
1 2017 23information technologies
and control

Architecture Evolution through Dynamic
Reconfiguration in jADL

A. Papapostolu, D. Birov

Key Words: Software architecture; component-and-connector view;
software evolution; dynamic reconfiguration; ADL; context-oriented
software development.

Abstract. In software architecture the dynamic structure of a soft-
ware system can be described in terms of components and con-
nectors and expressed through the use of Architectural Description
Languages (ADLs). We present jADL, a new ADL, designed for
the creation and validation of dynamic and mobile architectures.
It, also, aims to help towards the process of “unifying” the
definition and implementation of an architecture in a way that the
final result is consistent with the architecture in terms of both
functional requirements and quality attributes. In this paper, we
examine into details the definition and expression of jADL’s archi-
tectural elements; components, connectors, ports, roles and
behaviour describing statements – attach, detach, config, bind. The
attributes of synchronicity and multiplicity concerning the connec-
tions between architectural elements are presented. A special case
of connections is presented – the bind statement and the construc-
tion of composite architectural elements. Also, a case study of the
client-server dynamic model in jADL is presented and the possi-
bilities of jADL for dynamic reconfiguration are explored.

Introduction

Software architecture [1,2,3] provides the various stake-
holders with the possibility of “observing” the software
system from a more abstract level, thus allowing them to
reason about a system’s both functional requirements and
quality attributes. Due to the high complexity of software
systems, software architecture considers the static, dynamic
and deployment perspectives. The static perspective con-
cerns the static part of a software system (classes, pack-
ages, modules, frameworks APIs, etc.). The dynamic per-
spective outlines the runtime behavior of the system. The
deployment perspective describes the environment into
which the system will be deployed, including capturing the
dependencies the system has on its runtime environment
(the hardware environment that a system needs, the tech-
nical environment requirements for each element etc.). The
perspectives have a number of views. The important view
of the dynamic perspective is the component-and-connec-
tor (C&C) view where components and connectors are the
constituent elements and their interrelationships, behavior
and constraints are presented. Components are computa-
tional elements and data stores and they communicate with
their environment exclusively through their declared ports.
Components can communicate with each other only through
connectors. Connectors represent the various forms of
communication of components and their declared roles (re-
spectively to a component’s ports) are their exclusive points

of interaction. A connection is established when a
connector’s role is attached to a component’s port. If all
components communicate with others only through con-
nectors then the system has a property named communica-
tion integrity [4].

The connections between components and connec-
tors compose the topology of the architecture of the system
which is described and formally expressed through Archi-
tectural Description Languages (ADLs). ADLs are domain
specific languages for description of the structure (topol-
ogy) and the behavior of the software architecture. The
topology can be formalized as a graph of components and
connectors connected to each other by arcs. The behavior
of components and connectors provides designers with
information about their functionalities, the data flow, the
way they communicate with each other etc.

In the last two decades, a lot of ADLs have been
proposed like ArchJava [6], PADL [7,16], πADL [8],
Wright [9], ACME [10] and others. Most of them are based
on formal methods, which allow architects to reason about
software architecture structure and behavior [7,8]. Formal
methods allow to verify, validate and ensure syntactically
and semantically correctness of the software architecture.
In despite of the ADLs’ evolution, the biggest challenge
remains their practical usefulness in commercial software
development companies. We are further exploring issues we
discussed in [18] such as the dynamic reconfiguration [5]
of a software intensive system. A significant issue is the
“correspondence” of the “design” architecture with the
“implementation” architecture of a software intensive sys-
tem. It is common that the actual software implementation
deviates from the original design and architecture – e.g.
communication integrity is violated or not all of the quality
attributes are taken into consideration.

We present a new ADL, called jADL [11], which has
a Java-like syntax (for familiarity reasons) and is designed
for the description and validation of dynamic and mobile
software architectures. It further aims in providing a com-
plete toolset to the architect for validating/verifying/etc. the
architecture and, eventually, producing implementation code
stubs (we chose Java [12] for our prototype) that are con-
sistent with the defined architecture and embody its quality
attributes. jADL describes the software architecture as a
process; in order to actually “create” the architecture a
jADL script needs to be executed.

In the following section, we further examine the use of
ports and roles in jADL, as well as, their various features
– their interfaces and kinds and issues that are connected
with their multiplicity and synchronicity. We, also, present
a new definition of the previously introduced attach, de-

Print ISSN: 1312-2622; Online ISSN: 2367-5357
DOI: 10.1515/itc-2017-0019

1 201724 information technologies
and control

tach and bind statement (used in the construction of com-
posite architectural elements). In the third section, we illus-
trate jADL’s possibilities for dynamic reconfiguration through
two simple, but common, cases – an implementation of a
dynamic client-server model where the server is replaced
dynamically (e.g. in case of a shutdown) and the
reconfiguration of the behavior of a component at runtime.
In the last three sections, an early version of the compiler,
the related work and conclusions are discussed.

Architectural Elements in jADL
In jADL, the basic building blocks and first-class ar-

chitectural entities are components and connectors and they
are defined (using BNF [13]) as presented in Appendix. All
the definitions for jADL declarations, statements etc. could

be found in the Appendix.
Component: declares a number of ports in order to

communicate through connectors with other components.
The ports are of two kinds: requires and provides. A re-
quires port waits for input from a connector, but a provides
port must be configured inside the component’s body. Only
this configuration is visible to the other elements; other
internal methods can be accessed only by the component
itself.

Throughout this paper we will present an architecture
in jADL for the client-server architectural family (figure 1).
We start here by defining the two components that partici-
pate – a Client and a Server. Below follows their declara-
tion, as well as the declaration of their interfaces (the defi-
nition and use of interfaces in jADL is presented in detail
after the definition of components and connectors).

Interfaces and Client Declaration

1. //parametric type variable declaration. Architecture description
2. //is parameterized by type of client request data type.
3. type Type;
4.
5. //client’s interfaces
6. interface IRequest {
7. void Request(Type data);
8. }
9. interface IReceive {
10. void Received(Type data);
11. }
12.
13. component Client {
14. requires port IRequest send;
15. provides port IReceive wait;
16.
17. config wait as {
18. void Received(Type data){
19. //process the result-response
20. browser.display(data);
21. }
22. }
23. }

Figure 1. Client – Server Architecture

Code snippet 1. The declaration of the interfaces and the client in jADL

1 2017 25information technologies
and control

The Client component has two ports; one requires
port (send) from where it sends its request to the server
(through a connector) and one provides port (wait) from
where the response from the server is delivered (again
through the connector) and can be processed by the client.
The client (the server and the connector too) is parameter-
ized with Type which stands for various standard types
(String, for example).

Ports are the only point of interaction for components
(roles for connectors respectively). Both ports and roles in
jADL are treated as first-class architectural citizens. They
are used to ensure the control and data flow, which is
established with the attachment of a role to a port. They are
characterized by their interfaces, their kind (provides –
output, requires – input) and the multiplicity and
synchronicity of their connection. These are, also, the fac-
tors that define whether an attachment will be successful or
not; the two interfaces must be compatible, their kinds must
be opposing (a provided role with a required port or vice
versa) and of the same synchronicity (both synchronous or
both asynchronous).

Interfaces. They are used to define the shape of
communication and behaviour of a port or role – the way
this architectural element can be used by the rest of the
elements. They constitute descriptions of protocols that
define the communication between the architectural ele-
ments. A major advantage of interfaces is the ability to
group different connection channels expressed by a signa-
ture grouped together. The port or role interface defines the
communication shape and it should not be misunderstood

as functional or method call because of their syntax similar-
ity. For example void f(Integer a, Double b, String c) as a
part of an interface represents a channel according to
polyadic high order typed applied pi-calculus [14] where f
is the name of the channel. If the interface is used for the
declaration of a requires port then values tuple (a, b, c) is
expected through channel f to be received. The type of
tuple is (Integer, Double, String). jADL uses two different
type systems – one classical type system which consists of
primitive types of values like Integer, Double, etc. plus type
constructors like Array[T], Vector[T], Queue[T], etc. Sec-
ond type system defines port and component types.

jADL views ports and roles as channel of communi-
cations. These channels have a data type and interfaces are
flexible common way to describe complexity of communica-
tion. But channels can also be typed with primitive types
as well. In this case the port and or role represents a
channel of some kind – provides or requires – of sending
or receiving the values. When a port and role are connected
their “interfaces” need to be compatible. This is achieved
by unification between the port’s interface shape and role’s
interface shape. During the unification interfaces and types
of both component and connectors are unified and their
corresponding types inferred. The set of connections shape
constitutes an interface and is used to express the behaviour
of an architectural element in jADL. The standard control
flow statements – if-then-else, switch-case, while and for
loops – are allowed. The config statement is used for as-
signing a behaviour (interface) to a port/role, as seen on the
implementation below.

Interfaces and Server Declaration

1. //server’s interfaces
2. interface IResponse {
3. void Response(Type data);
4. }
5. interface IProcess {
6. void procRequest(Type data);
7. }
8.
9. component Server {
10. provides port IProcess req;
11. requires port IResponse reply;
12.
13. attribute boolean down = false;
14.
15. config req as {
16. void procRequest(Type data){
17. //create response and reply
18. Type resp = processReq(data);
19. reply.Response(resp);
20. }
21. }
22. Type processReq(Type data){
23. //do sth - return result
24. //...
25. return res;
26. }
27.
28. while(!down){
29. select {
30. process; }
31. or {
32. delay 300;
33. down = true; }
34. end;
35. }
36.
37. }

 Code Snippet 2. The declaration of the interfaces and the server in jADL

1 201726 information technologies
and control

The server has also two ports; one provides port to
accept the request to be processed (req) and one requires
to send its response (reply). It also has an attribute –
boolean down – which indicates the state of the server. All
these four ports implement different interfaces; the success-
ful communication is achieved through the connector.

Connector [15]. declares a number of roles which are

attached to ports so that the component communication is
ensured. The same rules defined for ports, apply to a
connector’s roles. We continue with our client-server ex-
ample by defining the connector that connects the two
components defined. The interfaces used by the connector
are the same that were presented above.

The connector has four roles (correspondingly to the

Connector Declaration
1. connector Conn {
2. provides role IRequest cReq;
3. requires role IReceive cRes;
4. provides role IResponse sRes;
5. requires role IProcess sReq;
6.
7. config cReq as {
8. void aRequest(Type data){
9. sReq.pRequest(data);
10. }
11. }
12.
13. config sRes as {
14. void aResponse(Type data){
15. cRes.Received(data);
16. }
17. }
18.
19. }

Code Snippet 3. The declaration of the connector in jADL

four ports presented). The unification of client.send and
conn.cReq (figure 1) ensures that the request will be ac-
cepted from the connector and it will be pushed forward to
the server through the attachment of con.sReq and s.req.
After the response is calculated it will reach the client in a
similar way (using the attachments between s.reply - con.sRes
and con.cRes - c.wait).

Components and connectors participating in a com-
munication can be part of the same process (or thread) as
well as parts of different processes and threads and they

can, also, be grouped together to produce a composite
component or connector (an architectural element consist-
ing of other elements appropriately connected together). In
order for a communication to occur between a component
and a connector a connection must be established between
them. In jADL this is achieved by attaching (connecting) a
role to a port using a simple statement. In the code below
we can see the use of attach and how the architecture of
figure 1 is expressed in jADL.

A new instance for the connector and each compo-

Topology Declaration
1. //architecture definition
2. architecture ClientServer {
3.
4. instance client = new Client();
5. instance server = new Server();
6. instance conn = new Conn();
7.
8. attach(conn.cRes, client.wait);
9. attach(conn.cReq, client.send);
10.
11. attach(conn.sRes, server.reply);
12. attach(conn.sReq, server.req);
13.
14. while(true)
15. client.send.aRequest(myRequest);
16.
17. }

 Code Snippet 4. Element instantiation and attachment definition in jADL

1 2017 27information technologies
and control

nent is created. All the ports are attached to the appropriate
roles and the communication is ensured so that the client
can make a request with a call from his port (send).

Kind. From the declaration of ports and roles, the
keywords provides and requires are used to declare their
kind. Every port or role must have a kind. Provides is used
for the declaration of a port or role which submits data
through a connection. The information processed in the

implemented methods of a component, for example, is avail-
able to its port and will be provided to any successfully
attached role to it. Requires is used for a port or role which
expects data through connections. Upon the creation of an
attachment, the kinds of the participants are compared and
if they are not opposed the attachment is unsuccessful and
the compiler reports an error.

Multiplicity. The simplest type of a connection is
when one role is attached to one port (1-1 communication).
In addition to that, jADL supports and more complicated
connections of the type of 1-N communication. Figure 2
provides cases where attachments have more than two ar-
chitectural elements involved. While the attachment in 2a
is successful, the one in 2b is not and had to be trans-
formed as shown in the figure. This is due to the fact that
in jADL there is a constraint concerning the ports and roles
of the requires kind. Only a declared as a provides port (or
role) can be attached to multiple requires roles (or ports).
When more than one provides ports or roles are attached

Figure 2. Variations of 1-N communications in jADL1

1 The legend of this figure applies to all figures presented.

to one requires role or port, then issues of non-determinism
appear. jADL in order to avoid that prohibits these connec-
tions and each requires role or port should be attached to
exactly one provides port or role.

Synchronicity. In a 1-N communication, additional
problems than those mentioned above will appear when
each of the architectural elements participating is part of a
different thread. In figure 3 is illustrated this case; the two
connectors, each executed in a different thread, might at-
tempt to gain access to the same resource of the component
(a third thread), so concurrency issues will arise.

Figure 3. 1-N communication of three different threads

1 201728 information technologies
and control

In jADL, when declaring a port or a role, as shown
above, there is an optional keyword (synchronized) which
defines the synchronicity of the communication; when used
the communication is synchronous and when omitted the
communication is asynchronous. For example, in figure 3,

provides port IQueue p;
…
config p as {
 int getSize() {
 return q1.size();
 }
}

requires role IQueue r1;
…
r1.getSize();

let’s assume that in component C there is a queue (q1)
defined in which other elements push their events and the
two connectors Con1 and Con2 need the size of this queue
in order to process their calculations. Then in component’s
C definition there will be:

and in connector’s Con1 definition (and respectively to
Con2):

This code would be correct if we had only one thread
of execution. But, since we have three different threads our
shared resource – the queue – must be protected. So the
code should be modified; the keyword synchronized must
be added to both the port p and the roles r1, r2 declarations.
The result will be that during the compilation of the script
a synchronized block of code will be generated, concerning
the shared queue, and the Java Virtual Machine, during
runtime, will handle the concurrency making sure that the
connectors will always receive the true size of the queue.

Bind Statement. In [11] we have presented a special
case concerning the attachments in jADL; the bind state-
ment. A statement describing a connection between an

external port or role of a composite component or connector
with an internal port or role of one of its internal architec-
tural elements that constitute it. A simple example was
presented which falls under the type shown in figure 4a.
The definition of bind as presented there – “the arguments
must both be of the same type (port, role) and kind (pro-
vides, requires)” – does not cover the cases shown in
figure 4b and 4c where a role must be binded to a port and
neither does attach which requires opposing kinds.

In order to allow more flexibility we extend the defini-
tion to: the arguments in the bind statement must be of the
same kind. In this way it is now possible to describe any
variation of the types presented in figure 4.

Figure 4. Combinations of a composite architectural element

Dynamic Reconfiguration

Dynamic reconfiguration is the evolution of a soft-
ware system performed at runtime without disrupting the

execution of the system. It is one of the most important
aspects that an ADL needs to cover in order to be inte-
grated in software development processes and develop
practical use. jADL provides statements for dynamic

1 2017 29information technologies
and control

reconfiguration. We present two simple cases of dynamic
reconfiguration and how they are implemented in jADL. The
use of the detach statement is demonstrated. Detach can be
used both when defining an architecture and at runtime. It
is used in order to destroy an attachment (connection)
between a given role and port. Furthermore, after explaining
the use of the config statement for assigning a behavior to
a port (or role) when defining an architectural element, we
present its use at runtime when it is used for dynamically
assigning a behavior.

Case 1 – switching between two components. Here we
will present a simple implementation of a dynamic client-
server architecture in jADL. The architecture consists of
three elements; a client, a connector and a server we pre-

sented before.
The architecture is dynamic because (as we can see

in the implementation below in the component ClientServer)
the infinite loop checks constantly the attribute down. This
attribute informs us about the state of the server (true- not
working, false – working). If the value is false the server
keeps processing the requests, but if the server does not
respond and remains inactive for 300ms the attribute is set
to true and the server is stopped. When the server stops
working, it is detached from the connector, a new instance
is created and then attached to the connector, hence mak-
ing this architecture dynamic.

This is the implementation of the client server archi-
tecture in jADL.

Dynamic Architecture Declaration

1. //architecture definition
2. architecture ClientServer {
3.
4. instance client = new Client();
5. instance server = new Server();
6. instance conn = new Conn();
7.
8. attach(con.cRes, c.wait);
9. attach(con.cReq, c.send);
10. attach(con.sRes, s.reply);
11. attach(con.sReq, s.req);
12.
13. while(true){
14. c.send.aRequest(myRequest);
15. select {
16. process;
17. }
18. or {
19. delay 300;
20.
21. dettach(con.sRes, s.reply);
22. dettach(con.sReq, s.req);
23.
24. instance s = new Server();
25.
26. attach(con.sRes, s.reply);
27. attach(con.sReq, s.req);
28. }
29. end;
30. }
31. }

Code Snippet 5. Definition of a dynamically reconfigurable architecture in jADL

Case 2 – creation of a new component and architec-
ture reconfiguration. In this case, let’s consider the follow-
ing scenario: a component or a connector needs to be
replaced with a new one with enhanced functionality. We
assume that the changes forcing us to perform this replace-
ment require backward compatibility of the architectural
element replaced, so what we need is a new element, similar

to the old one, with a “reconfigured” port or role. Such
changes might be, for example, the replacement of internet
communication protocol IPv4 with IPv6 or a change in the
format of the output data provided by the element.

As it is shown above, config is used in jADL when
statically defining components and connectors, and more
specifically when describing their behaviour. But, config

1 201730 information technologies
and control

can also be used at runtime to assign new behaviour to
concrete port(s) or role(s) of an element, which will result in
the creation of a new architectural element. This applies
only to ports and roles of the provides kind.

First, the reference of the architectural element
(<portRoleRef>) that needs reconfiguration must be ob-
tained. After the implementation of the new behaviour in-

side the block surrounded by { }, a new architectural ele-
ment is created and its reference is obtained and can be
used from that point on. For example, assuming that we
have a component C with a provides port p that must be
replaced, connected to a connector Conn with a requires
role r, then that is how the script performing the replace-
ment could be:

Sample of a Dynamic Architecture

1. architecture SampleDynArch {
2.
3. instance comp1 = new C();
4. instance conn = new Con();
5.
6. instance comp2 = comp1 with {
7. config comp1.p as {
8. //new behaviour
9. }
10. }
11.
12. attach(con.r, compA.p);
13. //…
14. detach(con.r, comp1.p);
15. attach(con.r, comp2.p);
16.
17. }

 Code Snippet 6. Example of dynamic reconfiguration in jADL

From this simple script above, a new component will
be created (comp2) and at this stage we‘ll have a reference
to it (comp2.p). Now, the replacement is easy and it is
achieved with the use of detach as presented in case 1.

Compiler
A compiler is created for the definition/validation/etc.

of jADL scripts. The parser used for the lexical, syntax and
semantic analysis of the scripts was built at the beginning
using the ANTLR (ANother Tool for Language Recogni-
tion) [17] tool. During the time of the review process, we
changed the tool used for the creation of the compiler to
Xtext [19] (which, also, uses ANTLR internally for the gen-
eration of the parser). Xtext is an Eclipse extension, a frame-
work used for defining Domain Specific and General Pur-
pose Languages. The decision for changing the tool was
based on the enhanced options for configurability provided
by the Xtext framework and the toolset available (parser,
compiler, editor, etc.). The compiler is currently under con-
struction.

Related Works

π-ADL[8] provides a way for the description of dy-
namic and mobile software architectures. It is designed as
a domain-specific extension of the higher-order typed ð-
calculus [14] and it aims in providing both structural and

behavioural architecture-centric constructs for high archi-
tecture expressiveness. Connectors in π-ADL are not de-
fined separately as distinct architectural elements, but in-
stead of that they are simulated through the use of special-
purposed components. PADL [7,16] is a process algebraic
ADL with high expressiveness. In PADL primarily are de-
scribed architectural types – an intermediate abstraction
between a single system and an architectural style [1]. An
architectural type is defined by its behaviour (the architec-
tural elements and their topology) and its interactions (their
synchronicity and their multiplicity).

The main difference with those languages is that in
jADL we treat as first-class elements both components and
connectors, and their ports and roles as well, unlike the
predefined connectors of PADL or the use of special-pur-
posed components of π-ADL. Treating them as first-class
entities enables the support of a number of very important
operations, that otherwise would be unavailable, such as
being passed as an argument, returned from a function or
assigned to a variable. jADL is created with the goal to
provide to architects/designers/developers the means to
easily being able to perform dynamic reconfigurations of
the system and evolving it.

Conclusion

In this paper, we extensively described the definition
of jADL’s architectural elements – components, connec-

1 2017 31information technologies
and control

tors, ports and roles and, also, various statements and
approaches concerning the dynamic reconfiguration sup-
port in jADL. Additionally, we presented the various fac-
tors characterizing their attachments and the attributes of
the connections created in terms of multiplicity and
synchronicity and proved that jADL is capable of express-
ing a wide range of communication types (1-N, 1-1, syn-
chronous etc.). The bind statement was, also, presented
which is used for the creation of composite architectural
elements and we extended its definition to ease architects
in the creation of composite components or connectors.
Finally, two simple cases of dynamic reconfiguration were
presented and how they are implemented using jADL. Both
cases concerned reconfiguration on the instance level; one

unforeseen and one foreseen. jADL provides the language
constructs for these reconfigurations to occur easily and
safely, but there is still a lot to be done when it comes to
dynamic reconfiguration. Our next goal is to extend the
support of jADL to reconfigurations on the type level and
the reassessment of the system after these changes are
applied. We, also, aim at creating a model for the integration
of the better embodiment of the quality attributes (non-
functional requirements) and constraints into the generated
implementation code stubs.

Acknowledgement
This work was supported by NSF DO 02-102/2009.

<component_declaration> ::= “component” <component_ID> “{“ {
 [<port_declaration>]*
 [<config_statement>]*
 [<internal_method>]*
 } “}”

<connector_declaration> ::= “connector” <connector_ID> “{“ {

 [<role_declaration>]*
[<config_statement>]*

 [<internal_method>]*
} “}”

<port_declaration> ::= (“provides” | “requires”) [“synchronized”]
“port” <interface> <id> “;”

<role_declaration> ::= (“provides” | “requires”) [“synchronized”]

“role” <interface> <id> “;”

<bind_statement> ::= “bind” “(“<roleOrPortId>,< roleOrPortId>“)” “;”

<attach_statement> ::= “attach” “(“ <role_id>, <port_id> “)” “;”

<detach_statement> ::= “detach” “(” <roleID>, <portID> “)” “;”

<newElementReconfiguration> ::=

<elementType> <ID> = <elementRef> “with” “{”
 “config” <portRoleRef> [“include” <interface1>, ...] “{”
 //new behaviour
 “}” “}”

<select_statement> ::= “select”
 [“when” <booleanGuard> “=>”] “{”

 statement(s) “}”
 [“or”

 [“when” <booleanGuard> “=>”] “{”
 statement(s) “}”]*

 “end;”

Appendix

Here we present the syntax for the statements and declarations in jADL using BNF.

1 201732 information technologies
and control

References
1. Shaw, M. and D. Garlan. Software Architecture: Perspectives on
an Emerging Discipline. Prentice Hall, 1996.
2. Taylor, R. N. N., N. Medvidovic E. and Dashofy. Software
Architecture: Foundations, Theory, and Practice. United Kingdom,
Wiley, John & Sons, 2009.
3. Clements, P., F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little,
P. Merson, R. Nord and J. Stafford. Documenting Software
Architecture Views and Beyond. 2nd Edition, Addison-Wesley, 2011.
4. Moriconi, M., X. Qian and R. Riemenschneider. Correct Archi-
tecture Refinement. – IEEE Trans, Software Engineering, 21,
1995, 4.
5. Buisson, J., T. V. Batista, L. Minora & F. Oquendo. Issues of
Architectural Description Languages for Handling Dynamic
Reconfiguration. 2012.
6. Aldrich, J., C. Chambers and D. Notkin. ArchJava: Connecting
Software Architecture to Implementation. ICSE 2003, 187-197, 2003.
7. Aldini, A., M. Bernardo and F. Corradini. A Process Algebraic
Approach to Software Architecture Design. Springer, 2009.
8. Oquendo, F. Dynamic Software Architectures: Formally Model-
ing Structure and Behaviour with π-ADL. Proceedings of the Third
International Conference on Software Engineering Advances, IEEE
Computer Society, Malta, 2008.
9. Allen, R., R. Douence and D. Garlan. Specifying Dynamism in
Software Architectures. Proceedings of the Workshop on Founda-

Manuscript received on 02.11.2016

tions of Component-Based Systems, 1997, 11–22.
10. Batista, T. V., A. T. A. Gomes, G. Coulson, C. Chavez and
A. F. Garcia. On the Interplay of Aspects and Dynamic
Reconfiguration in a Specification-to-Deployment Environment.
Proceedings of the 2nd European Conference on Software Architec-
ture, Berlin, Heidelberg, 2008, 314–317.
11. Papapostolu, A. and D. Birov. jADL: Another ADL for Au-
tomated Code Generation. Science and Business for a Smart Future,
Varna, Bulgaria, 2016.
12. https://www.oracle.com/java/index.html.
13. http://matt.might.net/articles/grammars-bnf-ebnf/.
14. Milner, R. Communicating and Mobile Systems: The Pi Calcu-
lus. 1st Edition. Cambridge University Press, 1999.
15. Amirat, A. and M. Oussalah. First-Class Connectors to Support
Systematic Construction of Hierarchical Software Architecture.
– JOT, 8, 2009, 7.
16. Bonta, E. Automatic Code Generation: From Process Algebraic
Architectural Descriptions to Multithreaded Java Programs.
Universita di Bologna, Padova, 2008.
17. http://www.antlr.org/.
18. Papapostolu, A. and D. Birov. Dynamic Reconfiguration State-
ments and Architectural Elements in jADL. Proceedings of the
International Conference Automatics and Informatics’16, Sofia,
Bulgaria, 4-5 October 2016, 153-157.
19. https://eclipse.org/Xtext/.

Anastasios Papapostolu is a PhD can-
didate in Sofia University “St. Kliment
Ohridski” in Computer Science – Soft-
ware Architectures at the Faculty of
Mathematics and Informatics, Depart-
ment of Computing Systems. He re-
ceived his M. Eng. Diploma in Elec-
tronic and Computer Engineering from
the Technical University of Crete,
Chania, Greece in 2014. His profes-
sional and scientific research interests
include self-adaptable and dynamic
architectures, architecture description

languages, compiler construction and language engineering.
Contacts:

Sofia University “St. Kliment Ohridski”
Sofia, Bulgaria

e-mail: papapostol@fmi.uni-sofia.bg

Dimitar Birov, PhD is an associate
professor at the Faculty of Math-
ematics and Informatics of Sofia
University “St. Kliment Ohridsky”.
He has professional experience as
research fellow, lecturer, and project
manager at Sofia University, Uni-
versity College of Dublin, Ireland,
University of Orleans, France,
Microsoft Corporation, Redmond,
USA, Carnegie Mellon University,
Pittsburgh, USA. He has industrial

experience like software developer, software architect, consultant
and CEO. He is patent inventor. His primary research interests are
in software architectures, and software language engineering –
formal and practical architecture description and analysis languages,
software engineering and design, programming languages, and type
systems.

Contacts:
Sofia University “St. Kliment Ohridski”

Sofia, Bulgaria
e-mail: birov@fmi.uni-sofia.bg

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue true
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f0062006500200050004400460020658768637b2654080020005000440046002f0058002d00310061003a0032003000300031002089c4830330028fd9662f4e004e2a4e1395e84e3a56fe5f6251855bb94ea46362800c52365b9a7684002000490053004f0020680751c6300251734e8e521b5efa7b2654080020005000440046002f0058002d00310061002089c483037684002000500044004600206587686376848be67ec64fe1606fff0c8bf753c29605300a004100630072006f00620061007400207528623763075357300b300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef67b2654080020005000440046002f0058002d00310061003a00320030003000310020898f7bc430025f8c8005662f70ba57165f6251675bb94ea463db800c5c08958052365b9a76846a196e96300295dc65bc5efa7acb7b2654080020005000440046002f0058002d003100610020898f7bc476840020005000440046002065874ef676848a737d308cc78a0aff0c8acb53c395b1201c004100630072006f00620061007400204f7f7528800563075357201d300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006600f800720073007400200073006b0061006c00200073006500730020006900670065006e006e0065006d00200065006c006c0065007200200073006b0061006c0020006f0076006500720068006f006c006400650020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e00670020006100660020006700720061006600690073006b00200069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002000660069006e006400650072002000640075002000690020006200720075006700650072006800e5006e00640062006f00670065006e002000740069006c0020004100630072006f006200610074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061003a0032003000300031002d006b006f006d00700061007400690062006c0065006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002e0020005000440046002f0058002d003100610020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020006600fc0072002000640065006e002000410075007300740061007500730063006800200076006f006e0020006700720061006600690073006300680065006e00200049006e00680061006c00740065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200034002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f00620065002000710075006500200073006500200064006500620065006e00200063006f006d00700072006f0062006100720020006f002000710075006500200064006500620065006e002000630075006d0070006c006900720020006c00610020006e006f0072006d0061002000490053004f0020005000440046002f0058002d00310061003a00320030003000310020007000610072006100200069006e00740065007200630061006d00620069006f00200064006500200063006f006e00740065006e00690064006f00200067007200e1006600690063006f002e002000500061007200610020006f006200740065006e006500720020006d00e1007300200069006e0066006f0072006d00610063006900f3006e00200073006f0062007200650020006c0061002000630072006500610063006900f3006e00200064006500200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400690062006c0065007300200063006f006e0020006c00610020006e006f0072006d00610020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006c006100200047007500ed0061002000640065006c0020007500730075006100720069006f0020006400650020004100630072006f006200610074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200034002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000710075006900200064006f006900760065006e0074002000ea0074007200650020007600e9007200690066006900e900730020006f0075002000ea00740072006500200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061003a0032003000300031002c00200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200070006c007500730020006400650020006400e9007400610069006c007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061002c00200076006f006900720020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200034002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
 /JPN <FEFF30b030e930d530a330c330af30b330f330c630f330c4306e590963db306b5bfe3059308b002000490053004f00206a196e96898f683c306e0020005000440046002f0058002d00310061003a00320030003000310020306b6e9662e03057305f002000410064006f0062006500200050004400460020658766f830924f5c62103059308b305f3081306b4f7f75283057307e30593002005000440046002f0058002d0031006100206e9662e0306e00200050004400460020658766f84f5c6210306b306430443066306f3001004100630072006f006200610074002030e630fc30b630ac30a430c9309253c2716730573066304f30603055304430023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200034002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020c791c131d558b294002000410064006f0062006500200050004400460020bb38c11cb2940020d655c778c7740020d544c694d558ba700020adf8b798d53d0020cee8d150d2b8b97c0020ad50d658d558b2940020bc29bc95c5d00020b300d55c002000490053004f0020d45cc900c7780020005000440046002f0058002d00310061003a0032003000300031c7580020addcaca9c5d00020b9dec544c57c0020d569b2c8b2e4002e0020005000440046002f0058002d003100610020d638d65800200050004400460020bb38c11c0020c791c131c5d00020b300d55c0020c790c138d55c0020c815bcf4b2940020004100630072006f0062006100740020c0acc6a90020c124ba85c11cb97c0020cc38c870d558c2edc2dcc624002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200034002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200073006b0061006c0020006b006f006e00740072006f006c006c0065007200650073002c00200065006c006c0065007200200073006f006d0020006d00e50020007600e6007200650020006b006f006d00700061007400690062006c00650020006d006500640020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e006400610072006400200066006f007200200075007400760065006b0073006c0069006e00670020006100760020006700720061006600690073006b00200069006e006e0068006f006c0064002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020007300650020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200063006100700061007a0065007300200064006500200073006500720065006d0020007600650072006900660069006300610064006f00730020006f0075002000710075006500200064006500760065006d00200065007300740061007200200065006d00200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061003a0032003000300031002c00200075006d0020007000610064007200e3006f002000640061002000490053004f002000700061007200610020006f00200069006e007400650072006300e2006d00620069006f00200064006500200063006f006e0074006500fa0064006f00200067007200e1006600690063006f002e002000500061007200610020006f00620074006500720020006d00610069007300200069006e0066006f0072006d006100e700f50065007300200073006f00620072006500200063006f006d006f00200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400ed007600650069007300200063006f006d0020006f0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006f0020004700750069006100200064006f002000750073007500e100720069006f00200064006f0020004100630072006f006200610074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200034002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b00610020007400610072006b0069007300740065007400610061006e00200074006100690020006a006f006900640065006e0020007400e400790074007900790020006e006f00750064006100740074006100610020005000440046002f0058002d00310061003a0032003000300031003a007400e400200065006c0069002000490053004f002d007300740061006e006400610072006400690061002000670072006100610066006900730065006e002000730069007300e4006c006c00f6006e00200073006900690072007400e4006d00690073007400e4002000760061007200740065006e002e0020004c0069007300e40074006900650074006f006a00610020005000440046002f0058002d00310061002d00790068007400650065006e0073006f00700069007600690065006e0020005000440046002d0064006f006b0075006d0065006e0074007400690065006e0020006c0075006f006d0069007300650073007400610020006f006e0020004100630072006f0062006100740069006e0020006b00e400790074007400f6006f0070007000610061007300730061002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200034002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200073006b00610020006b006f006e00740072006f006c006c006500720061007300200065006c006c0065007200200073006f006d0020006d00e50073007400650020006d006f0074007300760061007200610020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e00640061007200640020006600f6007200200075007400620079007400650020006100760020006700720061006600690073006b007400200069006e006e0065006800e5006c006c002e00200020004d0065007200200069006e0066006f0072006d006100740069006f006e0020006f006d00200068007500720020006d0061006e00200073006b00610070006100720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00610020005000440046002d0064006f006b0075006d0065006e0074002000660069006e006e00730020006900200061006e007600e4006e00640061007200680061006e00640062006f006b0065006e002000740069006c006c0020004100630072006f006200610074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200034002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-1a:2001, an ISO standard for graphic content exchange. For more information on creating PDF/X-1a compliant PDF documents, please refer to the Acrobat User Guide. Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [581.102 822.047]
>> setpagedevice

