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Abstract. This paper considers the problem of orthogonal polyno-
mial approximation based balanced truncation for a lowpass filter.
The proposed method combines the system properties of balanced
truncation, the computational effectiveness of proper orthogonal
decomposition and the approximation capability of the orthogonal
polynomials approximation. Orthogonal polynomials series expan-
sion of the reachability and observability gramians is used in
order to avoid solving large-scale Lyapunov equations and thus,
significantly reducing the computational effort for obtaining the
balancing transformation. The proposed method is applied for
model reduction of a lowpass analog filter. Different sets of or-
thonormal functions are obtained from Legendre, Laguerre and
Chebyshev orthogonal polynomials and the corresponding re-
duced order models are compared. The approximation precision
is measured by the relative mean square error between the outputs
of the full order model and the obtained reduced order models.

1. Introduction

Dynamical system modeling is an irrevocable compo-
nent of system analysis and design. There always exists a
trade-off between the complexity of the model and the ac-
curacy of the described relations. As higher is the require-
ment for model accuracy, as more are the differential and
algebraic equations describing system dynamics. A main
part of the analysis problem is to use the created model for
simulating the behavior of the explored physical processes.
When the complexity of the model increases significantly,
the simulation of the full size model can often become an
infeasible task. Such large-scale system models are for ex-
ample VLSI electrical circuits, weather change prediction, air
quality transformation and wave propagation evolution.
Large dimensional system models are difficult to handle and
require large computational resources. There emerges a need
for reducing the size of the system description and there-
fore, for approximation of the existing physical relations.
The basic motivation for system approximation comes from
the demand for simplified models of dynamical systems that
capture the main features of the original complex model.
Approximation of dynamical systems and model order re-
duction in particular includes techniques such that the origi-
nal model is replaced by a lower order one, while preserving
the main features of the input/output behavior of the de-
scribed phenomenon.

One of the main approaches for dynamical system
approximation is by using orthogonal polynomial descrip-

tions and is based on the fact that every continuous func-
tion defined on a bounded interval can be represented by
orthogonal polynomial series with arbitrary degree of accu-
racy. Some of the most popular complete orthogonal sets
are built from Laguerre, Legendre and Chebyshev polyno-
mials. The wide application of Laguerre orthogonal polyno-
mials for dynamical system approximation is due to the
ability to work with Laguerre series both in time and fre-
quency domain. In time domain the Laguerre polynomials
form a complete set of orthogonal polynomials in the Hil-
bert space L2[0, ∞) with a certain exponential weighting
function. In the frequency domain Laguerre polynomials are
represented by lowpass filters consisting of a first-order
lowpass filter and a higher order allpass factor. In [7] is
proved the equivalence between the Laguerre based ap-
proximation method and the classical moment matching
approach. The problem of selecting an optimal expansion
point in the rational Krylov subspace reduction method is
also discussed. The approximation of infinite dimensional
transfer functions in terms of Laguerre series expansion is
studied in [2]. The computational procedure is performed in
Laplace domain and is based on minimization of a quadratic
performance criterion. In [19] is presented an adaptive
multiple model method for control of stochastic systems.
The Laguerre polynomials are used in a procedure of sys-
tem identification for approximation of the transfer function
model. A common feature of the presented Laguerre poly-
nomial series applications is the statement of the approxi-
mation problem in frequency domain, yet the choice of the
expansion frequency point is not clearly justified. A par-
ticular drawback of the frequency domain methods is the
requirement to work with complex valued functions, where
the complexity of the computations is not suited for large-
scale systems. A time domain model order reduction method
based on Laguerre function expansion of the impulse re-
sponse is presented in [6], where the state trajectory is
projected onto a subspace spanned by part of the columns
of the Fourier coefficients matrix. It is shown that the im-
pulse response Fourier coefficients of the reduced order
system match the first coefficients in the series representa-
tion of the original system. A simplified algorithm for bal-
anced realization of Laguerre network models is presented
in [20]. The proposed algorithm does not require the com-
putation of the reachability and observability gramians and
proceeds by forming a generalized Hankel matrix for con-
structing the balanced transformations. A specific feature
of the Laguerre series approximation in time domain is the
infinite time interval, where the basis functions are defined.
Orthogonal series approximation on a bounded time interval
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is carried out by utilizing Legendre and Chebyshev polyno-
mials. The Legendre polynomials constitute a complete
orthogonal set on the Hilbert space L2[−1,1]. There is no
weighting function to support the inner product integral
and therefore, Legendre polynomials satisfy the orthogo-
nality polynomial condition on the definition interval. The
application of Legendre polynomials for system analysis
and identification is studied in [13]. The proposed method
reduces the dynamical system problem to that of solving a
system of algebraic equations, thus greatly simplifying the
computational procedure. It is shown that the Legendre
polynomials have a good rate of convergence and can be
used to approximate the exact solution in various control
problems. A numerical method for solving optimal control
problems by approximating the system dynamics and per-
formance index with Legendre orthogonal polynomials is
presented in [8]. The Legendre polynomials are used to
eliminate the integration in the performance index by ex-
panding the state and input variables in orthogonal poly-
nomial series. The proposed method avoids solving matrix
Riccati equations or inverting ill-conditioned matrices. The
major drawback of the proposed method is the dependence
of the solution convergence rate on the shape of the input
and state variables. [17] presents an efficient algorithm for
Galerkin-Legendre approximation of the solution to second
and fourth order elliptic differential equations. The basic
idea of the proposed algorithm is to construct a polynomial
basis for the elliptic differential equations with a relatively
small number of unknown parameters. The main drawback
of the Legendre approximation is the lack of a fast transform
between the physical space and the spectral space [17].
Another popular complete orthogonal set in Hilbert spaces
is generated  from Chebyshev polynomials. The advantage
of using Chebyshev polynomials is in the opportunity to
solve the approximation problem in two different geometric
measures. From one side is their orthogonality with a cer-
tain weighting function in the Hilbert space L2[−1,1] and
therefore, the best approximation is achieved by minimizing
a quadratic performance criterion. From the other side is
their best approximation property with respect to the uni-
form norm in the real C[−1,1] space. Chebyshev polynomi-
als are widely used for obtaining numerical solutions of
nonlinear Volterra and Volterra-Fredholm integral equations
[5,10]. The application of Chebyshev polynomials for solv-
ing optimal control problems is presented in [12,14]. A
continuous-time  identification problem is solved in [9],
where Chebyshev polynomials series approximation is used
in combination with the instrumental variable method for
compensation of the parameter estimation bias.

The techniques of model order reduction serve as the
ground for another major attempt in  dynamical system
approximation. There exist two main approaches for model
order reduction: the singular value decomposition (SVD)
based approach and the Krylov subspace projection based
approach. Two of the most popular methods from the SVD
based approach for model order reduction are balanced
truncation (BT) and proper orthogonal decomposition (POD)
[3]. The main idea of balanced truncation is to construct a

change of basis transformation in state space, where the
reachability and observability gramians are equal diagonal
matrices with diagonal elements, the Hankel singular values
of the system [11]. The transformed states, which corre-
spond to small Hankel singular values, are truncated from
the state space description since they have small effect on
the input/output behavior of the system. The method of
balanced truncation preserves stability of the reduced order
system and gives an upper bound on the error of approxi-
mation.  However, it requires solving a large scale Lyapunov
equations for computing the  gramians, which often is
computationally unfeasible task. The proper orthogonal
decomposition method is based on discretization of system
state trajectories called snapshots and their projection onto
a lower dimensional subspace of the state space [18]. The
main advantage of proper orthogonal decomposition is its
computational effectiveness. However, proper orthogonal
decomposition does not guarantee stability and is less
accurate than the balanced truncation method.

The method proposed in this paper combines the pro-
cedures of balanced truncation with orthogonal polynomial
approximation of system gramians for the purpose of model
order reduction. The computational algorithm is based on
collecting system trajectories data, where a data snapshots
matrix is utilized to compute the Fourier coefficients vectors
for a polynomial series approximation of the system state
impulse response. The computational procedure is practical
in sense that the trajectories data collection can be per-
formed either from experiment or from simulations. The pro-
posed method is applied for model order reduction of a
lowpass analog filter. Different sets of orthogonal polyno-
mials for computing the gramians are compared and the
approximation error of the corresponding orthogonal repre-
sentations is explored.

2. Orthogonal Polynomials
Approximation

The complete set of orthogonal polynomials is widely
used for approximation of continuous functions. Its appli-
cation is determined from the fact that the set of polynomi-
als with real coefficients is dense in the space of real valued
continuous functions. Therefore, every continuous func-
tion f in a Hilbert vector space H can be uniquely repre-

sented on the interval [a, b] as ( ) ( )tctf n
n

nϕ∑
∞

=
=

0
, where cn,

n = 0,1,... are the Fourier coefficients of the function f(t) with
respect to the complete orthogonal set { }∞

=0nnϕ .  Usually the
orthogonal functions are normalized, such that the follow-
ing orthonormal condition is satisfied:
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where a and b can be finite or infinite numbers. The Hilbert
space considered in the derivations to follow is L2 [a, b] and
therefore, every function that is subjected to approximation

f ∈ L2[a,b] satisfies the condition ( ) ∞<∫ dttf
b

a

2 . The function

f can be approximated in orthogonal series expansion as

( ) ( )tctf n

N

n
nϕ∑

=
≈

0
, where N is the order of truncation of the

orthogonal series and the Fourier coefficients
cn, n = 1,2,3 ... are computed by the expression
 ( ) ( )dtttfc n

b

a
n ϕ∫= . The error of approximationis εN determined

from the expression [16]

(2)   
 

( )
2

1

1

22
⎥⎦
⎤
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=

N

n
n

b

a
N cdttfε .

Remark. The Weierstrass approximation theorem
states that for every continuous functions f defined on a
closed, bounded interval holds that  ( ) 0lim =

∞→
fNN

ε  [4].
However, there are many functions which are not at all
suited for approximation by a single polynomial in the
entire interval of interest. Functions whose graphs have
sharp rises surrounded by weakly curved stretches are one
such example. Therefore, the size of the function
derivative influences the error of approximation. For
(n + 1)st order continuously differentiable functions, the
following result holds for the approximation error [4].

(3)  If  for all t ∈[a, b],

    then 
 

( ) ( )
1

4!1
2 +

⎟
⎠
⎞

⎜
⎝
⎛ −

+
≤

n

n

ab
n

Mfε on [a, b].

Laguerre polynomials form a complete orthogonal set
in the Hilbert space L2[0, ∞) with weighting function
w(t) = e−t, 0 ≤ t< ∞. The orthogonal set of Laguerre functions
is obtained by applying the Gram-Schmidt orthogonalization
process to the sequence of functions {e−t/2, te−t/2, t2e−t/2, ...}.
The orthonormal Laguerre functions are defined by the fol-
lowing expression:

(4) ϕn(t) = e−t/2 Ln(t),
where the Laguerre polynomial of order n is defined as [1]

(5)  ( ) ( )
( ) ( )∑

= −
−=

n

k

kk

n knk
tntL

0
2 !!

!1 , n = 0,1,2,...

The Laguerre polynomials can also be obtained as a
solution to the Laguerre differential equation

(6)  ( ) ( ) ( ) ( ) 01 =+′−+′′ tnLtLttLt nnn ,
or by applying the Rodrigues’ formula

(7)  ( ) ( )tn
n

nt

n et
dt
d

n
etL −=

!
, n = 0,1,2,...

The first several members of the Laguerre polynomials
orthogonal set defined on the interval [0, ∞) are obtained as
follows:

L0(t) = 1, L1(t) = 1− t, 
 ( ) 2

2 2
121 tttL +−= ,

 ( ) 32
3 6

1
2
331 ttttL −+−= , 

 ( ) 432
4 24

1
3
2341 tttttL +−+−= ,

 ( ) 5432
5 120

1
24
5

3
5551 ttttttL −+−+−= .

Figure 1 represents the Laguerre functions ϕn(t) cor-
responding to the Laguerre polynomials presented above
on a bounded interval t ∈ [0,10].

Approximation of a function f(t) ∈ L2[0,∞) in terms of
Laguerre orthogonal series can be computed as

(8) ( ) ( )tctf
N

n
nn∑

=
≈

0
ϕ ,  t ∈ [0,∞),

where  ( ) ( )dtttfc nn ϕ∫
∞

=
0

.

Laguerre functions have important application in fre-
quency domain. Each Laguerre function is realizable as the
unit impulse response of a linear time-invariant system [16].
The Laplace transform of the Laguerre function is given by

the expression ( ) ( ) dtetps st
nn

−
∞

∫=
0

,ˆ ϕϕ , n = 0,1,2,... and is

known as the Laguerre filter ( ) ( )
( )n

n

n ps
ps

ps
p

ps
+
−

+
=

2
,ϕ̂ ,  p > 0,

where the first term is a  first order lowpass filter, the
second term is a nth order allpass factor and p is a parameter.
The transfer function of every stable linear time-invariant
system can be represented as a series of Laguerre filters as

( ) ( )pscsG
n

n ,ˆ
0

ϕ∑
∞

=
= .

Legendre polynomials form a complete orthogonal set
in the Hilbert space L2[−1,1] with weighting function
w(t) = 1, t ∈ [−1,1]. Therefore, the Legendre polynomials
satisfy the polynomial orthogonality condition. The poly-
nomials are obtained by applying the Gram-Schmidt or-
thogonalization procedure of the functions 1, t, t2 ... on
the definition interval [−1,1]. The n-th order Legendre
polynomial is obtained by using the Rodrigues’ formula as
follows [1]:

(9)  ( ) ( )n

n

n

nn t
dt
d

n
tP 1

!2
1 2 −= , n = 1,2,...

The Legendre polynomials satisfy the recurrence
relations

(10)    ( ) ( ) ( ) ( )
1

12 1
1 +

−+
= −

+ n
tnPttPntP nn

n , P0 (t) = 1,

        P1 (t) = t , n = 1,2,...
and also the differential equations

(11)   ( ) nnn PnP
dt
dP

dt
d 1211 +=− −+ , n = 2,3,...

The Legendre polynomials can be normalized in order
to satisfy the orthonormal condition (1) with the orthonormal

function nn Pn
2

12 +=ϕ . The first several members of the

Legendre polynomials orthogonal set are as follows:

 ( ) ( ) Mtf n ≤+1
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Figure 2 shows the first five Legendre polynomials
on the definition interval. Every function f(t) ∈ L2 [−1,1]  can
be approximated in terms of Legendre polynomials as

(12)   ( ) ( )∑
=

+≈
N

n
nn tPnctf

1 2
12 ,

where

( ) ( )dttPtfnc nn ∫
−

+=
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12
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.
The Legendre polynomials are defined on a bounded

interval [−1,1]. However, in many problems the definition
interval is bounded but with different boundary points. In
such cases a polynomial rescaling and change of variables
is necessary. For example, a complete set of Legendre
orthogonal polynomials in the vector space L2 [0,T] is
obtained by introducing a change of variables as follows:

(13)  ( ) ( )ττϕ nn Pn
2

12 += ,

where

12 −= t
T

τ ,    t ∈ [0, T].

In such cases, expressions (12) take on the following
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Another set of orthogonal polynomials defined on the
same bounded interval [−1,1] are Chebyshev polynomials.
Chebyshev polynomials solve the approximation problem in
two different geometric measures. From one side Chebyshev
polynomials form a complete orthogonal set in the Hilbert
space L2[−1,1] with a certain weighting function on the
definition interval. From the other side Chebyshev
polynomials yield the best approximation to elements of the
real C [−1,1] space with respect to the uniform norm. This
problem is a minimax problem, since the obtained solution
achieves the minimum value of the maximum deviation
between the given function and the approximating polynomial
[4]. Chebyshev polynomials of first kind have the following
representation:

(15)  Tn (t) = cos nθ, θ = arccos (t), t ∈ [−1,1],
              n = 0,1,2,...

Chebyshev polynomials of second kind are given by
the expressions

(16)   ( ) ( )[ ]
21
1sin

t
ntU n
−
+= θ

,θ = arccos (t), t ∈ [−1,1],

        n = 0,1,2,...
Chebyshev polynomial of first kind of order n can be

obtained by the formula

(17)                                  , t ∈ [−1,1],
where

[n/2] = n/2  for even n and [n/2] = (n−1)/2  for odd n.
Expression (17) determines the following recursion formula:

(18)  Tn+1 (t) = 2tTn(t) − Tn−1 (t) , T0 (t) = 1, T1(t) = t,
       n = 1,2,3,...

The following relationships hold between the two kinds
of Chebyshev polynomials [1]:

(19)  Tn (t) = Un (t) − t Un-1 (t),
       (1−t2)Un-1 (t) = tTn(t) − Tn+1 (t), n = 1,2,3,...

(20)  Tn (t) = t Un-1 (t) − Un-2 (t),
     Un (t) = 2tTn(t) + Un-2 (t), n = 2,3,4,...

These formulas give the following first several
Chebyshev polynomials:

T0 (t) = 1, T1 (t) = t, T2 (t) = 2t 2 − 1,
T3 (t) = 4t 3 − 3t,  T4 (t) = 8t 4 − 8t2 + 1,
T5 (t) = 16t 5 − 20t3 + 5t,
T6 (t) = 32t 6 − 48t4 + 18t2  − 1,
T7 (t) = 64t 7 − 112t5 + 56t3 − 7t,
U0 (t) = 1, U1 (t) = 2t, U2 (t) = 4t 2 − 1,
U3 (t) = 8t 3 − 4t,  U4 (t) = 16t 4 − 12t2 + 1,
U5 (t) = 32t 5 − 32t3 + 6t,
U6 (t) = 64t 6 − 80t4 + 24t2  − 1,
U7 (t) = 128t 7 − 192t5 + 80t3 − 8t.

Figures 3 and 4 represent Chebyshev polynomials of
first and second kind on [− 1,1].

The leading coefficient for Chebyshev polynomials of
first kind is 2n-1 for n ≥ 1 and 1 for n = 0. The leading
coefficient for Chebyshev polynomials of second kind is 2n.
The Chebyshev polynomials possess the symmetry property:
Tn(−t) = (−1)n Tn(t)   and Un(−t) = (−1)n Un(t). The Rodrigues’
formula for Chebyshev polynomials of first kind is presented
as

(21)                                  , t ∈ [− 1,1].

The differential equations governing Chebyshev
polynomials are

(22)                                , t ∈ [− 1,1],

(23)                                      , t ∈ [− 1,1].

Chebyshev polynomials of first kind are orthogonal

with weighting function             and Chebyshev

polynomials of second kind are orthogonal with weighting
function                 . The continuous orthogonality condition
for Chebyshev polynomials of first kind is given by the
expression
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−
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−
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Figure 1. Laguerre functions  ( ) ( )tt 30 ϕϕ ÷

Figure 2. Legendre polynomials  ( ) ( )tPtP 40 ÷
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Figure 3. Chebyshev polynomials I  ( ) ( )tTtT 50 ÷

Figure 4.Chebyshev polynomials II ( ) ( )tUtU 50 ÷



4  20138 information technologies
and control

 

( ) ( ) ( )
⎪
⎩

⎪
⎨

⎧

==

≠=

≠

=
−

= ∫
−

0

0
2

0

1
,

1

1
2

qpfor

qpfor

qpfor

dt
t

tTtT
TT qp

qp

π

π
.

A complete set of orthonormal functions in the Hilbert
space L2[−1,1] can be constructed from Chebyshev
polynomials of first kind and is defined as

(24)  ( ) ( )
( ) 4

121
2

t
tTt n

n
−

=
π

ϕ , n = 1,2,3,...

and ( )
( ) 4

120
1

11

t
t

−
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π
ϕ , t ∈ [−1,1].

Similarly, the continuous orthogonality condition for
Chebyshev polynomials of second  kind is given as
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⎪
⎨
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A complete set of orthonormal functions in the Hilbert
space L2 [−1,1] can be obtained  from Chebyshev polynomials
of second kind as follows:

(25)  
 

( ) ( ) ( )tUtt nn
4

1212 −=
π

ϕ , t ∈ [−1,1], n = 0,1,2,...

Every function f(t) ∈ L2 [−1,1] can be approximated in
terms of Chebyshev polynomials of first or second kind as

(26)   ( ) ( )tctf n

N

n
nϕ∑

=
≈

0
,

 ( ) ( )dtttfc nn ϕ∫
−

=
1

1
, n = 0,1,2,...

where N is the order of truncation of the series. When the
interval of approximation is different from [−1,1], a change
of variables becomes necessary and the so called shifted
Chebyshev polynomials are used [9]. For example on the
interval [0, T], the complete orthonormal set of Chebyshev
functions in the Hilbert space L2 [0, T] are defined as follows:

(27)  
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−
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T
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π
τϕ nn U4

1212 −= ,

        12 −= t
T

τ ,   [ ]Tt ,0∈ .

The Fourier coefficients for the Chebyshev series
expansion on the interval [0, T] are computed from the
expression

(28)   , n = 0,1,2,...

3. Orthogonal Polynomials Based
Balanced Truncation

Consider the stable, linear time-invariant dynamical
system

(29.1)  Σ : , t ≥ 0,
(29.2)  y(t) = Cx(t), x(0) = x0,

where x(t) ∈ Rn, u(t) ∈ R and y(t) ∈ R. The reachability
gramian on the interval [0, T] is given by the expression

(30) .

The observability gramian on the interval  is defined
as follows:

(31) 
 ( ) dtCeCeTW AtT

T
tA

o

T

∫=
0

,0 .

 Assume that the initial condition x0 = 0 and that a
delta impulse is applied at the input, i.e. u(t) = δ (t) . The
obtained state impulse response is given by the expression
x(t) = eAt B. The reachability gramian (30) on the interval

[0, T] can be written in the form ( ) ( ) ( )dttxtxTW T
T

r ∫=
0

,0 . Assume

that the state impulse response is represented
by the corresponding orthogonal series approximation
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⎛ −ϕ  is Legendre or

Chebyshev set of orthonormal functions defined on the
finite interval [0, T], fk, k = 1.2,...,N, are the Fourier coefficients
and N is the order of truncation of the orthogonal series.
Satisfying the orthonormal condition (1), the reachability
gramian can be approximated by the expression
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where the coefficient 
2
T  is due to the change of variables

in integration. The Fourier coefficients  fk, k = 1.2,...,N,  can
be computed from the snapshots data matrix of system
trajectories.
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              j = 1,2,...,L
where L is the snapshots number (Δt ⋅ L = T) and the state
response signal can be obtained either by experiment or by
simulation. Corresponding to the state trajectory snapshots,
we obtain the orthogonal functions snapshots in a matrix
form

(34) , ϕkj = ϕk(tj), j = 1,2, ...,L,

       k = 0,1, ..., N
The Fourier coefficients vectors can be calculated as

, k = 0,1,...,N. In order to compute the

observability gramian, we consider the adjoint (dual)
system [3]

Σ*:   ( ) ( ) ( )tyCtpAtp ~** −−= ,
      u(t) =B*p(t),

where the star superscript denotes the adjoint operator, p
denotes the state, and y and u  are the input and the output
of the adjoint system, respectively. The time of the adjoint
system is running backwards and a change of variables
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τ = −t is appropriate. Since the system matrices are with real
elements we can write the following equations:

(35.1)   Σ*:                      ,
(35.2)        ( ) ( )ττ pBu T=~ .
If the system Σ is reachable, then the adjoint system

Σ* is observable and vice versa. Furthermore, the reachability
gramian of the adjoint system is the same as the observability
gramian of the original system. Therefore, in order to obtain
the observability gramian of Σ we need to compute the
reachability gramian of Σ*. The state impulse response of
the adjoint system is given by the expression p(t) = eATtCT.
The observability gramian (31) on the interval [0, T] can

be written in the form                                           .
Similarly to the original system (29), we apply orthogonal
series approximation on the state trajectory of the adjoint

system (35)                         , where                is

Legendre or Chebyshev set of orthogonal functions defined
on the finite interval [0, T], gk, k = 1,2,...,N are the
corresponding Fourier coefficients and N is the order of
truncation of the orthogonal series. The observability
gramian of system (29) is approximated as:

(36)                                                      .

We can represent the snapshots data matrix for the
state trajectory of the adjoint system as

(37)                                        , pj = p(tj),

j = 1,2,...,L
where L is the number of data snapshots. Using the
orthogonal functions snapshots we calculate the Fourier

coefficients for the observability gramian as                              ,

k = 0,1,...,N. If the system (29) is stable, the reachability and

observability gramians at infinity                  and

                     exist and are the unique solutions of the
Lyapunov equations

(38)   AWr + Wr  A
T + BBT = 0,

(39)   AT W0 + W0 A + C TC = 0.
The major difficulty for performing balancing

transformations and balanced model order reduction of linear
dynamical systems is computation of the gramians at infinity
Wr and W0 that can be done by solving the equations of
Lyapunov (38) and (39). Since  approximation of the gramians
at infinity by orthogonal series avoids solving the equations
of Lyapunov, it reduces the computational burden for model
reduction of large-scale systems. To approximate the
gramians at infinity is convenient to choose Laguerre
orthogonal series, since the Laguerre functions are
orthogonal on the infinite interval [0, ∞). The advantage of

using Laguerre orthogonal series is that, there is no need
to change the definition interval for the orthogonal functions
and therefore to change the variable of integration. The
smallest amount of energy needed to move the system from
zero to the state x is given by the quantity Er = xT Wr

−1 x,
while the energy obtained by observing the output of the
system with initial condition x and no input function is
given as  Eo = xT Wo

 x. Therefore, the reachabiliy and
observability gramians play an essential role in forming the
input/output behavior of the system. One way to reduce the
number of states is to eliminate those which require a large
amount of input energy Er to be reached and yield small
amount of observation energy Eo at the output. The
transformation, which changes the basis of system
description such that the reachability and observability
gramians are equal diagonal matrices with the Hankel singuar
values on the diagonal is called a balancing transformation.
The method related to reducing these system states, which
correspond to small Hankel singular values and therefore,
have small contribution to the input/output behavior is
called balanced truncation. Approximation by balanced
truncation preserves stability and the H∞ norm of the error
between the original and the truncated system is given by
the expression [3]

(40)                              .

A main algorithm for balanced truncation is the square
root algorithm. The square root algorithm consists of the
following steps: i) perform a Cholesky decomposition on
the reachability gramian Wr = UUT, ii) perform a Cholesky
decomposition on the observability gramian Wo = LLT ,
iii) perform singular value decomposition on the product of
Cholesky factors U T L = W Σ V T , iv) compute the similarity
transformation matrices for change of basis
P = Σ −1/2 V T LT and P 

−1 = U WΣ −1/2, v) apply the similarity
transformation to system matrices and obtain the system
model into a balanced form Ab = PAP−1, Bb = PB
and Cb = CP−1.

4. Model Order Reduction
for a Lowpass Filter

Consider an analog lowpass filter obtained by a
cascade connection of RLC circuits (figure 5). Assume that
all elements of the circuit have the same values of the
inductances, capacitances and resistances L = 100H,
R = 5*103 Ω and C = 5*10−5F.

If we ignore the influence of the input and output
impedances of the RLC elements, the transfer function
of a cascade connection of N such elements is the product
of the corresponding transfer functions, i.e.
G(s) = G1(s)G2(s) ... GN(s),  where

(41)                                  ,  i = 1,2,...,N

is the transfer function of the ith element and represents the
ratio between the corresponding output and input voltages.
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Figure 5. Analog low pass filter built by a cascade connection of RLC elements

 The state space model of this element is given by the
following equations:

(42.1)  ( ) ( )tx
C

tx 21

1= ,

(42.2)  ( ) ( ) ( ) ( )tu
L

tx
L
Rtx

L
tx 11

212 +−−= ,

(42.3)  ( ) ( )txty 1= ,
where  is the voltage across the capacitor and

( ) ( )titx L=2  is the current through the inductor for each
element. The analog filter model for two cascade connected

elements in state space ⎥
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Consider a lowpass filter built from three cascade
connected RLC circuits, which determines the order of the
filter to be n = 6.

Figure 6 and figure 7 show the state impulse
responses x1(t) and x2(t) for the analog filter model of full
order n = 6. The other state impulse responses of the filter
are similar to the presented responses and are typical
lowpass filter characteristics. The state impulse responses
constitute the input data for performing the orthogonal

Figure 6. State impulse response x1 of the filter

( ) ( )tutx C=1
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polynomials approximation based balanced truncation
procedure for model order reduction of the lowpass filter.
The Hankel singular values of the full order lowpass filter
are computed as follows:

[ ]5421 10149.010578.010134.010299.0216.0687.0 −−−− ⋅⋅⋅⋅=Σ
The system impulse responses are simulated on the

time interval [0, T], T  = 4 sec with discretization step
Δ = 0.01 sec. The order of series expansion for all cases is
N = 12.

Figure 8 shows the unit step responses of the full
order model and the reduced third order models obtained by
Legendre, Laguerre and Chebyshev of first and second kind
approximations. It is clearly seen that all step responses
almost coincide. The relative mean quadratic error of
approximation between the step responses of the full order
model and the reduced third order models is computed as
follows:

00246.0
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From the computed relative error norms between the
step responses of the full order model and the reduced third
order models is clear that all third order approximations are
very close to each other and the error of approximation is
quite small. This fact can be explained with the small values

of the Hankel singular values corresponding to the truncated
states of the balanced system. This conclusion can be
confirmed from the logarithmic magnitude responses shown
on figure 9. It is apparent that the magnitude responses of
the approximated systems are closely related for all four
polynomial types.  From the figure can also be seen that the
reduced order systems have magnitude responses, which
deviate from the response of the full order model only in the
high frequency range. Therefore, the presented method of
approximation can be successfully applied in the case of
slowly changing signal characteristics.

Next, we explore the approximating properties of the
model reduction method for  different orthogonal
polynomials. Consider the Legendre polynomial
approximation based balanced truncation of the analog filter
model consisting of a cascade connection of four RLC
circuits and thus,  presenting a system of order n = 8. The
Hankel singular values of the full order filter model are
computed as follows:

[ ]864321 1081.010411.010113.010256.010605.010563.0275.0724.0 −−−−−− ⋅⋅⋅⋅⋅⋅=Σ .
We apply Legendre series approximation to system

state impulse responses with order of series approximation
N = 12.

Figure 10 presents the unit step responses of the full
order model and the reduced fourth and second order
models. As can be seen from the figure, the unit step
responses of the full order and the reduced fourth order
models are closely related. The difference appears in the

Figure 7. State impulse response x2 of the filter
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step response of the reduced second order model and it is
due to the relatively large Hankel singular value for the
truncated third state variable. The figure relations can be
quantified by computing the relative mean quadratic error
between the outputs of the full order and reduced order
models.

                              and                              .

Similar information can be obtained from the logarithmic
magnitude responses shown on figure 11. It is observed
that the logarithmic magnitude response of the second order
approximation deviates from the response of the full order
model in the low frequency range and this is the reason for
the larger approximation error in the step responses on
figure 10. The magnitude response of the fourth order
approximation follows closely the response of the full order
model and demonstrates good approximation capability of
the reduced order model in the low frequency range.

Figure 12 shows the step responses of the full order
model and the reduced fourth and second order models
when the approximation is performed by using Chebyshev
polynomials of first kind.

The step response of the reduced fourth order model
obtained by Chebyshev series approximation is closely
related to the step response of the full order model. The
step response of the reduced second order approximation
clearly deviates from the step response of the original filter
model. The relative mean square error quantifies the observed
differences between the responses

                                and                             .

The corresponding logarithmic magnitude responses
are shown on figure 13. The observation made is that the
reduced second order characteristic is much different from
the characteristics of the full order and reduced fourth order
models. While the magnitude response of the fourth order
model deviates from the full order model only in the high
frequency range, the second order model differs from the
full order model in the area of low frequencies as well. The
performed numerical experiments show that the observed
orthogonal polynomials approximations are very alike as
concerned reducing the order of the system model. The step
responses and logarithmic magnitude responses are closely
related for the same order of polynomial series approximation
for the explored four orthogonal polynomial sets. The order
of model reduction is clearly determined from the magnitude
of the truncated Hankel singular values. As larger are these
values, as greater is the deviation of the system
characteristics from the corresponding ones of the full order
model.

5. Conclusion

This paper considers the problem of model order
reduction by applying a polynomial series approximation
based balanced truncation method. The proposed method
combines the system properties of balanced truncation and
the computational effectiveness of proper orthogonal
decomposition with the approximation power of orthogonal
polynomials. Four types of orthogonal polynomial sets are
used to build a complete set of orthonormal functions for
approximating certain system characteristics. The main result
of this paper is based on the orthogonal series
representation of the state impulse responses of the linear
system, as the reachability and observability gramian
approximations are computed by using the Fourier
coefficients vectors from the orthogonal series expansion.
In this way the procedure for solving large-scale Lyapunov
equations is avoided and thus, the computational effort for
obtaining the gramians is largely reduced. Further, the
balanced truncation algorithm for model order reduction is
applied. Different experiments are performed for exploring
the approximation properties of the presented method. It is
confirmed that the approximation capability of the proposed
method depends on the size of the truncated Hankel singular
values. It is also shown that all four orthogonal polynomials
possess almost identical precision in approximating the
dynamical system. The relative mean quadratic error is
computed for all four cases as a quantitative measure for
the approximation power of the proposed method.
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Figure 8. Step response of the full order model ---, Legendre -.-, Laguerre ..., Chebyshev I, II ....

Figure 9. Logarithmic magnitude response full order ---, Legendre -.-, Laguerre ..., Chebyshev I, II ....
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Figure 10. Step responses of full order model ---, Legendre 4th order -.-, and 2nd order…..

Figure 11. Logarithmic magnitude response full order model ---, Legendre 4th order -.-, and 2nd order …..
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Figure 13. Logarithmic magnitude response full order  model ---, Chebyshev I 4th order-.-, and 2nd order …..

Figure 12. Step responses of full order model ---, Chebyshev I 4th order -.-, and 2nd order …..
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