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A b s t r a c t. Three dimensional soil textural structure in 
a  township was conditionally simulated using a transition pro- 
bability-based indicator geostatistical method based on 270 soil 
texture samples from 27 profiles. Additionally the distribution 
of soil profiles lacking clay interlayers (indicating high irriga-
tion water and nutrient leaching risk) was analyzed using 500 
realizations from the simulation. The results indicated that the 
simulation could predict the soil texture distribution with low 
uncertainties using the existing data, and the predicted soil map 
(0-10 cm) formed by the maximum probable soil textures also 
exhibited a  good agreement with the legacy soil survey map. 
For water and nutrient leaching risk analysis, the areas lacking 
clay interlayer could be located; however, their distribution was 
still highly uncertain if based only on the existing sampling data. 
That means supplementary sampling in future is required for the 
risk assessment, and the existing study can help to optimise the 
sampling points and their distribution. Generally, the transition 
probability-based geostatistical simulation, as a stochastic con-
ditional simulation method, exhibited its potential in soil texture 
spatial reproduction and related risk assessment.

K e y w o r d s: soil texture, transition probability, geostatis-
tics, conditional simulation, risk assessment

INTRODUCTION

As the ‘skin’ of the earth, soil ties in many aspects with 
the circulations of water, air and other inorganic/organic mat- 
ters (Berner and Berner 2012; Condon et al., 1992; Ek and 
Cuenca 1994; Knapp et al., 1993). Many important ecologi- 
cal processes, such as evapotranspiration, soil water drain-
age, solute transport, and plant growth, are directly affected 
by soil properties and their spatial distribution (Golchin 
et al., 1994; Kaye et al., 2005). Due to the complexity of 

the pedogenic process affected by eluviation-illuviation, 
bioturbation and surface removal, erosion, deposition or 
inheritance, etc. (Phillips, 2001), soil texture usually shows 
apparent variations in space. Accurate characterization of 
the spatial distribution and variation of soil properties, espe-
cially the basic physical properties such as soil texture, has 
been regarded as an important subject for regional hydro-
logical, agricultural and environmental studies (Racz et al., 
2012; Wang et al., 2009, 2010). However, as restricted by 
labour and fund support, intensive sampling in a large area 
still seems currently impracticable in most cases. Therefore, 
introducing some new methods and strengthening the 
sampling data analysis to capture more spatial pattern 
information without extra labour and expense appears to be 
a way to solve the problem. 

Taking ‘everything is related to everything else, but near 
things are more related than distant things (Tobler, 1970)’ 
as the fundamental principle, various kinds of spatial inter-
polation and stochastic simulation methods have been 
developed. In most studies, samples were usually collected 
at points, and then the point/borehole/profile sampling data 
were extended to surface or three dimensions using interpo-
lation or stochastic simulation. Among the numerous data 
interpolation schemes ie nearest-neighbour, inverse dis-
tance weighted (IDW), radial basis function (RBF), spline 
and geostatistical (Kriging) methods (Cressie, 1993; Li and 
Heap 2011). Kriging interpolation is the most popular and 
widely used at present (Bocchi et al., 2000; Gonzalez and 
Zak, 1994; Meul and Van Meirvenne 2003). However, the 
interpolation methods, including Kriging, actually have 
an apparently smoothing effect on the predicted results 
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in unsampled areas, and lead to an overall inaccuracy of 
the output (Goovaerts, 1999). Some stochastic simulation 
methods, such as variogram-based Sequential Gaussian 
Simulation (SGS) and Sequential Indicator Simulation 
(SIS), can generate realizations of the study area from 
point/borehole samples to overcome this shortcoming 
(Deutsch and Journel 1998; Juang et al., 2004; Zhao et 
al., 2005). However, there are still some problems when 
applying the variogram-based SGS and SIS methods to 
build a three dimensional soil structure and perform uncer-
tainty analysis: first, sampling points are often too sparse 
to calculate the variogram in all directions, especially in 
the horizontal directions; second, the variogram-based 
methods cannot account for spatial relationship with strong 
asymmetric juxtapositional tendencies, which are actually 
very common in field; and furthermore, existing geological 
and subjective information cannot be directly infused into 
these methods to reduce the spatial uncertainty (Deutsch 
and Journel, 1998). 

Transition probability-based indicator geostatistics uses 
transition probability instead of variogram to realistically 
characterize the three dimensional properties of the mediums 
(Carle and Fogg, 1997). In comparison to the variogram- 
based geostatistical methods, the transition probability- 
based approach ‘improves consideration of spatial cross- 
correlations and facilitates the integration of geologic 
interpretation of facies architecture into the simulation’; 
and it is especially well-suited for typically sparse geolo- 
gical data sets (Carle, 1997). With the advantages of pro- 
cessing sparse data and anisotropy, transition probability-
based indicator geostatistical simulation seems to be a good 
method for the prediction of spatial distribution of soil textu- 
re and related agricultural and environmental risk analysis. 

The objective of this study was to apply the transi-
tion probability-based geostatistical simulation method 
for three-dimensional soil texture distribution prediction 
within a township scale in North China Plain, to analyse 
the uncertainty level based on the existing sampling data, 
and to assess the high water and nutrient leaching area (lack 
of clay interlayers) distribution using the simulation result.

MATERIALS AND METHODS

The sampling work was conducted in Pandian Township, 
Fengqiu County, Henan Province, China. It is only about 10 
km away from the Yellow River in its midstream, and in the 
centre of the North China Plain (114.51°- 114.60°E, 34.98° 
-35.06°N), and covers an area of 32 km2 (Fig. 1). The ter-
rain is relatively flat in the area, with mean, minimum and 
maximum elevations of 64, 52, and 71 m, respectively. Most 
lands within the study area are productive farmlands and 
have been cultivated for over a thousand years. Nowadays, 
agriculture still plays a dominant role in the local economy. 

Being situated close to the Yellow River, the soils were 
mainly formed by river alluviation. All the soil parent 
materials were sourced from the Yellow River deposition 

during the Holocene Epoch of Quaternary Period. Fluvo-
aquic soil (Och-AquicCambisol) has the widest distribution 
and accounts for 98.32% of the topsoil in Fengqiu County. 
Aeolian sandy soil (Ust-SandicEntisol) which exists in 
the form of sand banks in the north part of the study area 
accounts for 1.68% of the topsoil in the county. Due to the 
fluctuation of water and sediment amount of the Yellow 
River, variation of local sedimentary environments, wind 
transportation and human influence, layering structures are 
very common and textural heterogeneity usually exists in 
both horizontal and vertical directions (Wang, 1987). The 
most common layering structure known by the local farmers 
is the sandy or sandy loam soil body with clay interlayer(s) 
at 40-80 cm depth in the profile. Since the clay interlayer 
limits the water and fertiliser leaching and contributes so 
significantly to water and nutrient conservation and crop 
yield, this kind of textural configuration was also named the 
‘Mengjin’ soil by local farmers, which means ‘gold-covered’. 
According to previous investigations, Mengjin soil accounts 
for 83.4% of the farmland area in Fengqiu county, and among 
these soils, had clay interlayer(s): 70.9% above 60 cm, 
and 12.5% below 60 cm (Li et al., 2007; Wang, 1987). 
Figure 1 (right) shows the soil texture distribution deduced 
from a 1: 100 000 legacy soil map (Tian, 1982). For com-
patibility with the categories in the study, soils in the map 
were reclassified to four classes: 
A –  aeolian sandy soils;
B – light-textured fluvo-aquic soils (mostly sandy loam, 

loam, and silt loam);
C – light to middle-textured fluvo-aquic soils (mostly 

sandy clay loam, clay loam, and silt clay loam);
D –  and other heavy-textured soils.

The complexity of the soil spatial variation in the study 
area may make geostatistical interpolation methods be 
faced with some difficulties to reconstruct the soil texture 
spatial patterns. However, the stochastic sequential indi-
cator simulation based on transition probability should 
perform well and get some promising results due to its 
advancement in theory. 

The soil sampling scheme was designed based on uni- 
form grids and then adjusted according to their availabil-
ity and accessibility. In total, 27 soil profiles up to 200 cm 
deep, positioned by a portable GPS (Garmin eTrex Vista, 
positioning error <15 m), were excavated within and around 
Pandian Township during 2010- 2011 (Fig. 2a). Soil sam-
ples were collected at every 20 cm in all profiles, and there 
were 270 samples in total. Soil particle size distributions 
were determined by a laser diffraction particle size analyser 
(Beckman Coulter LS 13-320) after organic matter removal 
and particle dispersion. 

The 270 samples were classified into four groups with 
soil texture from light to heavy (Fig. 2b). According to the 
soil texture classification of International Soil Science 
Society (ISSS), class A represents the soils with clay less 
than 15% and sand more than 85% (ie sand or loamy sand), 
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Fig. 1. The location of the study area and soil texture classification in topsoil from the legacy soil map. For compatibility with the 
simulation results, the map was reclassified: aeolian sandy soils as class A; light-textured fluvo-aquic soils (mostly sandy loam, loam, 
and silt loam) as class B; light to middle-textured fluvo-aquic soils (mostly sandy clay loam, clay loam, and silt clay loam) as class C; 
and other heavy-textured soils as class D.

Fig. 2. (a) sampling sites (the label represents the name of the site and the soil texture class in the 0-10 cm layer, and the rectangle 
denotes the simulation area in Fig. 4), (b) four classes of soil textures according to international soil texture classification, and (c) soil 
texture classification in the sampled profiles (the frame denotes the simulation area in Fig. 4).

a b

c
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class B represents the soils with clay particles less than 
15% and sand less than 85% (ie sandy loam, loam and silt 
loam soils), class C represents the soils with 15-25% of clay 
particles (ie sandy clay loam, clay loam, silt clay loam), and 
class D represents the other soils with high proportion of 
clay particles (ie sandy clay, loamy clay, silt clay, clay and 
heavy clay). By dividing the soils into these four classes, 
the hydraulic properties among the different soil classes 
became generally distinguishable, and the vertical soil tex-
ture configurations according to this classification at the 
sampled sites are exhibited in Fig. 2c.

The transition probability-based indicator geostatistical 
simulation method was firstly proposed by Carle and Fogg 
(1996). As an indicator Kriging-based sequential simula-
tion method, its main features include indicator Kriging 
for estimator, transition probability as a measure for quan-
titatively describing the characters of spatial structure 
variation, SIS algorithm for stochastic simulation, and sim-
ulated quenching for post-processing (Deutsch and Journel 
1998). In the method, Markov chain models are derived to 
fit the transition probability trends in directions for indica-
tor Kriging estimation, and it offers an ‘interpretable and 
mathematically simple yet powerful stochastic model for 
categorical variables’ (Carle, 1999). Transition probability 
tjk(h) is defined as:

tjk(h) = Prob (k occurs at x + h | j occurs at x) 	    (1)

where: x is spatial location, h is the lag (separation vector), 
and j, k denote mutually exclusive categories such as soil 
textures or geological units. Using the definition of condi-
tional probability, the transition probability Prob (B’|A) can 
be described as:

'
' Prob ( )Prob ( | )

Prob ( )
Aand BB A

A
= , 	   (2)

where: A represents (j occurs at x) and B’ represents (k oc-
curs at x + h). 

In the study, T-PROGS, the Transition PRObability-
based indicator GeoStatistics software package developed 
by Carle and Fogg (1996), was used to generate stochastic 
realizations for the spatial patterns analysis of soil texture. 
T-PROGS provides an integrated technique with three 
components: transition probability model inference, transi-
tion probability-based sequential indicator simulation (with 
full indicator Kriging), and simulated quenching for post 
processing. The implementation of transition probability 
geostatistical method in T-PROGS mainly involves the fol-
lowing steps:

1. Calculating the measured vertical transition probabi- 
lities of the regionalized variables (eg soil texture) based on 
sampling data, by subprogram GAMEAS which can com-
pute a set of transition probability curves as functions with 
lag distance at given sampling intervals.

2. Fitting the measured transition probability using Mar- 
kov chains and formulating simulated transition trend equa-
tions. In the study, embedded Markov chains were employed 
since the soil layer interfaces often occur discretely.

3. Deriving the transition trends in horizontal directions 
from the vertical equations, using lens length ratios which 
represent the lens length of each material in horizontal 
directions vs. the lens thickness in vertical (Carle, 1999). 
Here, Walther Law, which states the lateral successions of 
a deposit can be represented by the vertical successions of 
deposited facies, applies, and then the transition probabi- 
lity models in horizontal directions can be derived from the 
vertical equations.

4. Generating three-dimensional stochastic realizations 
of material sets using subprogram TSIM based on the fitted 
transition probability models in all three primary directions. 
All realizations are conditioned to borehole data and pos-
sess the inherent transition tendencies in the measurements.

Uncertainty analysis is a part of risk analysis that focus-
es on the uncertainties in the data characteristics. Important 
components of uncertainty analysis include qualitative 
analysis to identify the uncertainties, quantitative analysis 
the uncertainties affecting the decision process, and com-
munication of the uncertainty (Funtowicz and Ravetz 1990; 
Katz 2002; Regan et al., 2002; Smith 2002). There are 
two kinds of uncertainties: local and spatial. Local uncer-
tainty refers to an uncertainty involving a single location, 
and spatial uncertainty refers to an uncertainty related to 
multiple locations (Delbari et al., 2009). Accordingly, the 
uncertainty analysis of the soil texture spatial patterns in 
the study includes the assessments of both local and spatial 
uncertainties. 

Local uncertainty, the uncertainty of soil texture at a 
single location x’, is modelled by a probabilistic model. 
The probability of soil type ‘X’ occurring at an unknown 
site x’, Prob (x’ = X), can be calculated as: 

 (  = )Prob (  = ) =
total

n x' Xx' X
n  

, 	    (3)

where: x’ = X represents a situation where the soil texture at 
location x’ is ‘X’, n (x’ = X) is the accumulated times where 
soil ‘X’ occurs at x’ in all the realizations, and ntotal is the 
total number of the realizations.

Spatial uncertainty indicates the uncertainty of soil 
texture spatial distribution prevailing jointly at several 
locations or depths. It can also be described as the reli-
ability that the area is delineated under a given condition 
‘Prob (x’ = X) ≥ pc’ (Goovaerts et al., 1997). To assess the 
spatial uncertainty, the critical area under a given critical 
probability pc should be firstly delineated, and then the 
joint probability is used to assess the spatial uncertainty 
of the critical area. The critical areas are delineated by the 
condition where the probabilities of soil X occurring at all 
locations are all greater than pc. It means that, at all the loca-
tions of the critical areas, x1, x2, …, and xm, Prob (x1 = X), 
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Prob (x2 = X), …, and Prob (xm= X) are greater than pc, 
where m is the total number of locations in the critical area. 
After the critical area is delimitated, the spatial uncertainty 
of this area can be assessed using joint probability. The 
joint probability that all the m locations in the critical areas 
in all realizations are soil ‘X’ is calculated as:

 ( = ,  = , , = )Prob ( = ,  = , , = ) = 1 2 m
1 2 m

total

n x X x X x Xx X x X x X
n  


 ,

(4)
where: x1 = X, x2 = X, …, and xm = X represent the joint 
probability that soils at m locations x1, x2, …, and xm are 
soil ‘X’; n (x1 = X, x2 = X, …, xm = X) is the number of re-
alizations that the simulated soil textures at m locations x1, 
x2, …, and xm are all soil ‘X’; and ntotal is the total number 
of the realizations.

Local uncertainty can be used to evaluate the reliabi- 
lity of the prediction at a certain unsampled location, or to 
locate the critical area according to certain critical prob-
ability pc. Spatial uncertainty can be applied to assess the 
reliability of some multiple points related result, such as 
high water and nutrient leaching area (Delbari et al., 2009). 

In the North China Plain where the study area is loca- 
ted, one of the big concerns for the farmers and the local 
government is the high leaching risk of irrigation water and 
nutrients due to poor soil water conservation properties and/
or improper irrigation management. The hydraulic beha- 
viours of clay and sandy soils are quite distinct. Different 
textured soils and their configuration in the soil body have 
large impacts on soil water and solute movements, and are 
crucial for soil water and nutrient conservation (Li et al., 
2013; Zettl et al., 2011). According to previous studies, 
soils with higher leaching risk are usually found at loca-
tions lacking clay interlayers in the root zone (‘golden 
cover’ missing) (Li et al., 2010). 

In the study, we considered the soil profiles with-
out enough clay interlayers as high risk areas for water 
and nutrient leaching. From the geostatistical simulation 
results, the soil profiles where clay interlayers (soil D) 
were missing, or only of limited thickness, were delineated 
based on some selection criteria. It was formed by the loca-

tions where there was a high probability that the fraction of 
soil D within the profile was less than a certain thickness. 
We supposed that the 0-200 cm soil profile with less than 
20 cm of clay had high water and nutrient leaching risk, and 
then two levels of clay texture deficiency were set: severe, 
the total thickness of soil D in 0-200 cm soil profile being 
less than 10 cm [Prob (D ≤ 5%)]; and slight, the thickness 
of soil D being more than 10 cm but less than 20 cm [Prob 
(5 < D ≤ 10%)].

In the study, the uncertainty of the simulation based on 
the existing sampling data was analyzed by local uncertain-
ty analysis. The water and nutrient leaching risk areas were 
firstly located by local uncertainty, and then their reliability 
was assessed by spatial uncertainty analysis. 

RESULTS AND DISCUSSION

Geostatistical Simulation Results and the Uncertainty 
in Soil Texture Distribution.

According to the general statistics of the samples 
(Table 1), sandy loam, loam and silty loam (soil B) were 
dominant in the study area, accounting for up to 48.9% at 
all sampled locations, and they occurred in 92.6% of all 
the sampled profiles, compared to 37.0, 81.5, and 77.8% 
for soil A, C, and D, respectively. The vertical lens length 
means the mean thickness of a soil layer in the vertical 
direction. Not surprisingly, soil B had a maximal mean 
thickness in the vertical as well. For these reasons, soil B 
was selected as the background soil type in this study. Soil 
A showed not only a relatively large vertical lens length but 
also a large standard deviation compared to its proportion, 
indicating that soil A was not evenly distributed but more 
probably distributed in clusters or strips. Additionally, the 
so-called ‘Mengjin’ soil, which had a clay interlayer (soil 
D) at 40-80 cm depth serving as water and nutrient conserv-
ing unit, took up to 51.9% of all the sampled profiles, and if 
taking the 0-200 cm profile into account, the soils with clay 
interlayer(s) in the profile increased to 77.8%.

The three-dimensional soil body of the study area 
was discretized into cubic cells before the simulation. In 
the study, the horizontal and vertical intervals were set as 

T a b l e  1. General statistics of the sampled soil texture data in the study area

Soil class Proportion (%) Pe (%) Lv (m) STDEVLv (m) Soil texture

A 13.0 37.0 0.54 0.44 Sand and loamy sand

B 48.9 92.6 0.56 0.43 Sandy loam, loam and silty loam

C 19.3 81.5 0.27 0.12 Sandy clay loam, clay loam, silty 
clay loam

D 18.9 77.8 0.32 0.20 Sandy clay and clay

Pe – the probability of a soil class occurs in a soil profile; Lv – the mean lens length of a soil class in vertical direction; STDEVLv – the 
standard deviation of the mean lens length in vertical direction.
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100 m and 10 cm, respectively, and there were 105×81×20 
cells in total. The soil properties, including texture within 
a cell, were thought to be homogeneous. 

Experimental transition probabilities of soil texture in 
the vertical were calculated from the sampled profile (bore-
hole) data, and then fitted by Markov Chain models which 
would be further used in the stochastic simulation to gener-
ate realizations. The Markov Chains can be defined by the 
proportions of the materials, lens lengths, and transitions 
rates. In the study, the ‘maximum entropy factor’ method 
was used to fit the Markov Chains to the measured tran-
sition probability curves. The maximum entropy factor 
represents the ratio of the transition rate to the maximum 
entropy transition rate, and can indicate the two categories 
that tend to occur next to each other when greater than 1.0 
and the opposite when less than 1.0. Using this method, the 
proportions and lens lengths of the materials were chosen 
to use the experimental data, and the transition rates from 
one material to itself (diagonal terms) were determined by 
experimental means of lens lengths, and the transitions 
rates to others (off-diagonal terms) were determined by 
the maximum entropy factors. The experimental transi-
tion probabilities and their best-fitted curves revealing the 

spatial transition relationships between different soils are 
presented in Fig. 3. As can be seen from the diagrams, all 
the experimental transition probabilities tended to approach 
constants with the expansion of space lag, and most of them 
were well fitted by the Markov Chains. Only the experi-
mental A → A and A → B transitions had some fluctuations 
at the lag spacing between 1.0 and 1.8 m. This is probably 
due to the relatively larger vertical lens length and greater 
variation of soil A compared to other soils (Table 1). 

In Fig. 3, the diagonal terms indicate the transition 
probability from one category to itself, and the off-diagonal 
terms mean the transition probabilities from one category 
to another. According to the feature of transition probabi- 
lity, the four approached constants in the same column (eg 
A → A, A → B, A → C, and A → D) should be equivalent, 
and the value denoted the proportion or the ‘marginal pro- 
bability’ of this soil type in all the soil types (Carle, 1999). 
The sum of the four marginal probabilities equalled one. As 
shown in Fig. 3, apparently asymmetrical transition trends 
of soil texture in the vertical direction were exhibited. For 
example, the transition probability of A → B (adjacent soil 
layers from above to below switching from soil A to B) was 
apparently greater than the probability of B → A, and the 

Fig. 3. Matrix of transition probabilities measured (×) and modelled (—) in vertical direction.
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probabilities of C → B and D → B were also larger than 
the probabilities of B → C and B → D. This kind of asym-
metry was actually quite common in geological sediment 
and soil formation, however it cannot be expressed by the 
‘traditional’ variogram-based geostatistical methods based 
on symmetric hypothesis (Deutsch and Journel, 1998). In 
addition, the transition probabilities of A → D and D → A 
were keeping quite low with the distance expansion, which 
meant that sandy or loamy sand soil, and clay or sandy clay 
soil, can scarcely co-exist in the same soil profile in field.

In theory, soil texture transition probabilities in horizon-
tal directions can be directly calculated using experimental 
data. However, in most cases, the sampling data in the hori-
zontal were usually too sparse to get a meaningful result 
because of the restrictions of sampling labour and funds. 
Therefore, we employed an indirect method to generate 
horizontal transition probabilities. According to Walther 
Law, the successions of geological units in lateral direc-
tions were consistent with their configuration in the vertical. 
The horizontal transition probabilities can be obtained by 

the experimental lens length ratios (ie the ratio of the soil 
lens length in x or y direction with the length in z direc-
tion) and the vertical transition probabilities (Carle, 1999). 
In the study area, although some soils at certain depth (eg 
soil A at 0-10 cm depth) did show some horizontal anisot-
ropy according to the soil survey map, when considering 
all depths and all soil types the anisotropic trends seemed 
not consistent. Therefore, we kept the assumption of hori-
zontal isotropy in the study ie the lens length ratios in x and 
y directions were equivalent. The soil survey map (Tian, 
1982) was used to deduce the lens length ratios by compar-
ing the mean diameters of soil texture polygons with the 
measured lens lengths in the vertical direction, and the lens 
length ratios of soil A, B, C, and D were set as: 1 000:1, 
1 200:1, 4 000:1, and 2 000:1, respectively.

Based on the Markov Chain models of transition prob-
abilities in all three primary directions, 500 soil textural 
distribution realizations were simulated by SIS. As seen 
in Fig. 4, the stochastic realizations reproduced the over-
all soil texture spatial characteristics as the sampling data 
indicated. Soil B, which took up the largest proportion in 
the sampling data, was mostly interconnected in the reali-
zations, and contrastingly, soil A, which only accounted 
for 13% in the sampling data, showed up as disconnected 
spots. A comparison of the statistic results of the 500 reali-
zations with the measured data is listed in Table 2. If there 
were adequate realizations, the mean probability of a soil 
class occurring in all realizations (the simulated proportion) 
should be equivalent to the corresponding proportions in the 
sampling data; the predicted mean lens lengths should also 
approach their measured values. In the study, the simulated 
proportions of four soil classes and their mean lens lengths 
in the vertical direction all showed good agreements with 
the sampling data. It also confirms that the simulation cap-
tured the soil texture spatial patterns, and further studies 
can be carried out based on the realizations.

Using the 500 realizations, the occurrence probabili-
ties of the four soil classes at all locations and depths were 
calculated, and Fig. 5 shows their distributions at surface 
(0-10 cm), moderate depth (90-100 cm), and bottom (190-
200 cm). In general, the higher the probability, the more 
possible the occurrence of that soil texture at the location. 

Realization 1

Realization 100

Realization 300

Realization 10

Realization 200

Realization 400

Fig. 4. Example realizations of soil texture distribution in the study 
area (including some adjacent area and vertical scale expanded by 
1 000 times for visualization). Materials A, B, C, and D follow the 
same soil classification as that in Fig. 2.

T a b l e  2. Comparison of statistic results from the simulated realizations and the field samples

Soil class Proportion (%) Probs (%) Lvm (m) Lvs (m)

A 13.0 13.4 0.54 0.55

B 48.9 48.0 0.56 0.64

C 19.3 19.2 0.27 0.27

D 18.9 19.3 0.32 0.36

Proportion represents the proportion of each soil class from soil sampling; Probs represents the mean probability of a soil class occurred 
in all realizations; and Lvm and Lvs are the measured and simulated average lens lengths, respectively.
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It can be seen that the probability distributions at diffe- 
rent depths exhibited apparent differences. For example, 
soil C at 200 cm depth had a high possibility of occur-
rence in the eastern part of the study area, and that was 
quite different from its probability distribution at the sur-
face. Soil B, which was predominant in the sampling data, 
had large occurrence probabilities at most locations. Based 
on the probability maps at various depths, we found the 
soil textures with the highest occurrence probabilities at 
the locations in the study area (Fig. 6a) and their corre-
sponding probabilities (Fig. 6b). As for the surface layer 
(0-10 cm), the simulated soil texture map (Fig. 6a, left) was 
quite consistent with the legacy soil map in Fig. 1. The high-
est occurrence probability (Fig. 6b) was represented by the 
determination/certainty level at the locations. If the highest 
probability at a location was low, it indicated that the soil 
type there was uncertain. In Fig. 6b, the highly uncertain 
areas are crossed by the 50% probability contours. It can 
be seen that the major parts of the study area had determi- 
nistic levels over 50%, and the high uncertainties, no mat-
ter at what depth, were always located at locations with too 

sparse sampling sites or the sampled soil texture was in 
contrast with the others nearby. For example, in the south-
eastern part of the study area, the soil textures at the three 
exhibited depths all seemed relatively uncertain due to 
insufficient sampling sites. This result provides a basis for 
the supplementary sampling in future: more work should 
be conducted in these areas in order to reduce the overall 
uncertainty.

Figure 7 shows the probability distributions of clay 
interlayer deficiency (at two levels) calculated from 500 
realizations. Areas with critical probabilities Prob (D ≤ 
5%) (total clay proportion less than or equal to 10 cm) and 
Prob (D ≤ 10%) (total clay proportion less than or equal to 
20 cm) were positioned, respectively. At the locations with 
high probability of clay interlayer deficiency, the water 
nutrient leaching risk was supposed to be correspondingly 
high. Generally, in the study area, soils with high water and 
nutrient leaching risk were clustered in a strip in the north-
west-southeast direction. The soils with more than 50% 
probability of severe lack of water and nutrient conserva-
tion ability accounted for a sizeable proportion, and along 

Fig. 5. Probability maps of various soil textures occurring at different depths (surface 0-10 cm, middle 90-100 cm, and bottom layer 
190-200 cm). 
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Fig. 6. (a) soil texture maps with the highest probability occurring at the location, and (b) the corresponding maximum probabilities 
(the solid lines represent the 50% contour).

Fig. 7. Probability maps with the thickness of soil D being 0-10 cm (left) or 0-20 cm (right) in the 0-200 cm soil profile, and wheat 
yield sampling sites (*).

0-10 cm 90-100 cm 190-200 cm

≤ 10 cm clay ≤ 20 cm clay

6 km

6 km

a

b



XIAOPENG LI et al.456

with the slight level, it would make up to almost half of the 
study area, which should arouse the attention of the local 
agricultural managers. The distribution of the high risk area 
was confirmed by crop production data. According to the 
crop yield survey data in 2008 and 2009 (Fig. 7), the ave- 
rage yields at the sites with Prob (D = 0) > 50%, Prob (D ≤ 
5%) > 50%, and Prob (D ≤ 10%) > 50% were of 5.74, 7.46, 
and 7.71 Mg ha-1, respectively, compared to a mean wheat 
yield of 7.83 Mg ha-1 in the whole study area . 

Figure 7 delineates the locations with high leaching risk 
and the corresponding determination level (local uncertain-
ty). However, it provides no measure of spatial uncertainty 
to assess the reliability of these high risk areas because the 
conditional cumulative distribution functions (CCDFs) in 
the maps were only for single point rather than multi-point. 
In order to assess the reliability of the high risk areas, the 
joint probabilities at severe and slight levels were ana-
lyzed. Table 3 shows the joint probability variations with 
the increasing critical probabilities. A higher joint probabil-
ity value meant lower uncertainty at unsampled locations 
and a more reliable delineation of the high risk areas. For 
the severe level, although the critical probability was over 
80%, its joint probability was still less than 50%, indicat-
ing a high uncertainty/low reliability of the delineated high 
risk areas. The spatial uncertainty at the slight level became 
even higher because of the increasing acreage of the criti-
cal areas. A promising joint probability value could not be 
reached until the critical probability increased up to 90% 
(severe level) or 95% (slight level). The dilemma was that if 
we only used the existing sampling data for simulation, the 
high risk areas with high reliability would be only clustered 
close to the sampling sites. It meant that the existing sam-
pling data could be used to successfully reproduce the soil 
texture spatial patterns, however, it still seemed insufficient 

for confident determination of the high clay deficiency/
water and nutrient leaching risk areas. More intensive sam-
pling is required to make it reliable. 

Another conclusion from Table 3 was that the spatial 
uncertainty levels were different even with the same sam-
pling data when the critical areas were in different size. In 
other words, a larger critical area needed more sampling 
data to validate its reliability. This can also be used to esti-
mate the approximate number of sampling and to guide the 
deployment of sampling density depending on research 
purpose.

CONCLUSIONS

1. Soil texture in the study area had significant spatial 
variations in both vertical and horizontal directions. The 
spatial pattern of soil texture in the study area was con-
ditionally simulated using a transition probability-based 
indicator geostatistical method based on 270 soil texture 
samples from 27 profiles.

2. Using the existing sampling data, the probabilities 
for soil texture determination in the major parts of the 
study area were over 50%. The high uncertainty areas were 
always at the locations with too sparse sampling sites or 
very complex soil texture succession nearby. For example, 
the south-eastern part of the study area. 

3. Although the simulation results based on the exist-
ing data could locate some critical areas with higher risk 
of water and nutrient leaching (areas where clay interlayers 
were missing or of limited thickness), the sampling seemed 
not sufficient to make the critical areas reliable because the 
spatial uncertainty remained high. However, this spatial 
uncertainty analysis results can still help estimate the sup-
plementary sampling number and optimise the sampling 
distribution in future. 

4. Generally, transition probability-based indicator 
geostatistical simulation can be an alternative upscaling 
method in addition to the conventional interpolation and 
variogram-based simulation methods, and it is also a useful 
tool for uncertainty and risk analyses.
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