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Diagnosing faults during the operation of a system is an essential task when investigating technological 
systems. In this paper, a new online fault identification method is proposed which is based on the occurrence 
graph of the coloured Petri net model of the system. The model is able to simulate the normal and faulty 
operations of the system given in the form of event lists, so called traces. The diagnosis is based on the search 
for deviations between the traces of the normal and the actual operations. In the case of complex technological 
systems, the occurrence graph can contain hundreds of nodes; therefore, the computational effort and 
searching-time increase significantly. Our proposed structural decomposition method can manage these 
demands so it has a crucial impact on the practical application of diagnostic processes. The main idea of our 
method is that the complex systems can be decomposed into technological units. Therefore, the diagnosis can 
be done by components separately and the diagnostic result of a unit can be used for the diagnosis of the other 
units connected to it. Because of the structural decomposition, the diagnosis has to be performed on much 
smaller occurrence graphs but the effect of faults in previous units is taken into account. The proposed method 
is illustrated by a simple case study. 
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1. Introduction 

Identifying faults and analysing their consequences are 
important tasks during the investigation of technological 
systems. A number of diagnostic methods are known in 
the literature and the model-based methods are very 
popular among them [1]. 

Petri nets and their different extensions (such as 
coloured, timed or hierarchical nets) are powerful tools 
for modelling discrete event systems [2]. For example, 
coloured Petri nets are often used for modelling 
production lines [3]. It is important that the resultant 
models describe not only the normal (faultless) 
operation of the system, but they also take into account 
different, randomly occurring errors in the system. 

In many cases, the normal or faulty operations of 
technological processes can be characterised by a series 
of events possessing discrete or qualitative valued 
variables. In this case, the occurring deviations can be 
generated by the comparison of the normal and actual 
events. The occurring faults can be detected and 
identified based on the observed deviations. 

                                                             
*Correspondence: pozna.anna@virt.uni-pannon.hu  

Discrete event systems are usually modelled by 
automata. In this case, the diagnosis is usually based on 
the idea of unobservable events [4]. Faults can be 
modelled as unobservable events, which means only the 
effects of faults can be noticed. The problem with fault 
detection is specifying whether any fault has occurred or 
not in the system. Fault isolation is the problem of 
identifying which fault has occurred exactly. Since faulty 
events are unobservable by assumption, the detection and 
isolation problem must be solved based on the available 
information of the observed non-faulty events. The 
diagnosability of discrete event systems was first 
investigated [5] using the methods of automata theory. 

Besides automata, Petri nets are also frequently 
used for modelling discrete event systems (DES). The 
structural and mathematical representations of Petri nets 
both can be used for diagnostic purposes. Methods 
include various techniques such as analysis of the 
occurrence graph, marking estimation, linear algebra, 
integer linear programming, diagnoser nets, or reverse 
nets. 

A simple fault detection method based on the 
measurement of token quantity is given [6]. It is 
assumed that the given Petri net is conservative, and any 
change in the token quantity is caused by faults. If the 
difference between measured and initial token number 
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exceeds a predefined threshold then a fault has 
occurred. Sensor signals are used for token 
determination instead of modelling the faulty behaviour 
of the system. The proposed method is very simple and 
can be used for early fault detection; however, it is not 
able to isolate faults. 

Faults can also be modelled as unobservable 
transitions in Petri nets. The set of places can be also 
observable; therefore, the marking of the Petri net has to 
be estimated. The notion of basis marking [7] (set of 
markings consistent with the observation) and j-vectors 
(minimal sequences of unobservable transitions to reach 
basis markings) are introduced. An online algorithm is 
developed to detect the occurrence of faults, which uses 
the basis occurrence graph. The main advantage of the 
proposed algorithm is that in the case of bounded Petri 
nets the basis occurrence graph can be computed 
offline. It reduces the computational effort of the online 
diagnosis. The basis occurrence graph can be used as an 
online diagnoser. 

Sufficient conditions of diagnosability of faulty 
transitions are given in the form of a system of 
inequalities [8]. In this method, the marking of places is 
observable. Authors introduce the notion of g-markings 
(markings with negative elements) and unobservable 
explanations (sequences of unobservable transitions, 
whose firings can explain the negative elements of a g-
marking). After an observed event, the g-marking is 
updated according to the Petri net equation. When an 
observed transition fires it removes tokens from its 
input places and adds tokens to its output places. If this 
transition is not enabled under the previous g-marking 
then the removal of tokens causes negative marking. An 
online fault detection algorithm has also been developed 
[9], which is based on solving integer linear 
programming problems and checking the diagnosability 
conditions. 

The integer linear programming approach has also 
been used [10] to determine if the system behaviour is 
normal, faulty, or ambiguous. The algorithm has further 
been improved [11], for a more general situation where 
different observable transitions can share the same label. 
Firing times of transitions are also considered, which 
add more constraints to the ILP problem making the 
fault detection algorithm more accurate. 

Timing characteristics have also been used [12], 
but with a different meaning: the faults affect the firing 
speed of the transitions. The fault detection is based on 
the generation of residuals, which are computed by 
comparing the markings of observable places with the 
reference model. 

A bottom-up modelling methodology has been 
proposed using interpreted Petri nets [13]. In the 
generated model, the faulty and normal states are 
represented by places. The authors introduce the 
definition of input-output diagnosability and also give 
conditions to test this property. The diagnoser model 
contains the normal behaviour of the system. An online 
algorithm based on the difference between the system 
output and the diagnoser model output is developed for 
detecting faulty markings. 

In the case of large systems, the models and 
associated diagnosers can be extremely large. 
Furthermore, the diagnostic methods are 
computationally expensive. Therefore, it is essential to 
investigate the possibility of distributed diagnosis. The 
idea of distributed diagnosis is to divide the system into 
modules or components then make a local diagnoser for 
each component. The challenging problem is to 
ascertain the diagnosis state of the whole system from 
the results of local diagnosers. It usually requires a 
distributed algorithm and a communication protocol 
[14]. 

Coloured Petri nets (CPN) have the advantage of 
making compact information representations. A CPN 
diagnoser equivalent to the classical diagnoser has been 
built [15]. In this approach, places represent different 
hypotheses and colours represent diagnosis results. The 
advantage of the CPN diagnoser is the simplified 
graphical representation. On the other hand, the 
coloured diagnoser is not necessarily smaller than the 
classical diagnoser. Decomposition and methods of 
modular diagnosis of DES are also studied by the 
authors. 

Backward reachability can also be used for 
diagnosis purposes. If a marking M is reachable from 
M0, then M0 is backward reachable from M in a Petri 
net. Possible sources of failures for this method can be 
determined. Backward reachability is extended to 
coloured Petri nets [16]. Transformation techniques for 
the inversion of CPN are also presented here. 

2. Basic Concepts 

A brief description of the basic concepts and notions of 
our method are given in this section. At first qualitative 
ranges are introduced to characterise the measured 
values. After that events, traces, and deviations in a 
technological system are defined, then the most 
important parts of the coloured Petri net model and its 
analysis are introduced. Finally, the structural 
decomposition-based diagnosis is described in detail. 

2.1. Qualitative Range Spaces 

In many applications, it is not always necessary to know 
the exact values of the measured signals. Qualitative 
models can be used in this case and it is enough to know 
whether the value of a signal belongs to a specified 
range space or not. For example, the measurement range 
of a sensor can be divided into the following range 
spaces: 

 Qs = { e0, 0, L, N, H, e1 } (1) 

where 0, L, N, H denote the zero, low, normal and high 
measured value, respectively, while e0 and e1 may refer 
to the extremely low and high values caused by sensor 
errors. The states of actuators, e.g. valves, switches, etc. 
can be described similarly. For example, a two-state 
valve can be represented by  
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 Qv = { op , cl } (2) 

qualitative range spaces, where op and cl refer to the 
open or closed state of the valve. 

2.2. Events, Traces, and Deviations 

Considering a technological system as a discrete event 
system, the state of the system can be characterised with 
the measured values at a given time. The actions in the 
system, e.g. interactions by operators, modify the values 
of input and output variables thus the system state 
changes. An event is defined as the arranged 
(qualitative) input and output values of the system at a 
given time instance τ: 

 eventτ = (τ, in1, …, inm, out1, …, outn) . 

The course of the system can be described as a 
sequence of consecutive events, so called trace: 

 trace = (event1, …, eventn). 

In a technological system the most important types 
of traces with respect to the diagnosis are the nominal, 
faulty, and characteristic traces. The nominal trace 
describes the normal operation of a system. The faulty 
trace contains the occurring events if a known fault is 
present while the characteristic trace refers to the actual 
course of the process. In this paper, it is assumed that 
only one fault may occur in a process unit of the 
technological system and this fault evolves before the 
start of the operation and remains unchanged during the 
course of the process. If a fault occurs then the trace of 
the system differs from its nominal trace. As a result, 
deviations between the nominal trace and the current 
characteristic trace can be defined. In our diagnosis 
method the following types of deviations are used: 

• never happened(eventτ) (abbreviated as 
H(eventτ): This type of deviation refers to the 
events of the nominal trace which (eventτ) 
never occur in the characteristic trace of the 
process. 

• chronological deviations: If an event of the 
nominal trace (eventτ) happens later or earlier 
in the characteristic trace than time point τ, the 
deviations LAT(eventτ) and EAR(eventτ) 
denote them. 

• quantitative deviations: This type of deviations 
is used to denote that the ith output value is 
greater (denoted by GREi(eventτ)) or smaller 
(SMLi(eventτ)) in the characteristic event at 
time τ than in the nominal event while the 
input values are identical. 

Our diagnosis method is based on the search and 
comparison of the deviation list on the reachability 
graph of the CPN model of the technological system. 

2.3. Coloured Petri Nets 

Coloured Petri nets (CPNs) are extensions of the 
ordinary or low-level Petri nets. The main differences 
with respect to ordinary Petri nets are that so-called 
colours can be assigned to tokens and functions can be 
assigned to arcs and transitions, too. The detailed formal 
definition is given in Ref.[17], only the special concepts 
used in our models are presented here. 

• Places of the CPN model of the technological 
system may have three functions. At first input 
and output variables are represented by places 
and the colour of the tokens on them denotes 
the qualitative value of the variable at the 
current time. On the other hand, places may 
refer to the occurred fault and the generated 
deviations. The colours of tokens in these 
places denote the type of the fault and the 
occurring deviations, respectively. 

• There are three transitions in our model, which 
have different tasks. Transition t1 is responsible 
for the generation of faulty or normal 
operations at the beginning of the process and 
the initialisation of the variables according to 
the investigated operational mode. The 
function of transition t2 is the timing of the 
process. It is assumed that the technological 
process is time-driven and the values of the 
variables change at the end of the time steps. 
Therefore, t2 fires until the end of the process. 
Transition t3 is used for the generation of the 
‘never happened’-type deviations at the end of 
the process. 

• Arc functions are assigned to the arcs between 
places and transitions defining the change in 
the colours and computing deviations. 

The structure of the coloured Petri net for 
modelling and diagnosing technological systems can be 
seen in Fig.1. Places are represented with ellipses and 
transitions are represented with rectangles. In a 
technological system, the consequences of a processing 
step can be stochastic. For example, the step may be 
completed in a normal way, or a fault occurs. The 
probabilistic nature of a transition t associated with a 
processing step can be modelled in a CPN by a fault 
function, which is built into its guard function. This 

 
Figure 1. Structure of the Coloured Petri Net Model. 
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fault function returns the logical value true or false with 
predefined probability, and the token values of the 
adjacent consequence places of transition t can be 
controlled by this logical value. This type of transition 
firing is called a stochastically fired transition. 

The occurrence graph of the CPN is a graph, 
which contains all of the system states reachable from a 
given initial state [17]. Assuming that the CPN model of 
the examined system is given, the occurrence graph can 
be used for its behavioural analysis. The nodes of the 
graph refer to system states and the arcs connecting 
them refer to state transitions, e.g. events. Different 
paths on the occurrence graph refer to different 
operational modes of the system and they can be used 
for analysing the causes and consequences of a system 
state. 

2.4. Diagnosis with Structural Decomposition 

The disadvantage of the occurrence graph-based method 
is the increasing size of the graph as the size, i.e. 
number of places, of the CPN model increases. In the 
case of even a simpler technological system containing 
three or four units, the occurrence graph of its CPN 
model can contain hundreds of nodes depending on the 
number of sensors and actuators. The refinement of the 
qualitative measuring range of sensors or the application 
of control valves instead of two-state actuators may also 
cause the growth of occurrence graphs because their 
branches will be longer. With the growth in the size of 
the graph, the computational effort and searching-time 
also increase. This is the reason why the structural 
decomposition has a crucial impact on the practical 
application of the diagnostic process. 

Generally speaking, complex systems can be 
decomposed into technological units. By taking 
advantage of this, the diagnosis can be done by 
components separately, and the diagnostic result of a 
unit can be used for the diagnosis of the other units 
connected to it. 

To perform diagnosis with structural 
decomposition the full trace of the system should be 
decomposed, too. To do this, first the time instances 
belonging to the operation of the investigated units have 
to be selected. Then the variables referring to this unit 
are picked out from the events belonging to the selected 
time instances. If the trace is represented in tabular form 
then specific rows and columns should be selected. 
Afterwards, time is shifted back in the case of every unit 
such that the initial time step of the first event should be 
1 in every sub-trace. This means that every unit has its 
own relative time-scale. By applying this decomposing 
process, the trace describing the operation of the entire 
system is disintegrated into the event lists referring to 
the operation of simpler technological units. As a next 
step the deviation list of the given subsystem is 
generated by comparing the nominal trace of the 
subsystem with its characteristic trace. Then the 
diagnosis is performed using the CPN model and 
occurrence graph of the subsystem. The task is to 
compare the generated deviation list with the token 

distribution of the terminal nodes on the occurrence 
graph. If the deviation list corresponds with the token 
distribution of exactly one terminal node then the fault 
can be determined based on the token of the fault place. 
If the deviation list matches the token distribution of 
more than one terminal node then only the set of 
possibly occurred faults could be determined. If the 
deviation list cannot be found in the token distribution 
of any terminal nodes then an unknown failure occurs in 
the system. 

In the case of complex systems, it is necessary to 
take into account the effect of faults that have occurred 
in subsystems connected to the diagnosed unit. 
Therefore, the CPN model of the units has to be 
modified such that the place of the fault has to contain 
not only the actual operating mode, but the operating 
modes of previous subsystems, too. To store this 
information the colour set of this place is extended with 
an attribute referring to the type of fault and to the place 
where the fault occurred. 

Let us assume that one fault is diagnosed in the 
first technological unit. This information is added to the  
fault place of the next unit as a previous fault. Then the 
occurrence graph of this subsystem is generated based 
on its CPN model where the fault of the previous unit 
appears as an initial condition. The resultant occurrence 
graph now contains those states and deviation lists 
which can occur in this subsystem if the fault of the 
previous unit is taken into account. The diagnosis is 
performed on this graph, the possible fault of this unit is 
determined based on this investigation, and the result is 
taken into account during the diagnosis of the following 
unit. In certain cases, the exact type of fault cannot be 
determined exactly. If the result of the diagnosis of the 
unit is a set of possible faults then each element of the 
set is treated separately. This means that the diagnosis 
of the next unit has to be performed taking into account 
every one of the possible previous faults. Occurrence 
graphs of the subsystem are generated according to each 
fault of the previous subsystem. The result of the 
diagnosis is the union of the obtained faults. 

The main advantage of the described method is the 
smaller size of the occurrence graphs of subsystems. 
Therefore, the search requires less time than in the case 
of the investigation of the entire technological system. 

3. Simple Case Studies 

A simple case study is presented in this section as a 
practical illustration of the diagnosis of complex 
technological systems based on their structural 
decompositions. 

3.1. Description of the Technological Process 

Our simple technological example contains three 
uniform tanks, TA, TB, and TC, which are serially 
connected as can be seen in Fig.2. Each tank has an 
input valve, an output valve (denoted by Vx, where x = 
A, B, C, and D), and a continuous level sensor (lev_x, x 
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= A, B, and C). The short description of the 
technological process is as follows: as an initialisation, 
it is assumed that all the valves are closed. The process 
starts with the opening of the first valve (VA) and then 
the filling of the first tank (TA) starts. The flow of liquid 
is considered constant so the control of the filling 
process is based on time. The role of the level sensors is 
to measure the actual liquid level only. At time step 3, 
the filling process of tank TA completes and its output 
valve (VB) is opened. The second tank TB is filled the 
same way as described for tank TA. At time step 5, the 
TB tank is full and its output valve (VC) is opened. The 
filling process of the third tank (TC) happens the same 
way. During the filling of the second and third tanks, 
the first (TA) then the second tank (TB) operates as a 
continuous unit. After the filling of the third tank (TC) 
has completed, the technological systems work in 
continuous mode.  

It is assumed that five possible faults can occur in 
each tank: 

• 2 faults of the level sensor: negative or positive 
bias error. In this case, the sensor signal is 
lower or higher with qualitative unit than the 
actual value of the level. 

• leaking of the tank: it is assumed that all of the 
incoming liquid runs out through the hole, i.e. 
it is a “big” hole. 

• 2 different faults of the output valves VB, VC, 
and VD: besides their normal operations, they 
can stay closed or open only halfway. 

For the sake of simplicity, only one of these faults 
can occur with each tank and all of the faults evolve 
before the filling process of the first tank TA starts. 

3.2. CPN Model of the System 

For the diagnostic investigation, a coloured Petri net-
based (CPN) model of the technological system is 
developed as follows: the system can be decomposed 
into three subsystems. Each subsystem represents a tank 
together with its input and output valves. As can be seen 
from the technological description of the system, all the 
subsystems (tanks with their input and output valves 
and sensors) work in a very similar way, so the structure 
of their CPN models is identical. The CPN models were 

built using CPN Tools 3.4.0. The CPN model of a 
subsystem can be seen in Fig.3.  

The description of the CPN model is as follows: 
the locations of the Petri nets represent input and output 
variables, i.e. the state of the input and output valves 
(denoted by in and out), and measured level value 
(level), respectively. The qualitative values of these 
variables are represented by different colour sets. 

• colour set of valves: Qvalve = {cl, op}, which 
represents the closed or open-state of the two-
state valve. 

• colour set of level sensors: Qlevel = { e0, 0, L, N, 
H, e1 }, where 0, L, N, H denotes that the level 
is zero, low, normal or high, respectively, and 
e0, and e1 indicate that the level is below or 
above the measurement range, respectively. 

Three additional places are needed: one to store 
the operating mode (place fault), one to collect the 
deviations (place dev) and one for the list of events that 
have not occurred until a given simulation time step 
(place never). The CPN model contains three transitions 
(t1, t2, t3). t1 is the initialisation transition, it fires only 
once at the start of the simulation. It generates an 
operating mode (normal or faulty) and updates the 
variables according to the generated operating mode. 
Afterwards, transition t2 fires until the end of the 
process. It updates the values of variables in every 
simulation step and generates quantitative and 
chronological deviations except for the ‘never 
happened’-type. The ‘never happened’-type deviations 
can be generated after the process has ended. This is 
done by the firing of transition t3, which removes the 
events that remain at place never at the end of the 
simulation and attaches the NH guideword to them. The 
values of variables at a given time step can be read from 
the trace files. Each trace file contains the list of events 
that describe the process according to the operating 
mode. All traces were generated by a MATLAB script. 

 
Figure 2. The investigated technological example. 

 
Figure 3. The coloured Petri net model of a tank (for 
the sake of clarity parts of some inscriptions were 
omitted). 



  PÓZNA, GERZSON, LEITOLD, AND HANGOS 

Hungarian Journal of Industry and Chemistry 

126 

3.3. Diagnosis of the System with Structural 
Decomposition 

According to the general description, the technological 
system consists of three uniform tanks. Because of the 
same structure and operational mode, all three tanks 
have the same CPN model. This model can be seen in 
Fig.3. The occurrence graph of the CPN model of a tank 
can be seen in Fig.4. At the time of the generation of 
this occurrence graph, any fault occurring in a previous 
technological unit was not taken into account.  As can 
be seen in Fig.4, node No. 17 refers to normal operation 
of the system, while the other terminal nodes (No. 20, 
21, 23–25) belong to the five different faulty modes. 

The nominal trace of the complex technological 
system can be seen in Table 1. The input variables of 
the first tank (tank TA in Fig.2) are the states of valves 
VA and VB, while the output variable is the value of 
level sensor lev_A. The variables of the second tank are 
VB, VC, and lev_B, while VC, VD, and lev_C belong to 
the third tank, respectively. 

The rows belong to time steps 1, 2, and 3, while 
columns VA, VB, and lev_A compose the trace of the first 
tank. These cells are framed with a dotted line in Table 1. 
Similarly, rows 3, 4, and 5 as well as columns VB, VC, and 
lev_B define the trace of the second tank (framed with a 
continuous line) while rows 5, 6, and 7, along with 
columns VC, VD, and lev_C give the trace of the third tank 
(framed with a dashed line). Consider the characteristic 
trace of the technological system given in Table 2. 

As a next step, the trace pieces belonging to each 
individual tank are removed from the characteristic 
trace of the entire system. The initial time step is shifted 
to 1 for every unit. The resultant event lists belonging to 
the three tanks can be seen in Table 3. 

The diagnostic process is started with the first 
tank. By comparing the nominal trace of the first tank 
with the characteristic trace (first column of Table 3) the 
deviation list is generated. This deviation list is then 

searched for among the terminal nodes of the 
occurrence graph of the first tank. (This occurrence 
graph can be seen in Fig.5). It can be stated that 
terminal node No. 21 contains the same deviation list 
and based on the token of the fault place the type of 
fault can be determined: the level sensor exhibits a 
positive failure bias in the first tank. 

The diagnosed fault in the first tank is used during 
the investigation of the second tank. This fault is added 
to the place fault as a token (pos_bias, prev1) in the 
model of the second tank. Then the occurrence graph of 
the second tank is generated which contains those states 
that can occur in the second tank if the sensor of the 
first tank exhibits a positive bias error. The resultant 
graph can be seen in Fig.6. 

The deviation list of the second tank is generated 
by comparing the second column of Table 3 with the 
characteristic trace of the second tank. By checking the 
terminal nodes of the occurrence graph in Fig.6, it can 
be stated that terminal node No. 24 exhibits the same 
deviation list. This means that the fault of the second 
tank is leakage and it can be identified unambiguously. 

The diagnosed faults of the first and second tanks 
are added to the model of the third tank in the form of 
tokens (pos_bias, prev1) and (leak, prev2) belonging to 
the fault place. Based on this information the occurrence 
graph of the third tank is generated in accordance with 
Fig.7. The nodes on this occurrence graph refer to the 
states if a positive failure bias occurs in the first tank 
and leak in the second tank. 

 
Figure 4. The occurrence graph of a CPN tank model. 

Table 1. Decomposition of the nominal trace. Dotted 
line: first tank, continuous line: second tank, dashed 
line: third tank. 

time input variables output variables 
VA VB VC VD lev_A lev_B lev_C 

1 op cl cl cl 0 0 0 
2 op cl cl cl L 0 0 
3 op op cl cl N 0 0 
4 op op cl cl N L 0 
5 op op op cl N N 0 
6 op op op cl N N L 
7 op op op op N N N 

 

Table 3. Characteristic traces of the three tanks after 
decomposition. 

TA TB TC 
(1, op, cl, L) (1, op, cl, 0) (1, op, cl, 0) 
(2, op, cl, N) (2, op, cl, 0) (2, op, cl, 0) 
(3, op, op, N) (3, op, op, 0) (3, op, op, 0) 

 

Table 2. Decomposition of the characteristic trace. 
Dotted line: first tank, continuous line: second tank, 
dashed line: third tank. 

time input variables output variables 
VA VB VC VD lev_A lev_B lev_C 

1 op cl cl cl L 0 0 
2 op cl cl cl N 0 0 
3 op op cl cl N 0 0 
4 op op cl cl N 0 0 
5 op op op cl N 0 0 
6 op op op cl N 0 0 
7 op op op op N 0 0 

 

 
Figure 5. The occurrence graph of the first tank. 
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The deviation list based on the trace pieces 
stemming from the filling process of the third tank (see 
the third column of Table 3) is generated and compared 
to the terminal node of the occurrence graph. It can be 
stated that terminal nodes No. 21–24 possesses the same 
deviation list as the deviation list obtained from the 
characteristic trace of the third tank. This means that the 
operating mode of the third tank cannot be 
unambiguously determined, the set of possible operating 
modes, i.e. normal, leak, or fault, of valves can be 
defined. 

4. Conclusion 

A novel method for online fault diagnosis in a 
technological system is described in this paper. The 
method is based on the structural decomposition of a 
complex technological system. The process starts with 
the modelling of the technological system in the form of 
coloured Petri nets. For the characterisation of sensor 
values and actuator states, qualitative value sets are used 
in the form of coloured tokens. This modelling method 
allows for the simulation of both normal and known 
faulty operations of the system. The diagnosis is 
performed using the occurrence graph of the basic units 
of the complex system. By generating the deviation list 
based on the normal and characteristic traces the fault or 
the set of possible faults can be determined. As a result 
of the structural decomposition, the diagnosis has to be 
performed on much smaller occurrence graphs but the 
effect of faults in previous units are taken into account. 
Our method reduces the demand of computational 
efforts and search time. The proposed method was 
illustrated by a simple case study. 
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