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Abstract. This paper deals with the challenging task of acquiring
stable image features in a sequence of images of the same scene
taken under different viewing positions by a digital still camera.
Two popular contemporary algorithms for discrete feature detec-
tion: SIFT and SURF are regarded. The results of the timing
performance analysis of their sequential implementations are pre-
sented and discussed. The performance speedup analysis and
scalability tests with multi-threading and GPU-based implementa-
tions are analyzed.

Introduction

The presented in this paper performance study of
robust feature detection algorithms is a part of a research
project related to one of the interesting and most challeng-
ing tasks: the acquisition of three-dimensional coordinates
of objects in a scene on the basis of multiview two-dimen-
sional images captured by a digital still camera. This prob-
lem is known as scene depth recovery from multiview
images [8]. The basis of the solution stands in finding
correspondences between images of the same scene. This
is a combinatorial problem, whose computational time
increases exponentially with the number of the features
found in the matched images. The correspondence problem
refers to the task of finding distinctive image locations
(called features, features point, points of interest or key
points [1,11,15]) in the images under consideration, and
then match these locations based on their local appearance.
The images taken from a different point of view and at
different times represent the same scene with changes of
the scale, rotation, and possibly changes in lighting condi-
tions. Therefore, it is extremely important to use robust
algorithms for image feature detection with abilities to
repeatedly localize the distinctive features across different
images invariant to image transformations. Furthermore, when
the time is a limiting factor, these algorithms need to be
efficient enough, so that the procedure of calculating the
feature points does not require significant computational
costs. The main strategy for reducing the processing time
introduces the usage of a parallel form of computations. In
characterizing the evolution of the computer system archi-
tectures, one can see a stable trend for utilization of paral-
lelisms, at both instruction levels (ILP — Instruction Level
Parallelism) and thread level (TLP — Thread Level Paralle-
lism) [9]. The wider uptake of the massive parallel architec-
tures, of MIMD class (Multiple Instruction Multiple Data)
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[9], GPGPU-based platforms and mobile devices with
embedded Mpx cameras and computing capabilities, are a
good prerequisite for searching suitable computing models
for accelerating the feature detection algorithms. These mod-
els are adapted to the specifics of the physical machine
models.

The paper provides a short overview of two of the
most popular robust algorithmic schemes applied in 3D
recovery solutions: the Scale Invariant Feature Transform
(SIFT) [11] and the Speeded up Robust Features (SURF)
[1]. Both algorithms perform simultaneous search for fea-
ture points and construct their descriptions that are in-
variant to changes in scale and rotation. This makes them
particularly suitable for the purposes of 3D recovery on the
base of multiview two-dimensional images. The experimen-
tal work is focused on profiling the program code and
speed analysis of the feature detection and description
phases. The experimental results demonstrate the effeiciency
of the methods in providing a large number of features for
a short time. The algorithms performance is measured by
the processing time for images with different resolutions.

The rest of the paper is organized as follows. Section
2 gives a short overview of SIFT and SURF. The experimen-
tal work and the obtained results of timing performance
analysis of serial implementation of the algorithms are pre-
sented and discussed in Section 3, which is followed in
Section 4 by a discussion of the possibilities of applying
optimizations for performance improvement of the investi-
gated algorithms. Finally, some experimental results with
two parallel versions of the serial SURF algorithm are pre-
sented that illustrate the obtained improvement in terms of
the processing speed. The last section provides some final
conclusions.

1.SIFT and SURF Algorithms’
Description

The computational workflow of SIFT and SURF fea-
ture detector algorithms is shown in figure I.

Two basic Detection and Description stages are used
to identify the features of a given image and create their
unique descriptions. The first stage is related to the extrac-
tion of image patterns (feature points). At first an image is
loaded and initialized (Step C1). Then, the input image con-
volves with a set of Gaussian filters at different scales in
order to construct the so-called scale space (Step C3). Such
a scale-space is formed to guarantee the invariance of the
features detection when the scale changes. Feature detec-
tion schemes used by SIFT and SURF differ in terms of the
computational methods used for implementing the scale
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Figure 1. Computational workflow of SIFT u SURF algorithms

space. In practice, it is implemented as a pyramid. In SIFT
the scale space pyramid is formed by repeatedly convolving
the input image with a set of Gaussian filters. After that, the
image is downscaled twice and convolved with the same set
of filters. The process is repeated until a certain image size
is reached. Finally, the adjacent Gaussian images are sub-
tracted to produce a difference-of-Gaussian (DoG) image
pyramid. As opposed to SIFT, in SURF the detection pro-
cess relies on forming the scale space by convolving the
input image using DoH (Determinant of the Hessian) filter
matrix, which contains different 2D Gaussian second order
derivatives. The use of Hessian ensures invariance with
respect to rotation, but not in respect to a scale change.
Therefore, SURF applies filters of different scales for calcu-
lating the Hessian to the input image. The image size
remains unchanged, only the filter size changes. Thus, as
opposite to SIFT, this decision is much more efficient with
respect to the amount of memory that needs to be allocated
for storing the scale space pyramid. Another improvement
made by SURF’s authors, is the approximation of the
Gaussian filters, used in SIFT with integer weighted box
shaped filters. This ensures also a better processing speed.
Additionally, SURF also takes advantage of a swift convo-
lution technique using integral images [17] (Step C2, SURF
only). The value at each pixel in the integral image is the
cumulative sum of intensities within the rectangular region,
bounded by opposite corners that are located at the image
origin and at the current coordinates. This is a technique for
speeding up the convolution: the convolution response can
be obtained by adding and subtracting four values in the
integral image.

After building the scale space, a process of feature
detection and localization via searching the scale space for
extremes is started (Step C4). Each pixel of the image pyra-
mid in SIFT is compared with its surrounding pixels within
a 3x3 region in the current and adjacent scales. The pixels
with a local maximum or minimum of the intensity value are
considered as feature point candidates. The final number of
features for a given image is obtained by removing the low
contrast points introduced by noise and edge responses. In
SUREF, the local maxima of the DoH responses are found by
the Non Maximum Suppression (NMS) search method with

a 3x3x3 scanning window. The most suitable features are
those with large DoH values. Features with small DoH val-
ues are regarded as noise and thus are not very distinguish-
able. Therefore, the SURF algorithm employs a detector
threshold, which is used to reject these weak features.

The second stage of the computational workflow
Description is associated with the formation of N-dimen-
sional vector (descriptor) for each of the detected feature
points. This is a two-step process: orientation assignment
(Step C5) and feature vector descriptor computation (Step
C6). To describe each feature, both algorithms summarize
the pixel information within a local neighborhood. A gradi-
ent orientation value is computed on the base of the infor-
mation around the considered feature point. In SIFT a gra-
dient orientation histogram is computed in the neighbor-
hood of the feature. This histogram represents the distribu-
tion of the gradient magnitude in a window, whose size is
1.5 times of the feature point scale. The peak of the histo-
gram corresponds to the dominant orientation. In SURF the
gradient orientation for each feature is calculated by con-
volving pixels in its neighborhood (126 X 126 square region
positioned at each feature location) with two directional
(horizontal and vertical) Haar wavelet filters of size 4G. The
last step after the orientation direction determination is the
calculation of the feature vector. In SIFT a 16x16 window,
centered at the feature point is used. A set of orientation
histograms for each of 4x4-pixels subregions of the window
is calculated. Each histogram contains 8 bins for each direc-
tion. Therefore, the length of the obtained feature descriptor
is 128-dimensional (4 x 4 x 8). The original descriptor length
of SURF is 64-dimensional and is formed on the base of
200 x 200 square region around the feature, but also imple-
mentations with 128-dimensional descriptors are
suggested.

2. Metodology and Evaluations
of Serial SIFT and SURF
Implementations

In this study the runtime performance over a sequence
of images with different resolutions was measured. A series
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Table 1. Coefficients of the relative time increase of the Detection and Description stages

Processing time: Growth factor
Num. of pixels* Growth factor Detection stage Description stage
SIFT++ OpenSURF SIFT++ OpenSURF
Base 307 200
2 480 000 1,56 1,57 1,53 1,02 2,34
3 786 432 2,56 2,59 2,59 1,60 3,34
4 1228 800 4,00 4,08 3,83 2,42 4,97
5 1 470 000 4,79 4,90 4,54 2,64 4,73
6 1 920 000 6,25 6,36 5,92 3,31 6,02
7 2 073 600 6,75 6,82 6,37 3,16 5,68
8 3 145 728 10,24 10,67 10,13 4,78 8,73
9 4 915 200 16,00 16,71 15,03 7,07 12,18
10 7 680 000 25,00 25,75 23,47 10,92 18,56
11 12 192 768 39,69 44,06 37,47 19,37 26,25
*Legend. Base: 640x480 (307 200 pixels)
2: 800x600;  3:1024x768; 4:1280x960;  5:1400x1050; 6: 1600x1200;
7:1920x1080; 8:2048x1536; 9: 2560x1920; 10: 3200x2400; 11: 4032x3024

of images of a static interior scene with many different
objects were used for the evaluations, which enables the
detection of a large number of features. The mages were
captured with a digital still camera Olympus E-P2 at different
resolutions. Three of the images were taken at resolutions
maintained by the camera itself (12804960, 320042400 and
403243024 pixels), while the other nine are downscaled ver-
sions of the 403243024 resolution image. The range of image
resolutions between 3204240 and 4032143024 pixels was cho-
sen in such a way as to cover the basic formats of the mass
digital still and video cameras. Thus, an image dataset
,»Lab1311-MR* (MR — Multiple Resolutions) of 12 resolu-
tions was created.

The experimental tests are based on two open source
implementations of SIFT and SURF detector and descriptor
algorithms widely used for research purposes, SIFT++ [16]
and OpenSURF [4]. Both algorithms were tested on a gen-
eral-purpose hardware platform with the following configu-
ration: Intel(R) Xeon(R) CPU E5-2609 @ 2.40GHz, Dual CPU,
4 cores per socket, 32GB RAM. The source codes in C/C ++
were compiled by GNU g++ with the command-line flag ,,-
O3“ under Linux, Ubuntu. The timing data were gathered
using a gprof profiling tool [7,13] and time functions from
standard C/C++ libraries.

Figure 2 shows the result of the feature detector for
one of the tested images of resolution 10244768 pixels. The
features detected are marked by colored circles. The diam-
eter of the circle corresponds to the scale, at which the
feature point is localized, and the radius shows the domi-
nant gradient orientation.

2.1. Experimental Results for the Timing
Performance

To compare the execution times of SIFT and SURF
algorithms, their control parameters were experimentally
tuned, so that the number of the features detected for the
same image is approximately equal for both implementa-

tions. The difference in the number of the detected features
is less than 1% for almost all tested images.

Table 1 shows the experimental data for the compu-
tational time increase of the Detection and Description
stages depending on the image size. The results presented
correspond to resolutions from 800x600 to 4032x3024 pix-
els, regarding the standard VGA resolution of 640x480 pix-
els as basis. As it can be seen, the processing time increase
at the Detection stage follows the trend of the image size
in both of the algorithms. SIFT algorithm shows the only
exception for the maximum resolution image. This is due to
the scale space building scheme implemented in SIFT, based
on doubling the size of the input image for the first octave
of Gaussian image pyramid calculation. For SURF, the growth
factor is similar to that of SIFT for the entire range of
resolutions, as opposite to the Description stage. It can
also be seen that the Description processing stage at reso-
lutions over 2MPx is less dependent on the increase of the
images pixels being processed than the Detection stage.

Figures 3(a) and (b) show the computation time (for
complete runs and per algorithm’s stage) required to pro-
cess images of different resolutions, as well as the relative
computational speed of OpenSURF with respect to SIFT++.
The time ratios for Description and Detection stages are
given in figure 4. The percentages of the computational
time spent at each of the workflow steps of SIFT and SURF
for images with small and high resolution are shown in
figures 5 and 6.

The most time consuming operations in both imple-
mentations are related to Steps C3 and C6 (see figure I).
They take up to ~80% of the overall computation time. The
computational cost of building the scale space in SIFT
remains relatively high regardless of the number of pixels
being processed: more than 50% of the time for 640x480
pixels image, and less than 60% for 4032x3024 pixels. The
relative time increase is proportional to the image resolution
in SURF. These observations can be explained with the
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fundamentally different ways of implementation of this step,
adopted in the two algorithmic solutions. Whereas in SURF
the formation of the scale-space is based on the original
image filtered with rectangular (box) filters of increasing
size, the image pyramid in SIFT is built by repetitive
upscaling of the original image, followed by filtering of the
new image with a Gaussian filter of an appropriate size.
Thus, the construction of the different levels of the image
pyramid in SIFT is carried out sequentially, each subse-
quent level being built on the previous one. In SURF, the
levels are generated simultaneously, which significantly
improves its performance. The use of an integral image
description in SURF further boosts the time decrease at this
stage, reducing the computational complexity of the “con-
volution” operation and thus speeding up the filtering
process.

The time of execution of the Description stage is
determined mainly by the number of the detected features.
Larger image size and bigger number of features require
longer processing time. As it can be seen from the results,
illustrated in figures 5 and 6, the steps related to the cal-
culation of the orientations and the descriptors of the
detected features take a relatively more time for smaller
images in both algorithms. Furthermore, even if the gener-
ated output sets of features for both algorithms are numeri-

cally comparable in a percentage ratio, this stage is almost
two times longer in SURF than in SIFT. As shown in
figure 4, the same trends are observed for different image
sizes. The time ratio of the Description/Detection stages for
both algorithms is almost the same for the largest size
images (figure 4). In SURF this ratio is bigger than SIFT for
smaller images as a result of the more efficient scheme of
scale space building that reduces the computation costs for
Detection stage. However, unlike SURF, in SIFT the
computational complexity remains consistently high, regard-
less of the processed image size. As can be seen in
figure 3 (a, b), SURF is much more efficient with respect to
the processing speed. The benefit of SURF is more than 2.5
times for the lower resolution images and the time
decrease is more than four times for maximum resolution
images.

The analysis of the experimental results of serial imple-
mentations of SIFT and SURF algorithms leads to the
following conclusions:

e The total execution time for SIFT and SURF
depends on the image resolution and the number of the
image features being detected. For small image sizes (VGA
image, 640x480 pixels), the execution time is approximately
0.97 s for SIFT++ and 0.34 s for OpenSURF and for the
larger image resolution (12 Mpx, 4032x3024) — 32.6 s for
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SIFT++ and 8.1 s for OpenSURF.

e The largest amount of time in SIFT is spent in com-
puting the Gaussian scale-space (Feature Detection stage),
followed by the time required in computing the gradient
direction histograms (for the Feature Description stage). In
SURF the computations, related to the scale-space con-
struction utilizes fast approximations using integral images
and square (box) filters, whose computational cost is inde-
pendent of the filter size due to the integral image represen-
tation. SURF employs Haar wavelets for the Feature De-
scription stage. Thus, SURF algorithm is much faster than
SIFT. Nevertheless, the computational cost of the Feature
Detection and Feature Description stages is generally high
for both algorithms.

All these results prove the necessity to continue the
research aimed to investigate the opportunities for improv-
ing the speed of the computational process, using parallel
computational models and parallel computing platforms.

3. Acceleration Opportunities
for SIFT and SURF

The performance of the investigated feature detection
algorithms can be improved by assessing the possibilities
of optimization of the program codes of their implementa-
tions. The selection of the steps for optimization is
performed with the help of code profilers. The profiling
analysis of the serial implementations of SIFT++ and
OpenSURF with GNU gprof profiler has shown three
functions, where the optimization efforts should be focused
on. These take more than 87% of the total computational
time in SIFT++ and 90% of the time in Open-SURF:
(1) the scale-space building (econvolv at SIFT++ and
buildResponseLayer at Open-SURF); (2) the calculation of
the gradient orientations (prepareGrad at SIFT++ and
getOrientation at OpenSURF) and (3) the descriptors calcu-
lation (computeKeypointDescriptor at SIFT ++ and
getDescriptor at OpenSURF).

There are several techniques for performance improve-
ment that range from serial code optimizations to exploiting
the potential parallelism of the algorithms’ steps and adopt-
ing parallel computational models. Both approaches require
several types of activities. The first one is focused on the
elimination of the unnecessary operations. This includes
changes of some data and code structures — efficient data
restructuring, data rearrangements; memory access optimi-
zation — loop optimizations to improve the cache locality
and to eliminate the data dependency, redundant memory
copy operations elimination, unnecessary function calls
elimination, conditional tests, and memory references, etc.
The performance can be further improved by applying a set
of optimizations on a compiler level and thus generating a
more efficient code. As discussed in Section 3, both the
investigated implementations are compiled invoking
GNU g++ compiler with the command-line flag -O3 that
permits more extensive optimizations.

The second step in code optimization is to exploit the
capability of the processors to provide instruction-level
parallelism by executing multiple instructions simultaneously
[6,9]. The most time-consuming step Scale-Space Building
in both of the algorithms may benefit of SIMD (Single
Instruction Multiple Data) technology and the usage of
SSE/SSE-2 instructions to reduce the payload of the memory
subsystem [10].

Besides the serial code performance optimization, a
third technique for dealing with the time demanding steps
of the workflow of SIFT and SURF algorithms is to divide
the computational work into portions that can be com-
puted in parallel, on a multicore and multiprocessor ma-
chines and/or utilization of graphics accelerators (GPGPU
based platforms). These types of optimizations depend on
the specific characteristics of the computing machinery to
a significant extent and thus the designed parallel compu-
tational models have to be consistent with this specific.
Both coarse-grained and fine-grained parallel strategies can
be utilized for SIFT and SURF algorithms. The coarse-
grained approach is particularly important for processing
high-resolution images and especially in the case where
the amount of data is much bigger than the available memory
in the computing node. A data-parallel model of computa-
tions based on the parallel paradigm Single Program Mul-
tiple Data (SPMD) is illustrated in figure 7. It requires the
decomposition of the processed image into parts distrib-
uted for processing on different nodes. Two types of de-
composition can be utilized: row-wise or block-wise (see
figure 8). In the second case, the number and the size of
the blocks are determined based on the image resolution
and the available computing nodes.

The decomposed input image is distributed for pro-
cessing by the main node (Node 0) to all computing nodes,
where a process that runs the algorithm over the different
data parts is launched. After processing completion, all the
nodes send the detected number of the feature points and
their descriptors back to the main node to form an overall
solution. An alternative approach is to apply the concept
of parallel input/output (see the red block with dashed
lines in figure 7), wherein any of the processes running on
the computing nodes reads a part of the decomposed im-
age in parallel with the rest.

The fine-grained approach can be applied to any or all
of the processing steps in the investi-gated algorithms
splitting the code in many small sub-tasks. In figure 9
multithreading model of parallel computation is illustrated
that suggests all the steps of the computational workflow
to be parallelized. For OpenSURF, additional optimization is
made for the Integral Image Computation step.

The sequential algorithm for this step [17] follows a
two-pass computational procedure of prefix (cumulative)
sum calculations of the pixel values in a given image: the
first pass along the rows and then the other pass along the
columns, based on the results of the first pass
(see figure 10). As it can be seen, there are mutual data
dependencies between the operations, which complicate
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for each row < ImageHeight do
row sum = 0.0;

for each col < ImageWidth do
/I Row Independent Calculations

row_sum += ImageData (row,col) ;

IntegralImage (row, col) row_sum;
if row > 1 do
/I Column Independent Calculations

IntegrallImage (row,col) += Integrallmage (row-1,col) ;

Figure 10. Pseudo code of the serial integral image computations

// Do parallel for all rows (PASS 1)
for all rows do
row sum = 0.0;
for each col < ImageWidth do
row_sum += ImageRow (row,col) ;

IntegralImage (row, col)

// Do parallel for all columns (PASS 2)

for all cols do

row_sum;

for each row < ImageWidth do

IntegrallImage (row,col) += Integrallmage (row-1,col) ;

Figure 11. Pseudo code of the parallelized integral image computations

the parallelization of this step. Therefore, it is suggested the
computations to be reorganized (see figure 11).

c %MasterThread %WorkerThread %WorkerThread
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e
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Column-wise computation

v

Figure 12. Scheme of the parallel integral image calculations

Computational Models

The calculation process divides the computations into

two sub-steps (PASS 1 and PASS 2), that are executed

sequentially after each other. The first step (PASS 1) per-
forms the parallel row-wise calculations (see figure 12, black
thick lines) and the second (PASS 2) —
wise calculations (see figure 12, black dashed lines). Since
the serial row-wise image input data scan of the matrix is
done in the memory, it is possible to speed up the process-
ing by simultaneous calculation of the integral image during
the row-wise image scan. Thus the column-wise sum will be

the parallel column-

SIFT.

4. Experimental Results of Parallel

The experimental studies discussed in this section
concern only implementations of parallel computational
models of SURF algorithm, since its algorithmic scheme is
well optimized with respect to memory usage on the
computing node and the processing speed, as opposite to

Two parallel implementations of tSURF algorithm are
analyzed: 1) a multithreading parallel computational model

completed after the image is entirely scanned.

running on a multicore SMP platform, using low-level thread

10
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Figure 16. Speedup for Step Integral Image Calculation — processing image columns
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Figure 19. Parallel processing time with CUDA-SURF on a GPGPU Blade Server NVIDIA Tesla M2075
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Figure 21. Speedup comparison between MT-SURF and CUDA-SURF using OpenSURF as a basis
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Table 2. Percentage reduction of the computational time with MT-SURF

* 1 2 3 4 5 6 7 8 9 10 11 12
Sw | 61,52 | 53,85 | 50,33 | 47,98 | 45,36 | 40,51 | 39,48 | 37,08 | 38,43 | 34,31 | 33,56 | 31,49
So | 76,35 | 74,37 | 73,05 | 72,62 | 72,13 | 70,50 | 70,04 | 69,63 | 70,35 | 69,32 | 69,28 | 68,55
Sd | 2384 | 1499 | 10,62 | 11,75 | 5,17 4,15 3,22 3,27 6,43 0,97 0,34 0,59

= | 1:320x240; 2:640x480; 3:800x600; 7: 1600x1200; 8:1920x1080; 9:2048x1536;

a 4: 1024x768; 5: 1280x960; 6: 1400x1050 10: 2560x1920; 11:3200x2400; 12: 4032x3024

2 | Sw: Percentage of reduction of the total processing time

* | So: Percentage of reduction of the time for stage Feature detection

Sd: Percentage of reduction of the time for stage Feature description

libraries [3] in combination with OpenMP API [2]; 2) CUDA
based parallel computational model running on the graphics
processor platform NVIDIA Tesla M2075 [5]. The utilized
implementation for MT-SURF is based on the algorithm
proposed in [18], and for CUDA-SUREF the solution found
in [12].

The aim of the experimental test is to measure the
performance of both computational models for images with
different resolutions processed on each of the two plat-
forms in terms of the processing speed and the efficiency
of both computational models.

4.1. Experimental Analyses of Multithreaded
Parallel Computational Models

The experimental results of the model shown in
figure 9 are presented in figure 13, and the efficiency gained
is given in table 2.

As seen, the overall improvement in the duration of
the total processing time is approximately 43% + 9% and it
depends on the image resolution. The average improvement
for the detection step is within 71% =+ 2%, and for the
description step it is about 7%. The minimum values are
achieved for the smallest resolution image: less than 1%.

The experimental results concerning the scalability test
of the multithread parallel computational model are given
below. The data given are averaged for 20 runs for each test
image. The speedup of the multi-threaded parallel model is
shown in figure 14. The speedup is calculated as a ratio of
the sequential execution time and the time of the parallel
model using several threads (up to 8 for the experimental
platform). The maximum speed up for steps /Image Loading
and Integral Image Calculation — integration by rows of
approximately 3 times (2,85 + 0,84) is achieved for the test
images of resolution between 320x240 and 1280x960 pixels
utilizing 8 threads (figure 15). The speedup for the megapixel
formats (between 1400x1050 and 4032x3024 pixel) running
on the 8 core machine, is 4.4 + 0.65. The remaining three
steps of the algorithm are shown in figures 16, 17 and 18
respectively. The results show that the step of the integral
image construction does not scale well because of the
column-wise image data matrix scan that will lead to inten-
sive memory reads. In contrast, the distribution of the com-
puting work between multiple threads at the stage of the
scale-space construction shows better scalability results.
The speedup for the megapixel formats reaches 7.49, utiliz-
ing 8 threads. The speedup of the parallel computational

model at the last step of feature descriptors calculation is
5.74 for 8 threads, which may be explained by the inefficient
second level cache operations and increased bus traffic as
a result of the usage of linked lists.

4.2. Experimental Analysis of a CUDA Based
Parallel Computational Model of SURF

CUDA based parallel computational model consists of
(I)  Memory allocation on GPU and image transfer from
the main memory to the device memory; (2) GPU based
computing of the integral image representation of the input
image; (3) GPU based calculations for generation of the
Gaussian Scale Space, local extremes search and 3x3x3 non-
maximum suppression; (4) Down-load of the detected fea-
ture points to a host and free the device memory; (5) GPU
and CPU based calculations of the orientations and (6)
Descriptors construction for each feature.

The experimental results for the overall processing
time (in milliseconds) of the parallel CUDA-SURF implemen-
tation are given in fable 3, averaged over 20 runs for each
tested image.

The processing times for GPGPU platform (host +
graphics device), as well as the processing time of the
kernels on the GPU only, are shown in figure 20.

The results show lack of significant speedup when a
single image is processed due to the overhead communica-
tion delays for data transfer between the host and the
device memory. When a large amount of image data has to
be processed by the computationally intensive SURF algo-
rithm, the additional communication time is negligible com-
pared to the computational time. It is evident (see table 3)
that the data loading time does not change significantly
with the image size, and thus, with the large image resolu-
tion the efficiency of GPU accelerated processing becomes
apparent.

The results of the comparative analysis of the pro-
cessing time for the three selected models and their imple-
mentation in OpenSURF, MT-SURF and CUDA-SUREF are
given in figures 20 and 21.

5. Conclusions

In this paper two popular contemporary algorithms for
discrete feature detection and description SIFT and SURF
were analyzed. On the basis of the timing performance
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Table 3. Computational times at different stages of processing in ms with CUDA-SURF on a Blade Server NVIDIA

TeslaM2075

* 1 2 3 4 5 6 7 8 9 10 11 12
C1 0,36 0,97 1,49 2,24 3,31 4,10 5,01 5,53 7,99 12,53 19,10 29,99
C2 |2862,8312906,0712902,42 | 2847,35 | 2866,09 | 2845,05 | 2844,68 | 2842,14 | 2835,71 | 2867,88 | 2845,98 | 2905,36
C3 0,16 0,34 0,51 0,77 1,14 1,33 1,65 1,84 2,60 3,84 5,76 8,96
C4 0,30 0,71 0,81 0,99 1,53 2,20 2,52 1,84 3,31 4,64 6,87 10,08
C5 1,33 1,98 2,55 3,76 494 5,50 7,40 7,20 10,80 17,06 24,76 39,74
Cé6 1,31 2,58 3,56 4,63 6,51 6,49 8,44 7,72 11,81 17,05 25,56 35,52

'g 1: 320x240; 2: 640x480; 3:800x600; 7: 1600x1200; 8:1920x1080; 9: 2048x1536;

& 4:1024x768; 5: 1280x960; 6: 1400x1050 10: 2560x1920; 11:3200x2400; 12: 4032x3024

%)

—

*®

C1: Loading images in the host memory (CPU)
C2: GPU initialization — memory allocation

C4: Scale space building
C5: Building scale-space and feature localization
C6: Computing features descriptions

C3: Image data transfer from main memory to the device memory

analysis of the sequential implementations of both algo-
rithms, the most time-consuming steps for each stage of
processing: detection and description of the feature points
were determined. Two parallel computational models were
analyzed. The experimental results demonstrate the efficiency
of the models in providing a large number of features for a
short time. The results of the fine grain implementation
reveal when these models are efficient and what is the
expected benefit of their implementation on more sophisti-
cated hardware, such as GPGPU. The obtained results of the
performance speed analysis and scalability tests with
multithreading and GPU-based implementations are pre-
sented.
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