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Abstract. The General Shape Analysis (GSA)

is a task similar to the shape recognition and re-

trieval. However, in GSA an object usually does

not belong to a template class, but can only be

similar to some of them. Moreover, the num-

ber of applied templates is limited. Usually,

ten most general shapes are used. Hence, the

GSA consists in searching for the most univer-

sal information about them. This is useful when

some general information has to be concluded,

e.g. in coarse classification. In this paper the

result of the application of three shape descrip-

tors based on the moment theory to the GSA is

presented. For this purpose the Moment Invari-

ants, Contour Sequence Moments, and Zernike

Moments were selected.
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1 Introduction

For the General Shape Analysis (GSA) one can apply the

same algorithms as for shape recognition and retrieval.

Fig. 1: Pictorial representation of the GSA problem.

However, the GSA is not the same task — here a template

is only represented by one object and there are only few

base classes. Usually, ten universal shapes are utilized in

order to obtain some conclusions (e.g., if the database in-

clude the triangle, square, etc., one can conclude to what

degree the object is triangular, square, and so on [6]).

The GSA is applied when shape analysis can be con-

sidered on a higher level of abstraction. One usage is the

initial coarse classification (e.g. in large databases). It is

very important for speeding up the classification through

first matching the analysed object with a small number of
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general classes. During subsequent stages the object may

be analysed in details within the selected class. This anal-

ysis can be repeated in smaller classes. Moreover, the user

can control the level of generality.

Given the rapid development of computer vision appli-

cations, where the image patterns analysis (ranging from

medical diagnosis [1, 10], to analysing materials [4], to

artistic applications [11]) requires a significant computa-

tion time, any procedure for preclassification can be very

valuable.

The GSA was successfully applied so far also in the

problem of stamp identification (see [5, 8]).

In this paper GSA is performed based on the template

matching by means of three moments shape descriptors.

For the analysis of the efficiency 187 persons were asked

to fill out an inquiry form. The results were then used as a

benchmark for the evaluation of artificial methods results.

The analysis of general properties of objects repre-

sented in a shape form was also performed in [12–14].

However, in those cases the particular shape features, such

as rectangularity, triangularity or ellipticity, were deter-

mined individually.

2 The Algorithms Applied in the
General Shape Analysis Problem

The Geometric Moments or Moment Invariants (MI) were

proposed by Hu in 1962 [2]. The MI are usually applied to

greyscale objects, however, if we assume only two possi-

ble values, they can be used as a shape descriptor as well.

The definition of the MI provided below is based on three

publications [3, 9, 15]. General geometrical moments are

derived using the equation (in a discrete version):

Mpq =

∫ ∞
−∞

xpyqf(x, y)dxdy, (1)

where: p, q = 0, 1, . . . ,∞. The above equation can be

written in a discrete version:

mpq =
∑
x

∑
y

xpyqf(x, y), (2)

where: p, q = 0, 1, . . . ,∞. In case of shape objects

f(x, y) can be equal to 1 if a pixel belongs to the object,

and 0 otherwise.

The centroid is obtained by means of:

xc =
m10

m00
, yc =

m01

m00
, (3)

Later, the following are obtained:

µpq =
∑
x

∑
y

(x− xc)p(y − yc)qf(x, y), (4)

and central normalised moments are expressed as:

ηpq =
µpq

µ
p+q+2

2
00

. (5)

Finally, the MI are obtained. Usually, the first seven

values are applied.

The second shape descriptor is the Contour Sequence

Moments (CSM), which works only on the outer contour

of a shape. The below description is based on [16].

The one-dimensional normalised CSM are given by:

mr =
1

N

N∑
i=1

[z(i)]r, µr =
1

N

N∑
i=1

[z(i)−m1]
r, (6)

where:

z(i) contains the distances from the centroid to N ele-

ments of a shape.

The r-th normalised CSM and normalised central CSM

are represented using the following formulas:

mr =
mr

(µ2)
r
2
, µr =

µr
(µr)

r
2
. (7)

Finally, the shape representation is obtained:

F1 =
(µ2)

1
2

m1
, F2 =

µ3

(µ2)
3
2

, F3 =
µ4

(µ2)2
, F4 = µ5. (8)
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The third shape descriptor is the Zernike Moments

(ZM). The following description is based on [7, 17]. For

an image f(x, y), 2-D complex ZM are represented as:

Zpq =
p+ 1

π

∫∫
x2+y2≤1

V ∗pq(x, y)f(x, y)dxdy, (9)

with the orthogonality relation:

∫∫
x2+y2≤1

V ∗pq(x, y)Vp′q′ (x, y)dxdy =
π

p+ 1
δpp′ δqq′ , (10)

where:

p , q — the order and repetition of ZM,
∗ is the complex conjugation.

The size of the image should be changed

in order to have the unit square S ={
(x, y) ∈ R2 : −1 ≤ x, y ≤ 1

}
. Next, a round sub-

part is selected from the square S, within the unit disc

D =
{
(x, y) ∈ R2 : x2 + y2 ≤ 1

}
, D ⊂ S.

For p and q and k = q, . . . , p, s = p−k
2 , Zernike poly-

nomials of order p are written as:

Vpq(x, y) =

p∑
k=q

Bpqkr
kejqθ, (11)

where Bpqk is calculated as follows:

Bpqk =
(−1)

p−k
2 (p+k2 )!

(p−k2 )!(k+q2 )!(k−q2 )!
. (12)

Given the above definitions, the polar representation is

used for the ZM:

Zpq =
p+ 1

π

∫ 1

0

∫ π

−π

p∑
k=q

Bpqkr
ke−jqθf(r, θ)rdrdθ,

(13)

with:

dxdy = rdrdθ,

−π ≤ θ ≤ π.

3 Methodology and Results of the
Tests

Three discussed moment shape descriptors were applied

in the GSA with the use of 50 shapes, divided into ten gen-

eral shapes (templates) and forty test objects, and stored

as bitmaps 200 × 200 pixels in size, as it is depicted in

Fig. 2.

In each case, test objects and general shapes were de-

Fig. 2: The 10 template (first row) and 40 test shapes.

Fig. 3: The test results for the Moment Invariants.

Fig. 4: The test results for the Contour Sequence Mo-
ments.
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scribed by means of particular shape representation meth-

ods. The dissimilarity measure (the Euclidean distance)

was calculated between test and template objects. In re-

sult, three general shapes most similar to a tested one were

selected.

Sample results, obtained for the ZM descriptor, are pre-

sented in Fig. 5. However, the graphical form of the re-

sults does not allow for an objective judgement of the de-

scriptors’ effectiveness. Hence, as a benchmark, an in-

quiry form was prepared and filled out by 187 people.

The evaluation was performed as the comparison between

a test result and this benchmark (see Tab. 1). As we can

see, the ZM significantly outperform the remaining two

techniques.

Fig. 5: The test results for the Zernike Moments.

Tab. 1: A comparison of the results obtained by the shape
descriptors and humans: the percentage of convergence
between a shape descriptor and benchmark result.

Shape descriptor 1st indication 2nd indication 3rd indication
Moment Invariants 20% 17.5% 5%
Contour Sequence Moments 12.5% 12.5% 10%
Zernike Moments 40% 22.5% 20%

Tab. 2: The convergence between shape descriptors and
benchmark results. The indication is considered proper if
it matches any of the three benchmark indications.

Shape descriptor 1st indication 2nd indication 3rd indication
Moment Invariants 37.5% 37.5% 27.5%
Contour Sequence Moments 50% 27.5% 37.5%
Zernike Moments 62.5% 47.5% 32.5%

The results in Tab. 1 were based on the convergence

with the benchmark, derived separately for each template,

maintaining the indications sequence. However, the in-

sight into the inquiry results shows that the indications

therein vary significantly. Often the same templates are

chosen, but in a different sequence. Hence, a second

method of evaluation was used — only the presence of

a particular indication in the benchmark set was consid-

ered (see Tab. 2). Again, the ZM outperformed the other

algorithms. However, the results of other two evaluated

methods were different, the CSM being significantly bet-

ter than the MI.

4 Concluding Remarks

In this paper the results of experimental comparison of

three shape descriptors based on the moment theory ap-

plied to the problem of General Shape Analysis were pro-

vided. In this problem the object is matched with a small

number of templates (up to ten) and three to five the most

similar templates are indicated. What is important, the

analysed shape does not belong to any of the template

classes, but is only similar to them. In result, we can con-

clude some general information about it, e.g. how round,

triangular or rectangular it is. The General Shape Anal-

ysis can be used in the applications where not the pre-

cise information about a shape is needed, but only some

general conclusions about it. As it has been already men-

tioned, this usually leads to the formulation of similarity

of an object to some basic shapes.

Amongst the three explored methods the best results

were obtained using the Zernike Moments. Their results

can be considered as very promising, since even the in-

dications given by humans are often ambiguous. The

other investigated shape descriptors — the Moment In-

variants and Contour Sequence Moments — gave signif-

icantly worse results. The performance of the particular

algorithms was measured by means of an inquiry form
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that was developed specially for this purpose. This was

the same as the performed tests and it was filled out by

almost two hundred persons. The artificial method with

results the most similar to the ones provided by humans

was treated as the best one.
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