
design targets calculated by the Joback method. To get 
reliable molecular structures we defined soft constraints 
based on the octet rule. The branching of the molecules 
was also tested and a healing function was designed to 
provide reliable results. The application of the proposed 
algorithms can be useful in the industry. 

In the future, we are going to improve the 
algorithms with problem-specific genetic operators. 
These modifications seem to be promising for the 
significant increase in the search efficiency. 

SYMBOLS 

𝐶! 𝐾,𝑁  selection of N groups from a set of K groups 
G the set of n groups from which the designed 

molecule can be composed 
nmax the available groups of the specified design 

task 
x the number of appearances of the specified 

group 
𝑃 a specified property value 
𝑃!"# estimated property value 
𝑃!"# experimental property value 
Plb the lower boundary of the specified property 

value 
Pub the upper boundary of the specified property 

value 
lll the lower limit for the number of appearances 

of the specified group 
lul the upper limit for the number of appearances 

of the specified group 
x1, …, xn the number of group type #1, …, #n, resp. 

𝑎!
! is the group contribution value of group i for 

property j 
𝑇! normal boiling point 
𝑇! normal melting point 
𝑇! critical temperature 
𝑃! critical pressure 
𝑉! critical volume 
𝐻! heat of formation 
𝐺! Gibbs free energy of formation 
𝐶! heat capacity 
∆𝐻!"# heat of vaporization 
∆𝐻!"# heat of fusion 
𝜂! liquid dynamic viscosity 
ratio a scalar between 0 and 1 
rand a generated random number 
currGen the number of the current generation 
maxGen the number of the maximal generation 
scale a scalar, that determines the standard 

deviation of the random number generated 
shrink scalar between 0 and 1. As the optimization 

progresses this parameter decreases the 
mutation range 

Rt A combined population (with 2N members) 
Pt parent population 
Qt the population obtained by the use of 

crossover and mutation operators 
F the non-dominated front 
𝑣 the valency of the specified group. The 

valency parameter in this context means the 
number of available bonds on a group (thus 
the valency of double bonds counts as a 
single valency in this context). 

m the type of the designed molecule (m = 1, 0 
or -1 for acyclic, monocyclic and bicyclic 
groups, respectively) 

w the ‘weight’ of the soft constraint curve (the 
constant value far from x = 0) 

σ the ‘width’ (the ‘sharpness’) of the soft 
constraint function curve 
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