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Abstract. This paper considers the problem of model order reduc-
tion of linear systems with the emphasis on the common features
of the main approaches. One of these features is the unifying role
of operator projection in model reduction. It is shown how pro-
jections are implemented for different methods of model reduction
and what their properties are. The other common feature is the
subspaces where projections are defined. The main approaches for
model reduction which are considered in the paper are balanced
truncation, proper orthogonal decomposition and the Lanczos
procedure from the Krylov subspace methods. It is shown that the
range spaces of system gramians for balanced truncation and the
range space of the reachability and observability matrices for the
Lanczos procedure coincide. The connection between balanced
truncation and the proper orthogonal decomposition method is
also established. Therefore, the methods for model reduction are
similar in terms of general operational principles, and differ mostly
in their technical implementation. Several numerical examples are
considered showing the validity of the proposed conjectures.

1. Introduction

The exploration of many physical phenomena requires
the creation of complicated and with large number of equa-
tions mathematical models. The large scale models dimen-
sion and complexity is further increased from the demand of
higher accuracy and precision in presenting the system
interrelations. The optimization and simulation of such large
scale systems is often unbearable task, which determines
the necessity of using different approaches for system
approximation. One of the most frequently used approaches
is model order reduction. Model order reduction is con-
cerned with replacing the original model with a lower order
one, while preserving in general its input/output behavior.
Model order reduction is successfully applied in VLSC elec-
trical circuits design, air quality exploration, molecular dy-
namics simulation, deep sea wave propagation, micro elec-
tromechanical devices synthesis and many other areas.

The methods for model order reduction can be divided
into two main groups [1]: singular value decomposition
(SVD) based methods and methods based on projection
onto subspaces of Krylov. A main representative of the
first group of methods is balanced truncation [15]. A dy-
namical system is in balanced form when the reachability
and observability gramians are identical diagonal matrices.
These states which correspond to small diagonal elements
are truncated, because they have a small contribution to the
input/output behavior of the system. The reduced order
system preserves such properties like stability, controllabil-

ity and observability [15,17]. Another advantage of bal-
anced truncation is that it provides a priory computable
upper bound on the error of system approximation [9,7]. A
drawback of balanced truncation is that the computational
procedure is related to solving large scale matrix Lyapunov
equations and if the system is of very high order, it creates
computational difficulties. Balanced truncation is developed
in time and frequency domain, in deterministic and stochas-
tic settings, for different classes of systems with the restric-
tion for system structure preservation, etc. [10].

The proper orthogonal decomposition (POD) method
overcomes the numerical disadvantage of balanced trunca-
tion by simplifying to a great extend the computations in
the numerical procedures [18]. The method delivers an or-
thonormal basis for optimal approximation in quadratic sense
of certain system characteristics from experimentally ob-
tained data. Especially useful and effective numerically is
the snapshots approach [20]. By this approach, the state
trajectory is discretized in equally distributed state points
called snapshots, which are further employed for low di-
mensional approximation of system states. The usage of
discretized data simplifies the computations which are re-
duced to the general algebraic operations. POD is data
dependent method and does not require previous knowl-
edge of system behavior. The derivation of the reduced
model is obtained by projection on a subspace of the origi-
nal state space. The computational effectiveness allows
applying proper orthogonal decomposition to linear as well
as nonlinear system problems. Due to the fact that it re-
quires only standard matrix operations, it can be properly
applied even to infinite dimensional dynamical systems.
Compared to the balanced truncation procedure however,
proper orthogonal decomposition does not guarantee sta-
bility for the reduced system and does not provides a
priory approximation error bound. There are different at-
tempts to connect these two methods and to extend POD
to balanced truncation [21,19]. In [11,12] the concept of
empirical gramians is used, which are obtained from experi-
mental data and approximate the gramian matrices of the
dynamical system. The empirical gramians are easy to com-
pute and give quite accurate approximation when the order
of the system is very high. This approach is further ex-
tended in [16], where empirical gramians are calculated by
using orthogonal polynomial expansions of the state im-
pulse responses of the original system and its dual.

The other group of methods for model order reduction
is the group of methods based on projection onto the
subspaces of Krylov with their two representatives: the
method of Lanczos [13] and the method of Arnoldi [3]. Both
methods are iterative in nature, where at each step of the
computational procedures the order of the approximated
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system increases. A particular feature of these methods is
that the reduced system matrices admit a special canonical
form, which allows simplifying the computations. The trans-
formation matrices are orthogonal and built by applying the
Gram – Schmidt orthogonalization procedure. The Arnoldi
algorithm implements Galerkin projection on the subspace
of Krylov generated by the columns of the controllability
matrix. The two sided Lanczos algorithm realizes Petrov –
Galerkin projection onto the Krylov subspaces generated
by the columns and rows of the reachability and
observability matrices. The Lanczos algorithm can be effec-
tively implemented in the frequency domain, where the pro-
cedure of moment matching is successfully applied for model
reduction [8]. The methods based on projection onto sub-
spaces of Krylov are computationally efficient and the
numerical procedures for obtaining the approximated sys-
tems require only matrix – vector multiplications without
matrix factorizations or inversions [1]. The Lanczos proce-
dure allows frequency domain implementation, where the
selection of frequency points leads to more accurate system
approximation in particular frequency ranges. The major
drawback of these methods is the loss of orthogonality if
the classical Gram – Schmidt procedure becomes unstable,
and the algorithms may break down if certain matrices dur-
ing the computations become singular [1,2].

This paper considers the problem of model order re-
duction for linear systems. The goal is to derive some com-
mon features of the main approaches for system reduction.
One of these features is the unifying role of projection in
the procedures for model reduction. It is shown how the
projection operator is realized into different reduction pro-
cedures and regardless the technical implementation, all main
approaches include a procedure of  subspace projection.
The other common feature is the destination subspace,
where the states of the original system are projected. It is
shown that the reachability and observability operators play
decisive role in forming the structure of the projected sub-
space. The connection between the system gramians and
the corresponding reachability and observability matrices is
established. The close connection between the main ap-
proaches for model reduction is justified by several numeri-
cal simulations.

2. The Projection Operator

Projection operators play an important role in approxi-
mation theory and for spectral representation of linear op-
erators. A complete characterization of projection operators
and their application can be found elsewhere in the litera-
ture on operator theory, for example in [6].

      Definition 1. Assume that V is a vector space
over the field of scalars F. The projection P is a bounded
linear operator of the vector space V into itself, which is
idempotent, i.e. P2 = P.

      Proposition 1. Let V be a vector space over the
field of scalars F and P is a projection defined on V. The
range and null spaces of the projection operator are supple-

mentary linear subspaces of V, i.e. their intersection con-
tains only the zero element and their sum is the whole
space:

R(P) ∩ N(P) = {0} and  R(P) + N(P) = V.
Therefore every element of the vector space v ∈ V can

be uniquely expressed as a sum of two elements belonging
to the range and null spaces of a projection operator P:

v = v1 + v2, where v1 ∈ R(P) and v2 ∈ N(P).
Conversely, if there exist two supplementary subspaces

of a given vector space V, then a projection can be defined
such that every vector v can be projected onto the range
space of the projection operator along its kernel.

Proposition 2. Let V1 and V2 are two disjoint linear
subspaces of a linear vector space V over the field of
scalars F such that V1 + V2 = V. Then, there exists a projec-
tion P defined on V such that  R(P) = V1  and N(P) = V2.

If the vector space V is a Hilbert space, i.e. a complete
inner product vector space, then projection operators de-
fined on the Hilbert space carry some additional properties
due to the orthogonality properties of the elements of this
vector space.

Definition 2. A projection P on a Hilbert space H is
said to be orthogonal if its range and null spaces are or-
thogonal, i.e. R(P) ⊥ N(P).

Proposition 3. Assume that H1 is a closed subspace
of a Hilbert space H. Then for every vector h ∈ H, there
exist an orthogonal projection P and unique vectors h1 and
h2 such that h = h1  + h2, where P(h) = h1. In this case
h1 ∈ R(P)  and h2 ∈ R(P)⊥, and therefore  h 2 =  h1 

2 +  h2 
 2.

Proposition 4. Assume that P is an orthogonal pro-
jection on a closed subspace H1 of a Hilbert space H. Then
the following conditions are satisfied:

i)  the projection P is a linear bounded self-adjoint
operator satisfying P2 = P;

ii)  the norm of the projection operator is either zero
or one, i.e. either P = 0 or  P  = 1;

iii) the projection operator on the subspace H2 = H1
⊥

is the operator (I − P).
Proposition 4 declares that the orthogonal projection

operator is a self-adjoint operator. For finite dimensional
real inner product spaces, where the projection operator is
a matrix with real elements, this condition means that all
projection matrices are symmetric.

Proposition 5. Assume that H1 is a closed subspace
of a Hilbert space H. Then there exists a unique orthogonal
projection on H such that R(P) = H1.

Finally, we present one of the most important results
concerning orthogonal projections on Hilbert spaces, which
form the base for approximation and estimation theory on
Hilbert spaces.

Theorem (The Orthogonal Projection Theorem).
Assume that H1 is a closed subspace of the Hilbert space
H. Let P is the orthogonal projection on the subspace H1,
i.e. R(P) = H1. Then, for any vector h ∈ H we have
 h − P(h)  ≤  h − x  for all vectors x ∈ H1. In other words:
 h − P(h) = inf { h − x : x ∈ H1}.

Proposition 6. Assume that P1 and  P2 are projections
defined on a Hilbert space H onto closed subspaces H1 and

x
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H2, respectively. Then the following statements are equiva-
lent:

i) P1 + P2 is a projection operator;
ii) P1P2 = 0;
iii) the projection subspaces satisfy the orthogonality

condition, i.e.H1 ⊥ H2.
In the procedures of model order reduction, the state

space is a finite dimensional space over the field of real
numbers, and therefore the projection operator is presented
by a matrix with real elements.

3. The Projection Operator in Model
Order Reduction

Consider the stable, linear time-invariant dynamical
system:

(1.1) x(t) = Ax(t) + Bu(t), t  ≥ 0,
(1.2)  y(t) = Cx(t), x(0) = x0 ,

where x (t) ∈ R 
n, u (t) ∈ R 

m,  and y (t) ∈ R 
p. The reachability

and observability gramians at infinity are given by the
expression:

(2) Wr =  e At B B T e A
T t dt  and

    W0 =  e A
T t  C T C e A

 t dt.

The gramians (2) can be computed by solving the
following equations of Lyapunov:

(3)  AWr + Wr A
T + BBT = 0  and

     AT W0 +W0 A +CT C = 0.
The balanced truncation method is related to trans-

forming the state space coordinates in such a way that the
reachability and observability gramians are equal diagonal
matrices. The diagonal elements of the gramian matrices
called Hankel singular values, give information about the
energy needed to reach or observe the corresponding states.
The state variables related to large Hankel singular values
are easy to reach and to observe and have more influence
on the input/output behavior of the system. The state vari-
ables associated with small Hankel singular values have
less impact on the system behavior and therefore, these
states can be truncated from the system description. Apply-
ing the square root algorithm, the balancing transformation
matrices can be computed as follows [1]: i) perform Cholesky
decompositions on the gramian matrices Wr = U U T and
W 0 = L L T ; ii) perform singular value decomposition on the
product U T L = W Σ V T; iii) compute the similarity transfor-
mation matrices to transform the system into a balanced
form: T = Σ − ½V T L T  and  T − 1 = UW Σ − ½. The system
matrices of the transformed system are obtained as
A = TAT −1, B = TB , C = CT −1,  and x = Tx is the state of
the balanced system. The next step is to truncate these
state variables which correspond to small Hankel singular
values. Let us assume that the reduced system is of order
k and therefore, the other (n − k) state variables are selected
for truncation. We partition the similarity transformation

matrices as ⎥
⎦

⎤
⎢
⎣

⎡
=

T

T

T
W

T
2

 and T−1 = [V  T1], where

V, W ∈ R n × k and T1, T2 ∈ R n × (n - k). Then, system order
reduction is achieved by using the first k rows of matrix T
and first k columns of matrix T − 1 to obtain the reduced
system matrices as Ak = W TA V, Bk = W TB and Ck = C V.
The matrix P = V W T is projection, since P2 = V W T V W T

= V W T = P, where W T V = Ik follows from the definition of
matrices W and V. However,  P is oblique (Petrov – Galerkin)
projection and not orthogonal (Galerkin), since in general
(V W T )T  = W V T ≠ V W T  . The projected state vector is
obtained as  x = V W T x = V xk, where xk =  W T is the reduced
model state vector of the k-th order system. The vector x
is a projection of  x onto the k-dimensional subspace
spanned by the columns of matrix V along the kernel of WT.
The vector x = (In − V W T) x belongs to the null space of
the projection operator and is the unique vector such that
x = x + x. In some sense vector x is complementary to vector
x and contains information which has been removed from
the original state vector in the procedure of model order
reduction.

The proper orthogonal decomposition (POD) method
is also part of the group of singular value decomposition
based methods and uses as a starting point the measure-
ments performed on system trajectories. The basic idea is
to approximate the state trajectory of the system with one
corresponding to a system of lower dimension. This goal is
achieved by using orthogonal (Galerkin) projection. The
proper orthogonal decomposition method uses discretized
trajectories data called snapshots, which is obtained from
measurement or simulation of the state trajectory. The tra-
jectory data is collected in discrete time for the time mo-
ments t1, t2, ..., tN, which form the snapshots matrix:

(4)    

 ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

Nnnn

N

N

txtxtx

txtxtx
txtxtx

X

21

22212

12111

.

Then, a set of orthonormal vectors vi ∈ Rn,
i =  1, 2, ..., n  are determined, such that the snapshots data
is approximated in terms of the orthonormal vectors as

xi = Σ   φjivj, where xi = x(ti), i =  1, 2, ..., N. These equations

are presented as follows:

(5)  [ ] [ ]
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

nNnn

N

N

nN vvvxxx

φφφ

φφφ
φφφ

21

22221

11211

2121

or in matrix form  X = V * Φ with V T V = In. The selection
of the orthonormal set of vectors is achieved by using
singular value decomposition of the snapshots data matrix

∫

∫

∞

∞

0

0

.

~ ~ ~ ~

~ ~ ~ ~ ~ ~

^ ~ ~
^

^

^

j = 1

n
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~
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in the form X = VΣUT, where the coefficients matrix is
Φ = ΣUT. If the emphasis is on the state trajectories energy,
then the matrix XX T is computed, which in terms of the SVD
decomposition of the data matrix can be written as
XX T = VΣU T UΣ TV T  = VΣΣT V T. Further, the goal is to
select only k < n vectors, such that the approximated state

trajectory snapshots xi = Σ   φjivj   minimize the data matrix

difference  X − X 2. This is the case when the singular
values of matrix X with index larger than k decay rapidly.
Then, the state snapshots can be computed by using only
k orthonormal vectors as follows:

(6)   

 

[ ] [ ]
⎥
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.

or in matrix form X = Vk * Φk , where  X ∈ R n × N,
Vk∈R n×k

  and  Φk ∈ R k×N, k < n. Matrix Vk is built by
selecting the first k columns of the orthogonal matrix V. The
projection matrix is defined as P = Vk Vk

T. The equality
P = P2  is satisfied since V is an orthogonal matrix and
Vk

T Vk 
 = Ik. The projection is orthogonal (Galerkin), since

(VkVk
T)T = VkVk

T. The system matrices of the reduced order
model are computed as Ak = Vk

T AVk, Bk = Vk
T B and

Ck = CVk. The state vector of the reduced system is
computedas xk = Vk

T x and the projected state vector is
obtained as xk = VkVk

T x = Vk xk , where x is the projection
of  x onto the span columns of Vk. The complementary state
vector  x = (I − VkVk

T) x ∈ N (VkVk
T)   and is subadditive

to the projected vector to restore the original state vector:
x = x + x.

There exists an interesting link between balanced trun-
cation and proper orthogonal decomposition. This link is
established by the numerical procedure of computing the
system gramians. When the input to the system is a delta
impulse, the state trajectory is the state impulse response of
the system. If the system is single-input, the state
impulse response is x(t) = e At B and the reachability
gramian on  the  time  interval  [0, T]  can  be computed as:

Wr (0, T) = ∫ x(t) xT(t)dt. If the system is multi-input, the state
impulse response for an input signal u(t)j = δ (t)ej,
j = 1, 2, ..., m, can be obtained as xj (t) = e At Bj , where Bj
is the j-h column of matrix B. By using dyadic expansion of
matrices, the reachability gramian can be obtained as

( ) ( ) ( )dttxtxTW
m

j

T
j

T

jr ∑∫
=

=
1 0

,0 . In this case, the snapshots ap-

proach of proper orthogonal decomposition can be applied
by partitioning the time interval [0, T] on N  time moments
0 ≤ t1 ≤ t2 ≤ ... ≤ tN = T . Since the state trajectory is Riemann
integrable, by applying procedures of numerical integration,
the reachability gramian can be approximated by the expres-

sion  ( ) ( ) ( )i
T
ji

m

j

N

i
jr txtx

N
TTW ∑∑

= =
≈

1 1
,0 . In terms of the snap-

shots data matrix, this expression can be presented in the

form ( ) ∑
=

≈
m

j

T
jjr XX

N
TTW

1
,0 , where Xj = ⎣⎣⎣⎣⎣xj(t1) xj(t2) ... xj(tN)⎦⎦⎦⎦⎦.

Here we have used the simplest quadratures formula
for numerical integration namely, the rectangular rule. In
general there exist different approaches to approximate the
integration in the gramians expression. Some more advanced
approach employs the trapezoidal rule and reduces to the
calculation of the gramian as [1]:

(7)   ( ) ( )iTT
m

j

N

i

i
r ABBA

N
TTW μμμμ∑∑

= =
≈

1 1
3

3

4
,0 ,

where  Aμ = (A − μIn)
−1 (A + μIn), Bμ = (A − μIn)

−1B,  and

μ =     .
Further, the eigenvalue decomposition procedure can

be applied to this gramian approximation, and the Galerkin
projection matrix can be selected by employing the leading
k eigenvectors of this decomposition:

(8)   ( ) [ ] TT
T

T

r UUUU
U
U

UUTW 222111
2

1

2

1
21,0 Λ+Λ=⎥

⎦

⎤
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⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Λ

Λ
= .

The projection is defined as P = U1U1
T and since

matrix U is orthogonal, its submatrix U1 satisfies U1
TU1 =  Ik.

Then the idempotent condition readily follows
P2 = U1U1

TU1U1
T = U1U1

T = P . This projection is orthogonal
(Galerkin) since (U1U1

T)T = U1U1
T. The reduced order system

is obtained as  A = U1
T AU1,  B = U1

T B, and C = CU1.
However, balanced truncation presumes that system

reachability as well as observability properties are simulta-
neously used for the purpose of model order reduction.
Similarly to the reachability gramian, the observability
gramian can be computed by using the state impulse re-
sponse of the dual system [4]:

(9.1)  p(t) = −A* p (t) − C*u(t), t ≥ 0
(9.2)  y(t) = Β * p (t), p(T) = pT,

where the star superscript denotes the adjoint operator,
p (t) ∈ R 

n is the dual system state vector, u (t) ∈ R 
p  is the

dual system input and y (t) ∈ R 
m is the output. The time

of the dual system is running backwards and a change of
variables τ  = − t  is physically meaningful. Since the system
matrices are with real elements, we can use matrix transpose
instead of the star superscript. Therefore, the dual system
equations can be written in the form:

(10.1)  p(t) = AT p (τ) + CTu(t),
(10.2)  y(τ) = Β T p (τ).
Using the same arguments as for the reachability

gramian, we can present the observabity gramian as

( ) ∑
=

≈
p

l

T
llo PP

N
TTW

1
,0 , where P1 = [p1(t1) p1(t2) ... p1(tN)]  is

the dual system state vector snapshots matrix, which is
computed for the l-th component of the input function
u(t)1 = δ (t)e1. Then the usual procedures for balancing and
balanced state truncation can be applied and the reduced
system can be obtained by employing Petrov – Galerkin
projection as described above in the balanced truncation
method.
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Some intermediate results between balanced trunca-
tion and proper orthogonal decomposition are presented by
transforming the system into output normal form. The out-
put normal form is system description which is character-
ized with diagonal reachability gramian and identity
observability gramian. The numerical procedure for trans-
forming the system into output normal form incorporates
the following steps [5]:  i) compute the eigenvalue decom-
position of the system gramians Wr = RrΣr

2Rr
T  and

Wo = RoΣo
2Ro

T , where RT R = I  and Σ2 = diag{λ1
2, λ2

2, ..., λn
2}

are the corresponding eigenvalues; ii) compute the matrix
H = Σo

TRo
T RrΣr; iii) compute the singular value decompo-

sition  H =  RHΣHQH, where RH
TRH = I  and QHQH

T
 = I;

iv) compute the similarity transformation matrices for trans-
forming the system into output normal form as T = RH

TΣo
TRo

T

and T 
−1= RoΣo

−TRH. The transformed system will have
reachability gramian Wr = Σ2

H and observability gramian
Wo = I . The model reduction procedure proceeds by select-
ing the first k columns of  T 

−1 = [Vk    T1] and the first k

rows of ⎥
⎦

⎤
⎢
⎣

⎡
=

T

T
k

T
W

T
2

 and using them as transformation ma-

trices to obtain Ak = WT
k A Vk , Bk = WT

k B and Ck = C Vk . The
projection matrix is built as P = VkW

T
k, where WT

kVk = Ik
follows from the definition of these matrices. Further,
(VkW

T
k)

T = WkV
T

k.   Therefore, the projection is Petrov –
Galerkin and is almost Galerkin up to scaling by the square
value of the diagonal matrix Σo elements.

The other group of methods for model order reduction
is based on projection on the subspaces of Krylov. A main
representative of this group is the method of Lanczos. The
method of Lanczos is an iterative procedure for computing
an orthonormal basis for the reachability subspace of the
system. We consider here the single-input single-output
system case. The algorithm proceeds by applying the Gram
– Schmidt orthogonalization procedure to a sequence of
vectors gradually forming the reachability subspace, where
the remaining term serves as a new direction for developing
the sequence. Let us assume that the matrix
Vk= [v1  v2  ...  vk]  consists of k column vectors which are
orthonormal, i.e. VT

kVk = Ik. Then matrix A is transformed to
a system matrix, where the states are obtained as a
projection of the original state vectors onto the subspace
spanned by the columns of Vk, i.e. Hk =VT

k AVk. If
spancol{v1   v2   ...   vk} = spancol{v1   Av1   ...A

k-1v1} and
if v1= B  then, at each step of the algorithm, the generated
subspace is part of the reachability subspace of the system.
The iterative procedure is presented in the following form
[1]:

(11)   A Vk = VkHk + rke
T

k,
where the remaining term rk is obtained from the Gram –
Schmidt orthogonalization procedure as follows:

(12)   j

k

j
kjkk vAvvAvr ∑

=
−=

1
,

and therefore, it is orthogonal to the columns of Vk. Further-
more, the next vector from the sequence can be computed

by the expression 
 

k

k
k r

rv =+1 . The matrix  Hk = Vk
T AVk, which

is obtained from the iterative process (9), is the system
matrix of the reduced k-th order system. It has a special
tridiagonal structure and is obtained from projection onto
the subspace generated by the columns of Vk. The projec-
tion is of Galerkin type and is computed as P = VkVk

T , where
Vk

TVk
 
 = Ik. The remaining term is rk = (In − VkVk

T) Avk and
therefore, rk ∈ N(VkVk

T) − the null space of the projection
operator. If at certain step of the algorithm the remaining
term is obtained as rk = 0, then vk+1 can not be constructed
and the Lanczos procedure comes to an end. This is the
case when spancol{v1   v2   ...   vk} has generated the whole
reachable subspace of the system.

The problem with this procedure is that it relies only
on the information from the reachable subspace for comput-
ing the projection matrix. For obtaining closer approximation
of the input/output system behavior it is necessary to-
gether with the reachability subspace to consider the set of
the observable states as well. This condition is accom-
plished in the two sided Lanczos algorithm. The two sided
Lanczos algorithm consists of two iterative procedures:
AVk = VkHk + rke

T
k and ATWk = WkH

T
k + gke

T
k , where the

columns of Vk span part of the reachable subspace of the
system and the columns of Wk span part of the observable
states. Therefore, we can write:

    spancol (Vk) = spancol {B   AB   ...   Ak−1B} and
spancol (Wk) = spancol {CT   ATCT   ...   (AT)k−1CT}.
The projection matrix is computed as P = VkWk

T, where
Wk

TVk
 

 = Ik and is oblique (Petrov – Galerkin) since
(VkWk

T)T =  WkVk
T ≠ VkWk

T. The projected state vector is
obtained as x = VkWk

Tx = Vkxk, where xk= Wk
Tx is the

reduced model state vector of the k-th order system.
The vector x = (In − VkWk

T)x  belongs to the null space of
the projection operator and is the unique vector such that
x = x + x.

4. The Reachability and Observability
Operators for Linear Systems

Consider the system described by equations (1).
In the presentation to follow we consider signals with finite
energy and therefore, the input and output signals belong
to the Hilbert space L2(0, T) and its subspaces.
The reachability operator  [ ]( ) n

r RTPCL →,0: , where
 [ ]( ) ( )TLTPC ,0,0 2⊂  is the set of piecewise continuous func-
tions with finite energy defined on the interval [0,T], maps
each admissible input signal u ∈ U[0,T] ⊂ PC([0,T])  into a

state  vector  by  the expression                                   ,

t ∈ [0,T] [4]. The range space of the reachability operator
R(Lr) is the set containing all reachable states of the system
and is called the reachable subspace. The adjoint operator
L*

r : Rn → PC([0,T]), which satisfies the relation

~
~

^ ~

^

~

 ( )( ) ( ) ( ) τττ dBuetuL
t

tA
r ∫ −=

0
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Figure 1. Unit step responses of the full order -----; reduced 4th order -.-.-; reduced 2nd order …..; by BT

Figure 2. Unit step responses of the full order -----; reduced 4th order -.-.-; reduced 2nd order …..; by POD
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Figure 3. Unit step responses of the full order -----; reduced 4th order -.-.-; reduced 2nd order …..; in ONF

Figure 4. Unit step responses of the full order -----; reduced 5th order  -.-.-; reduced 3rd order …..; by L
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〈z, Lr, u〉 = 〈L*
r, z, u〉, can be determined for every vector

z ∈ Rn as (L*
r z)(t) = BTeAT(T−1)z, t ∈ [0,T]. The reachability

gramian on the interval [0,T] is defined as
 ( ) dteBBeTW

T
tATAt

r

T

∫=
0

,0  and is the matrix representation of

the operator LrL
*
r : R

n →  Rn. It is more convenient to work
with the gramian than with the reachability operator, since
the gramian is a matrix and a map between two state vectors,
while the reachability operator maps elements of the infinite
dimensional space of admissible inputs into the finite di-
mensional state space. However, the reachability gramian is
not state space basis invariant and its properties depend on
the basis of system description. The reachable subspace of
the system, which is the range space of the reachability
operator coincides with the range space of the gramian
R(Lr) = R(LrL

*
r).   Therefore, the reachability condition for

all system states R(Lr) = Rn is equivalent to the condition
R(LrL

*
r) = Rn or detWr(0,T) ≠ 0.

Every reachable state can be obtained in the range of
the reachability operator for any admissible input signal
with finite energy by using Taylor series expansion as
 ( )( ) ( ) ( ) ( ) ( ) ττττττ du

i
tBAdBuetuL

t i

i

i
t

tA
r ∫∑∫

−==
∞

=

−

000 ! , and is a lin-

ear combination of the vectors B, AB, A2B, ... for a fixed time
moment t. For example, in the single-input case if the input
to the system is a delta impulse, then (Lrδ)(t) = eAtB (in the
multi-input case we have (Lrδej)(t) = eAtBj, where u(t) = δ(t)ej,
j = 1, 2, ... , m). The expression eAtB can be expanded in

Taylor series as 
 ( )

∑∑
∞

=

∞

=
==

00 !! i

i
i

i

i
At

i
tBAB

i
AtBe . By the Cayley

– Hamilton theorem, Ai for i ≥ n is a linear combination of

 { } 1

0

−

=

n

k
kA  and therefore, the infinite sum can be rearranged

to contain only a finite number of elements. The
reachability matrix of the system (1) is defined as
Γ = [B   AB   ...   An-1 B] and from the above discussion
follows that the range space of the reachability operator is
spanned by the columns of matrix Γ, or equivalently
R(Lr) = R(LrL

*
r) = R(Γ).

This result is even more straightforward in the dis-
crete-time systems case. Consider the linear stable discrete-
time system:

(13.1)   x(k + 1) = Fx(k) + Gu(k),
(13.2)      y(k) = Cx(k) + Du(k), x(0) = xo.
The reachability gramian at infinity of system (13) is

defined as 
 ( )∑

∞

=
=

0k

kTTk
r FGGFW  and the reachability matrix

of system (11) is X = [G   FG   ...   Fn−1G]. Let us extend
the reachability matrix by adding columns with higher pow-
ers of F and so obtain the extended reachability matrix
X∞= [G   FG   ...   Fn−1G   ...]. By the Cayley – Hamilton
theorem follows that the space generated by the columns of
the extended matrix is the same as the space generated by
the columns of the original matrix and its dimension is equal
to the reachability matrix rank. Since Wr= X∞XT

∞ it is clear
that the range spaces of the gramian and the reachability

matrix are the same, i.e. R(Wr) = R(X∞) = R(X).
The observability operator L0 : R

n →  PC([0,T]), where
PC([0,T]) is the set of piecewise continuous functions de-
fined on the interval [0,T], maps each state vector x0 ∈ Rn

into the function y ∈ Y[0,T] ⊂ PC([0,T]) by the expression
 ( )( ) [ ]T

At
o xCetxL

,000 = , t ∈ [0,T]. The null space of the
observability operator N(Lo) is the set containing all state
vectors that excite no signal at the system output and is
called the unobservable subspace. The adjoint operator
L*

o : PC([0,T]) →  Rn  can be determined for every finite

energy output signal as 
 ( ) ( )∫=∗

T
TtA

o dttyCeyL
T

0
.  The

observability gramian of system (1) on the time interval

[0,T] is determined by the expression 
 ( ) dtCeCeTW

T
AtTtA

o

T

∫=
0

,0

and is the matrix representation of the operator
L*

o Lo  :  R
n →  Rn. Similarly to the case with the reachability

gramian, it is more convenient to work with the observability
gramian than with the observability operator, since it is a
map between vectors on a finite dimensional vector space.
Since linear operators always map zeros into zero, the null
space of the observability gramian is the same as the null
space of the observability operator, i.e. N (Lo) = N (L*

oLo).
Therefore, the condition that the system (1) is completely
observable is  N (Lo) = {0}, which is equivalent to the
condition that N (L*

oLo) = {0}. Equivalently the rank of the
observability gramian has to be equal to the state space
dimension and therefore, det Wo (0, T) ≠ 0. If the system (1)
is completely observable, the initial state vector can be
recovered from the relation x0 = (L*

oLo)
−1 L*

oy.
Since the output signal is of finite energy and by

using the Taylor series expansion formula for a matrix ex-

ponent we obtain 
 ( ) ( ) ( )dtty

i
tCAdttyCeyL

T i
T

i

iTT
T

A
o

T

∫∑∫
∞

=
==

000

*

! .

Therefore, the range space of the observability operator
adjoint can be spanned by the columns of an infinite matrix
O∞ = ⎣⎣⎣⎣⎣CT   ATCT   ...   (AT)n-1 CT   ...⎦⎦⎦⎦⎦. Then using the relation
that [R(L*

o)]
⊥ = N (Lo) [14] and therefore [R(O∞)]⊥ = N (OT

∞),
we obtain that the unobservable states of the system are
elements of the kernel of matrix OT

∞ and therefore,
N (OT

∞) = N (Lo). By the Cayley – Hamilton theorem, the
kernel of matrix OT

∞ is determined by the first n terms, i.e
CAj, j = 0,1,2,..., n−1  and an infinite dimensional matrix can
be replaced by a finite dimensional one
OT = [CT   ATCT   ...   (AT)n-1 CT]T. As a conclusion, we obtain
that the unobservable subspace of system (1) is determined
as N (Lo) = N (L*

oLo) = N (OT).
In the discrete-time system case the observability

gramian at infinity of system (11) is defined as
 ( )∑

∞

=
=

0k

kTkT
o CFCFW and the corresponding infinite

observability matrix is O∞ = ⎣⎣⎣⎣⎣CT   FTCT   ...   (FT)n-1 CT   ...⎦⎦⎦⎦⎦.
It is clear that Wo  = O∞OT

∞ and therefore, by aplying the
Cayley – Hamilton theorem it follows directly that
N (Wo) = N (OT

∞) = N (OT).
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A major role for connecting the reachability and
observability properties of a dynamical system plays the
duality principle. All of the results presented in the above
discussion can be summarized as a consequence of the
duality principle. The duality principle, applied to the dy-
namical systems (1) and (10) states that the orhogonal
complement of the reachable subspace of (1) coincides with
the unobservable subspace of (10) [1]. Furthermore, the
system (1) is reachable if and only if system (10) is observ-
able and vice versa. We have shown that the reachable and
unobservable subspaces of a linear time-invariant stable
system and its dual are interrelated and therefore, the pro-
jection on the column and null spaces of the reachability
and observability gramians and matrices are closely con-
nected. Regarding the model reduction procedures, differ-
ent methods give similar results as concerned the projection
on common subspaces of the state space. In this sense, the
balanced truncation method uses the information from both,
the reachability and observability gramians and projects
onto the subspace generated by the eigenvectors of their
product. The POD method uses information from the state
trajectories and projects onto a part of the reachability
subspace of the system. The two-sided Lanczos method
uses information from both, the reachability and observability
matrices and projects onto the subspaces generated by part
of their columns and rows. Therefore, the projection opera-
tor plays a unifying role in the model reduction procedures
and the link between the reachable and unobservable sub-
spaces of the system and its dual one outlines the common
features of at first sight completely different methods for
system approximation.

5. Numerical Example

    Consider the linear stable time-invariant system
described by the following equations:

x(t) = Ax(t) + Bu(t),         t ≥ 0
y(t) = Cx(t),          x(0) = x0

with the following system matrices:

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
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⎣
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−−−−−−

=

2015558611151034390
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010000
001000
000100
000010

A
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⎥
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⎦

⎤
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⎢
⎢
⎢
⎢
⎢

⎣

⎡
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001.0
0.0

001.0
0.0

001.0
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B
,  
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⎥
⎥
⎥
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⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
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=

0
0
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334

1034
390

The Hankel singular values for the system are com-
puted as follows:

Σ = (0.8213   0.3012   0.0536   0.0018   0.0003   0.0001).
Figure 1 presents the unit step responses of the full

order model and the obtained by balanced truncation re-
duced fourth and second order models. It is clearly seen
that the step responses of the full order and the reduced
fourth order models are almost undistinguishable. Some
difference appears in the step response of the reduced
second order model and this difference is more apparent in
steady state. Figure 2 presents the unit step responses of
the full order model and the obtained by proper orthogonal
decomposition based balancing reduced fourth and second
order models. The time interval of approximation is [0, T]
with T = 8 sec and step size Δ = 0.01 sec. As in the case
of balanced truncation, the full and fourth order system are
closely related and larger difference appears in the step
response of the reduced second order system. Next we
explore the model reduction scheme by transforming the
system into an output normal form. The reachability gramian
of the system into output normal form is diagonal matrix
with its elements computed as follows:
Σ = (0.6745  0.0907  0.0029  3.24 10-6   9.26 10-8   1.82 10-8).

It is not difficult to notice that the elements of the
reachability gramian Σ are the square of the Hankel singular
values. The corresponding observability gramian is the
identity matrix. Figure 3 presents the step responses of the
full order and corresponding reduced fourth and second
order models. It is evident that the obtained responses are
similar to those obtained by applying the balanced trunca-
tion method.

This observation is not surprising and its explanation
is that both systems have the same Hankel singular values.

The step responses of the full order system and the
reduced fifth and third order models obtained by applying
the Lanczos procedure are shown in figure 4. From the
figure is clear that the error between the reduced order
systems and the original one is larger than in the case of
balanced truncation. Figure 5 presents the unit step re-
sponses of the full order model and the reduced fourth
order models obtained by balanced truncation, proper or-
thogonal decomposition based balancing, output normal
form based balancing and the Lanczos method. It is obvi-
ous that the difference appears mainly in the step response
obtained by applying the Lanczos procedure. These results
are confirmed by the computed mean square errors be-
tween the full order and reduced fourth models. The rela-
tive mean quadratic error of approximation between the
step responses of the full order model and the reduced
fourth order models computed by the balanced truncation,
proper orthogonal decomposition based balancing, output
normal form based balancing and the Lanczos methods are
obtained as follows:
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Figure 5. Unit step responses full order -----; reduced 4th order by BT -.-.-; POD …..; ONF -.-.-; L -----

Figure 6. Magnitude responses full order -----; reduced 4th order by BT -.-.-; POD …..; ONF -.-.-; L -----
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The obtained relative errors show that the Lanczos
procedure gives more inaccurate results than the other and
justify the theoretical conjecture that for low order systems
the balancing procedures give most accurate results. These
results are confirmed in figure 6, where the Bode character-
istics are presented for the full order and reduced fourth
order models obtained by balanced truncation (BT), proper
orthogonal decomposition based balancing (POD), output
normal form balancing (ONF) and the two sided Lanczos
method (L).

6. Conclusion

This paper considers the problem of model order re-
duction of linear time-invariant stable systems. The empha-
sis is placed on the common features of several main meth-
ods for model reduction. The unifying feature in the proce-
dures of model order reduction is projection. It is shown
how projections are computed for different methods of model
reduction and what the properties of the projection opera-
tors are. Another common feature in model reduction is the
determination of the subspaces where the state space vec-
tors are projected. It is shown that the range space of the
reachability gramian and the reachability matrix are the same
and this observation is related to their connection with the
reachability operator. Similarly, the observability gramian
and the observability matrix are associated with the
observability operator, and therefore the unobservable sub-
space is determined by the null spaces of these matrices. It
is shown that different methods use different schemes for
model reduction as concerned the technical details of com-
putation however, all the methods contain similar character-
istics determined by the projection on the same subspaces.
Several main methods are examined namely: balanced trun-
cation, proper orthogonal decomposition based balancing,
output normal form based balancing and the Lanczos pro-
cedure. In a numerical example is shown that these methods
give similar results in model reduction, although some dif-
ferences are observed concerning the accuracy of approxi-
mation. This observation can be explained by the special
features of these methods applied to a specific example.
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